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Abstract
Clustered regularly interspaced palindromic repeats (CRISPR)-associated (Cas)9 transactivating CRISPR RNAs
(tracrRNAs) form distinct structures essential for target recognition and cleavage and dictate exchangeability be-
tween orthologous proteins. As noncoding RNAs that are often apart from the CRISPR array, their identification
can be arduous. In this article, a new bioinformatic method for the detection of Cas9 tracrRNAs is presented. The
approach utilizes a covariance model based on both sequence homology and predicted secondary structure to
locate tracrRNAs. This method predicts a tracrRNA for 98% of CRISPR-Cas9 systems identified by us. To ensure
accuracy, we also benchmark our approach against biochemically vetted tracrRNAs finding false-positive and
false-negative rates of 5.5% and 7.1%, respectively. Finally, the association between Cas9 amino acid sequence-
based phylogeny and tracrRNA secondary structure is evaluated, revealing strong evidence that secondary struc-
ture is evolutionarily conserved among Cas9 lineages. Altogether, our findings provide insight into Cas9 tracrRNA
evolution and efforts to characterize the tracrRNA of Cas9 systems.

Introduction
Clustered regularly interspaced palindromic repeats

(CRISPR) RNA (crRNA) and CRISPR-associated (Cas)

proteins cooperate to defend prokaryotic organisms

against invading RNA and DNA.1–3 The Cas9 proteins

from type II CRISPR-Cas systems are guided to cleave

double-strand (ds)DNA targets using two noncoding

(nc)RNAs, a crRNA, and a transactivating crRNA

(tracrRNA).4,5 The crRNA contains a sequence, termed

the spacer, that directly base pairs with the dsDNA target

site in the vicinity of a protospacer adjacent motif.6–8 The

tracrRNA base pairs with the crRNA and is recognized

and bound by Cas9 resulting in the formation of a dual-

guide RNA (gRNA) ribonucleoprotein complex.9,10

In recent years, due to its RNA-based programmabil-

ity, CRISPR-Cas9 has been widely adopted as a genome

editing tool for a variety of different genomes, including

those from eukaryotic organisms.9,11,12 For these applica-

tions, the repair of a Cas9-induced double-strand break

has been harnessed to correct disease-causing mutations,

introduce beneficial modifications (e.g., plant grain

yield), and construct new biosynthetic pathways.13–17

To further simplify its use, the dual-gRNA has been engi-

neered into a single-gRNA (sgRNA) by linking the

crRNA and tracrRNA.9 Modifications to the Cas9 protein

itself have also been made. By fusing new protein do-

mains to it and impairing its nuclease activity, it has

been used as a robust RNA-guided DNA-binding plat-

form. These applications include gene transcriptional ac-

tivation and repression, epigenomic alteration, base

editing, and prime editing.18–26

In prokaryotes, thousands of Cas9s have been identi-

fied computationally.27–30 In contrast, the gRNA solution

for orthologous Cas9s may not be easily recognizable.

This is mainly due to large variation in tracrRNA loca-

tion, size, and sequence identity.29,31 Consequently, the

identification of tracrRNAs represents a bottleneck for

the characterization of new Cas9 proteins and their devel-

opment as genome editing tools. To address this limita-

tion, several approaches have been developed. These

include computational methods that locate tracrRNAs

by using the CRISPR repeat sequence to search for the se-

quence in the tracrRNA that has homology to and base

pairs with the crRNA (the antirepeat). This is followed
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by a search for a rho-independent-like termination signal

(RTS) in the vicinity of the antirepeat. Other approaches

reliant on the sequencing of the small ncRNAs transcribed

from the CRISPR-Cas9 locus have also been used.4,29

We and others have developed approaches using se-

quence and structural covariance models (CMs) to exam-

ine the relatedness of Cas9 tracrRNAs.32,33 In this study,

we build upon these findings and use CMs as a tool to

identify Cas9 tracrRNAs. Using this approach, a

tracrRNA was located for >98% of all CRISPR-Cas9 con-

taining assemblies identifiable by us. Comparisons with a

diverse collection of experimentally validated tracrRNAs

also showed our approach to be accurate. Here, 90.6% of

tracrRNAs were identified with false-positive and false-

negative rates of 5.5% and 7.1%, respectively. Finally,

Bayesian and nonparametric approaches quantifying a

phylogenetic signal revealed a strong evolutionary asso-

ciation between the Cas9 phylogeny and the predicted

secondary structure of the tracrRNA, confirming previous

observations that tracrRNA structures are a main deter-

minant of Cas9-gRNA compatibility.31,34

Materials and Methods
All custom code, scripts, parsers, python objects, covari-

ance models (CMs), and Jupyter notebooks can be found

on the primary author’s GitHub repository (https://git

hub.com/skDooley/TRACR_RNA).

Detection of CRISPR-Cas9 systems
Bacterial and archaeal assemblies were downloaded

from PATRIC2, NCBI GenBank, and RefSeq (last down-

loaded on May 05, 2020). CRISPR arrays were identified

using MinCED v0.3.2 and PilerCR v1.06 with relaxed

parameter settings (3 or more crRNAs, repeat lengths

between 16 and 64 base pairs, and max spacer lengths

of 64 base pairs).35,36

Next, a hidden Markov model (HMM) was generated

from 83 previously described diverse Cas9 proteins using

HMMER 3.2.1.29,37 The HMM was then used to search

for Cas9-like proteins encoded in assemblies containing a

CRISPR array. Protein sequences for each assembly were

generated by translating open reading frames (ORFs)

using Biopython to generate and filter ORFs for sequences

between 673 and 2100 amino acids (Fig. 1).38 Next, using

the default Python 3.7 hashing function, assemblies dupli-

cated in our collection were removed.

The remaining assemblies and their Cas9 homologues

were further examined for the presence of RuvC (protein

fold from the E. coli RuvC protein shown to be involved

in DNA repair and metabolism) and HNH (protein motif

that facilitates DNA cleavage and is characterized by the

presence of histidine (H) and asparagine (N) residues)

cleavage domains that define a Cas9 nuclease.9,10 This

was initially accomplished through the visual inspection

of protein alignments performed with multiple sequence

comparison by log-expectation (MUSCLE) between 83

diverse Cas9s described earlier for the key catalytic

amino acids defining RuvC I, II, and III subdomains

and the HNH domain.29,39 Next, the identified regions

were extracted and used to generate domain-specific

HMMs using HMMER 3.2.1. Each putative Cas9 protein

from our collection was then scanned with the cleavage

domain-specific HMMs.37 Proteins missing either do-

main or that had subdomains that were positional outli-

ers were removed. Outlier determination was made by

assessing the position of the RuvC I subdomain near

the N-terminus and then comparing the relative distance

of all other cleavage domains. Anything outside of three

standard deviations (distribution of all the search results

for the RuvC I subdomain) was removed except for the

RuvC III subdomain, where proteins with more than

four standard deviations from the mean distance were

removed.

For phylogenetic signal analysis, the translated sequ-

ences were clustered at 90% sequence homology using

CD-HIT v4.7.40 Representative sequences within each

cluster were then selected and subsampled for calculating

Cas9 and tracrRNA phylogenetic signal.

Identification of Cas9 tracrRNAs

Step1: search for antirepeat signatures. The region of

the tracrRNA capable of base pairing with the crRNA,

the antirepeat, was identified in Cas9-containing assem-

blies by searching for sequences with homology to the

CRISPR repeat (using BLAST 2.7.3.).41 The parame-

ters used to identify antirepeat signatures include -task

‘‘blastn-short,’’ due to the length of the sequence, as well

as disabling the low complexity filter with -dust ‘‘no’’

because CRISPR arrays by definition are low complex-

ity. Sequences that were flanked (distance between hits

greater than spacer length) were removed as possible can-

didates to remove crRNA sequences from consideration

(Fig. 1: Step 1). While all assemblies had CRISPR ar-

rays, neither of the two programs (PilerCR or MinCED)

accurately detected all of the CRISPR repeats. To correct

this and significantly reduce false positives, the coordina-

tes of putative antirepeats in the locus were referenced

and used to identify locations that were at least one

repeat-spacer unit length away from the CRISPR array.

Step 2: detect rho-independent termination signals.
Next, tracrRNA boundaries and directionality were
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assessed by identifying RTS using ERPIN v5.5 (parame-

ters -add 1 4 1 and -cutoff 100%) and an RTS database

(Fig. 1, Step 2).42 Assuming a prototypical Cas9 tracrRNA

structure (i.e., antirepeat followed by additional tracrRNA

sequence and finally an RTS), the up- and downstream

regions adjacent to the antirepeat were scanned for

the presence of an RTS. Initially, each antirepeat candi-

date with its respective RTS was considered a viable

tracrRNA candidate. In addition, if an antirepeat had a

termination signal on both sides, the pair was considered

FIG. 1. Cas9 tracrRNA detection pipeline. Flowchart of the informatic steps and key decisions points used to
predict Cas9 tracrRNAs. Cas9-containing CRISPR systems are first identified in microbial DNA assemblies. Assemblies
with CRISPR-Cas9 loci are then searched in six steps to predict a tracrRNA. Inputs are shown in blue, informatic
activities indicated in green, and key decision points highlighted in orange. Cas, CRISPR-associated; CRISPR, clustered
regularly interspaced palindromic repeats; tracrRNA, transactivating CRISPR RNA.
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as potential tracrRNAs. Next, all tracrRNA candidates

were conservatively filtered by removing sequences

whose combined length was >300 base-pairs. This cutoff

value was based on the longest characterized Cas9

tracrRNA length plus a generous buffer.27

Step3: clustering tracrRNA candidates. Putative

tracrRNAs were next clustered at 95% sequence identity

with a 90% sequence coverage cutoff using cd-hit-est

v.4.7.40 Sequence clusters that did not map back to at

least five different assemblies were removed from ini-

tial clustering under the assumption that rare sequences

(found in fewer than five genomes) may be false positives

(Fig. 1, Step 3). The resulting sequences and their re-

spective clusters then formed the basis for structural

predictions.

Steps 4 and 5: tracrRNA structural predictions and
searches for orthologous sequences. To generate a

consensus secondary structure for each sequence-based

tracrRNA cluster, sequences from each cluster (both 5¢
antirepeat and 3¢ hairpin-like encoding sequences) were

first aligned using MAFFT (—maxiterate 1000—

globalpair) and then fed into RNAalifold 2.4.5 (Fig. 1,

Step 4).43,44 The resulting consensus folds and sequences

were then used as CMs within INFERNAL 1.1.2 to find

RNA orthologs within the Cas9-associated DNA assem-

blies identified earlier (Fig. 1, Step 5).45 To ensure all

identified tracrRNAs contained an antirepeat, CM search

results were next filtered to remove any hits whose corre-

sponding nucleotide sequence had <55% pairing with

either the consensus repeat (from the specific type II sys-

tem being evaluated) or the reverse complement of it.

Step 6: analysis of CM overlap. Following tracrRNA

identification, a final analysis was performed to examine

the overlap between CMs. For this, CMs from Steps 4 and

5 were used with INFERNAL 1.1.2 to identify similari-

ties between each putative tracrRNA sequence cataloged

in Steps 1–5.45 Results were next visualized by creating

an undirected graph. In the graph, CMs were represen-

ted as vertices and a line was added between the two ver-

tices if the CMs identified the same putative tracrRNA

sequence. Connecting line widths were scaled by the per-

centage of shared sequences (percent similarity = [no. of

shared sequences]/[min (no. found with model 1, no.

found with model 2)]). Each network was then pruned

for lines separating weakly connected vertices to isolate

highly similar clusters. For phylogenetic analyses, all

clusters not associated with the top 10 most common

structures were removed to make statistical calculations

computationally feasible.

Calculating phylogenetic signal
To estimate the degree to which tracrRNA secondary struc-

ture associations are evolutionarily conserved among Cas9

lineages, the phylogenetic signal was quantified using

both Bayesian and nonparametric approaches. For the

Bayesian approach, ancestral states of tracrRNA second-

ary structures along the Cas9 phylogeny were estimated

using maximum likelihood under an All-Rates-Differ

model in the R package diversitree.46 Achieving conver-

gence with the full data set was unattainable due to the

computational complexity of estimating transition rates

with more than 10 discrete tracrRNA states. Thus, the

original data set was pruned to include only the 10 most

common tracrRNA secondary structures (as described

above). Subsequently, this data set was subsampled to

represent 25% of the pruned data (512 lineages) while

preserving 62 verified tracrRNA sequences.33

With the ancestral state estimates, phylogenetic delta

was calculated using time-continuous discrete-trait

Markov chain models (2 chains, 100,000 iterations

each, thinned every 10 iterations, 100 iterations deleted

as burn-in, see Borges et al. for more details).47 Values

of phylogenetic delta above 1 indicate a close correspon-

dence of the trait with the phylogeny, with increasing val-

ues representing increasing correspondence (i.e., strong

phylogenetic signal), whereas values near 0 indicate a

weak phylogenetic signal. The results presented below

were generated from a subsampling procedure that suc-

cessfully converged. The Cas9 lineages involved in

this calculation can be found in the Supplementary

Table S1. To ensure the results were not biased by sub-

sampling, 10 iterations were performed, and the resulting

delta values for each round of subsampling can be found

in the Supplementary Table S2.

The second approach for quantifying the phylogenetic

signal was a modified two-block partial least-squares

test.48 This procedure utilized the pruned data set de-

scribed above before the resampling procedures (2050

lineages included) and quantified the correlation coeffi-

cient of the Cas9 phylogeny (converted to a phylogenetic

covariance matrix) with the trait matrix. Multivariate ef-

fect size and significance were calculated using residual

randomization via permutation procedures (1000 itera-

tions, R package geomorph).49,50

Results
Identification of type II CRISPR-Cas9 systems
A total of 41,999 putative type II CRISPR-Cas9 systems

from over 1 million microbial nucleotide sequences

were identified (Supplementary Table S3). Cas9 length

ranged from 700 to 1800 amino acids and exhibited a bi-

modal length distribution centered around 1100 and 1400
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amino acids (Supplementary Fig. S1). To calculate the

phylogenetic relationship between tracrRNA and Cas9,

2724 diverse and representative systems were also se-

lected (Supplementary Table S3) and subsampled (the

Methods section and Supplementary Table S1). In addi-

tion, as a control for our methods, 79 type II CRISPR-

Cas9 systems with an experimentally validated tracrRNA

were also included in our analysis (Supplementary

Table S4).33 Of these, a Cas9 encoding ORF was only

detected for 73 using our methods.

Detection of Cas9 tracrRNAs using CMs
The detection of Cas9 tracrRNAs was automated using a

multistep approach that combines both homology and

structural searches (Fig. 1). First, building upon previous

methods, the identification of the tracrRNA antirepeat

and rho-independent termination-like signal was auto-

mated similar to that described in Chyou et al. (Fig. 1,

Steps 1 and 2).29,32,51,52 Next, based on functional as-

sociations between the gRNA secondary structure and

orthogonality, we reasoned that conserved tracrRNA

structural features could be used to complement

homology-dependent methods in the identification of a

tracrRNA.34

To accomplish this, sequences of tracrRNAs predicted

in Steps 1 and 2 (Fig. 1) were first aligned and clustered

based on sequence similarity (Fig. 1, Step 3). Next, se-

quences (including both 5¢ antirepeat and 3¢ hairpin-like

structures) within each cluster were used to predict a con-

sensus secondary structure (Fig. 1, Step 4). CMs were

next generated from each cluster based on sequence

and structural homology and used to search for related

tracrRNAs (Fig. 1, Step 5).

Finally, to examine the relationship between tracr-

RNAs in our collection, a last clustering step based on

CM similarity was applied (Fig. 1, Step 6). For some sys-

tems, multiple solutions were observed within the

CRISPR-Cas9 locus after Step 6 (Fig. 1) (Supplementary

Fig. S2A–E). In these cases, additional filtering was ap-

plied to permit the selection of a single tracrRNA. For

this, we initially experimented with several different met-

rics (most thermodynamically stable structure, network

cluster with highest connectivity between CMs, and larg-

est cluster network), but proximity to the cas9 gene pro-

duced the best fit. In situations where two or more

tracrRNAs in the region closest to the cas9 gene had

overlapping locations, the tracrRNA with the most stable

secondary structure (based on minimum free energy cal-

culations [Supplementary Table S3]) was chosen.

Next, our pipeline was used to predict tracrRNA solu-

tions for the 41,999 CRISPR-Cas9 systems identified

earlier. To establish false-positive and false-negative

rates of our approach, its ability to accurately predict

the tracrRNA from a curated set of 73 experimentally

validated Cas9 tracrRNAs was also evaluated.33 For

this, the loci containing the curated tracrRNAs were

identified and flagged in our collection. Altogether, our

algorithm predicted a tracrRNA for 98% (41,741 out of

41,999) of the Cas9 systems searched (Supplementary

Table S3). For the curated set of tracrRNAs proven to

support Cas9 functionality, our approach correctly iden-

tified 90.4% (66 out of 73) resulting in false-positive

and false-negative rates of 5.5% (5 out of 69) and 2.7%

(2 out of 73), respectively. Of the five systems where

a different tracrRNA was identified, four (Cco, Kki,

Lsp1, and Nsa) were predicted to have a tracrRNA that

was transcribed in the opposite direction from the anti-

repeat than described earlier. For the fifth system, the

tracrRNA was predicted to be in a different location

(Ghy3) (Supplementary Fig. S2A–E).33

To compare our method with previous ones, we also

calculated the accuracy of two other tracrRNA prediction

pipelines, CRISPROne and TracrPredictor, using the di-

verse collection of 73 experimentally determined Cas9

tracrRNAs used to benchmark our approach.32,33,51 For

this, the genomes encoding the Cas9 systems from the

validated collection were used as input in CRISPROne

and TracrPredictor and the location and orientation of

the identified tracrRNA used to assess each approach.

TracrPredictor successfully predicted 50.7% (37 out of

73) of these with false-positive and false-negative rates

of 9.5% (4 out of 42) and 42.5% (31 out of 73), respec-

tively (Supplementary Table S5). For CRISPROne,

17.8% of the tracrRNAs (identified as an antirepeat)

were successfully located with a false-positive rate of

76.4% (42 out of 55) and a false-negative rate of 24.7%

(18 out of 73) (Supplementary Table S5).

Sequence and structural homology of Cas9 gRNAs
Based on sequence and structural overlap, 94.7%

(39,527 out of 41,741) of the identified tracrRNAs

could be categorized into 10 clusters (Fig. 2). One

thousand three hundred and eighty-eight of the 2214

remaining tracrRNAs were classified into 31 additional

CM-based similarity groups and 826 of the remainders

represented as singletons in the data set (Supplementary

Table S3). The majority of previously characterized

tracrRNAs could be found in the 10 most abundant clus-

ters (Fig. 2, clusters 1–7 and 10).

The relatedness among CMs within each cluster was

also examined. Here, CMs representing tracrRNA se-

quences that clustered at 90% sequence identity were

used as vertices in undirected graphs (Fig. 2). In addition,

shared sequence and structural homology between CMs
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FIG. 2. Top 10 covariance models and clustering of Cas9 tracrRNAs. Undirected graphs of the top 10 Cas9
tracrRNA clusters based on similarity between sequence and predicted secondary structure CMs. Vertices represent
a CM and are colored according to the designated cluster. The width of the connecting lines indicates the percentage
of similarity or relatedness among CMs. The number of circles in each cluster indicates the degree of sequence
diversity. Previously characterized tracrRNAs associated with each cluster are indicated. CM, covariance model.
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were connected with a line scaled to reflect the percent-

age of tracrRNAs that fit both models (Fig. 2). In this

way, the relationship and diversity of CMs within each

cluster could be visualized (Fig. 2). Cluster 1 was the

most diverse as it contained the most nodes, however,

all CMs were highly related (Fig. 2). In contrast, clusters

2, 4, 6, 7, and 9 were smaller and yielded subgroups that

were weakly connected by three of fewer CMs (Fig. 2).

Clusters 3, 5, 8, and 10 showed higher rates of connectiv-

ity among CMs than clusters 2, 4, 6, 7, and 9, with a few

more distantly related tracrRNA groups on the periphery

(Fig. 2).

To visualize tracrRNA structural features in the con-

text of the gRNA used by Cas9, an sgRNA was generated

by linking the 3¢ end of the full-length CRISPR repeat

with a self-folding tetraloop (5¢-GAAA-3¢) to the 5¢ end

of the antirepeat in the tracrRNA as described previously

(Supplementary Fig. S3).9 This was done once for each

of the top 10 clusters using the most abundant tracrRNA

sequence and respective CRISPR repeat.

As observed previously, most sgRNA structures com-

prised varying degrees of complementation between the

repeat and antirepeat followed by two or more hairpin-

like structures in the tracrRNA (Supplementary

Fig. S3).27,31,33,34 Likewise, a repeat:antirepeat mismatch

resulting in a bulge was detected in some but not all in-

stances (Supplementary Fig. S3). In most cases, the

nexus fold, a functionally important and conserved hair-

pin structure hypothesized to orient the spacer away from

the rest of the dual gRNA, was detected almost immedi-

ately (within 2 or 3 nts) after the repeat:antirepeat duplex

(Supplementary Fig. S3, clusters 1, 2, 4–6, 7, and 9).27,34

For clusters 3, 8, and 10, it was located *9 nts after the

repeat:

antirepeat (Supplementary Fig. S3). The nexus-like fold

itself varied in length from 10 to 80 nts with an average

length of 24 nts and ranged from simple 3 nts stem

loop structures (Supplementary Fig. S3, clusters 1, 4,

and 6) to more complex structures with additional bulges

and stems (Supplementary Fig. S3, clusters 3 and 9).

Cas9 and tracrRNA evolutionary association
Cas9 phylogeny and predicted gRNA secondary struc-

tures have been linked to exchangeability between orthol-

ogous Cas9s.31,34 This suggests a tight evolutionary

association between Cas9 and its gRNA structural fea-

tures. To further test this observation, we examined

the phylogenetic association between tracrRNA second-

ary structure and Cas9 protein. For this, two statistical

methods, Bayesian estimation of the phylogenetic delta

statistic and a nonparametric-modified two-block partial

least-squares model, were used to evaluate the phylo-

genetic relationship between the 10 primary tracrRNA

secondary structures (encompassing 83.3% of all repre-

sentative tracrRNAs identified) and our representative

collection of Cas9 proteins. First, a diverse and represen-

tative collection of Cas9s were subsampled and a phylo-

genetic tree was constructed. Next, tracrRNA structures

were mapped to it (Fig. 3). Ancestral states were then es-

timated, from which the delta statistic was calculated.

In these scenarios, a significant phylogenetic signal was

detected using both approaches (delta = 244.107 and

r-PLS (partial least squares) = 0.912, effect size = 28.952,

p = 1e-04) as can be visualized by the strong clustering of

tracrRNA secondary structures across Cas9 phylogeny

(Fig. 3).47,49 Rare exceptions to this were observed as

the occurrence of the same tracrRNA structure in dis-

tantly related orthologs (Fig. 3).

Discussion
We provide a framework for the global identification of

CRISPR-Cas9 tracrRNAs. Our method builds upon pre-

vious approaches that have sought to identify the key

components that define a tracrRNA, the antirepeat, and

3¢ hairpin-like secondary structures, and adds to them

by utilizing CMs to identify sequence and structural

homologues (Fig. 1, Steps 1–5).29,32,51,52 In total, we pre-

dicted a tracrRNA solution from 98% of the identified

Cas9 systems.

In comparison with a diverse collection of experimen-

tally determined tracrRNAs, we also showed that our ap-

proach in most cases (66 out of 73 [90.4%]) could

accurately identify a Cas9 tracrRNA.33 This can be con-

trasted with other tracrRNA detection methods, CRISP-

ROne and TracrPredictor, that had difficulty identifying

the majority of tracrRNAs in our diverse benchmarking

set. In the five instances where a different tracrRNA

was detected (Cco, Ghy3, Kki, Lsp1, and Nsa) with our pipe-

line, it is also a possibility that a second tracrRNA may have

evolved in the CRISPR-Cas9 locus as described previous-

ly.27 This is supported, in part, by the identification of alter-

native tracrRNAs in these loci that exhibit CM homology to

tracrRNAs known to support Cas9 functionality (Fig. 2 and

Supplementary Figs. S2A–E). In addition, the location of

the alternate tracrRNA within the CRISPR-Cas9 locus is

consistent with other characterized systems. These loca-

tions include regions near the end of the CRISPR array

or directly adjacent to the cas9 gene (Supplementary

Figs. S2A–E).

In examining the sequence and structural overlap of

the identified tracrRNAs using CMs (Fig. 1, Step 6), we

found that they could be classified mainly into 10 groups

(Fig. 2). In general, when observing the distribution for

previously determined tracrRNAs, it seems that our
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structural classifications also correlated with Cas9-gRNA

compatibility (Fig. 2).31,33,53 Exceptions to this were ob-

served in cluster 2, where Cas9 and gRNAs (Spy and

Tde) previously shown to be incompatible were grouped

together (Fig. 2).53 This finding also matches what was

observed in our clustering analysis and indicates that

our methods could be improved by removing edges

with low connectivity between CMs. Altogether, our

findings suggest that the number of noncross reactive

gRNA groupings may be extended from 7 to 10 or

more pending further experimentation.33,34,53

Both approaches for calculating the phylogenetic

signal showed that the tracrRNA structure is an evo-

lutionarily conserved trait among Cas9 lineages. This

matches previous observations that Cas9-gRNA ex-

changeability is associated with the gRNA secondary

FIG. 3. Cas9 phylogeny and tracrRNA secondary structure. Predicted tracrRNA secondary structures associated
with Cas9 phylogeny. Each color represents tracrRNA secondary structure associated with clusters 1–10 (Fig. 2). Cas9
proteins characterized previously are indicated (Supplementary Table S4).
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structure and Cas9 phylogeny.31,34 Interestingly, excep-

tions to this were noted in our analysis. In those instances,

distantly related Cas9 orthologs were associated with the

same tracrRNA structural classification. This observation

may provide evidence of more recent evolutionary events

resulting from the resetting of the tracrRNA or recombi-

nation between different CRISPR-Cas9 systems.27

Conclusion
Using CMs based on both sequence homology and pre-

dicted structure, an informatic approach, enabling the

identification of Cas9 tracrRNAs, was developed. This

method permitted the global identification of more

than 41K tracrRNAs and the development of sgRNA so-

lutions for nearly all CRISPR-Cas9 systems detected

by us. Structural predictions revealed strong homology

among the tracrRNA secondary structures that tightly

correlated with Cas9 phylogeny. Altogether, the results

presented here will aid in the characterization and devel-

opment of new Cas9s as genome editing tools and may

be extended to other CRISPR systems that utilize a

tracrRNA.23,53–57
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