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Abstract

BACKGROUND: Fish oil enriched in omega-11 long-chain monounsaturated fatty acids 

(LCMUFA; C20:1 and C22:1 isomers combined) have shown lipid-lowering and atheroprotective 

effects in animal models.

OBJECTIVE: To perform a first-in-human trial of LCMUFA-rich saury fish oil supplementation 

to test its safety and possible effect on plasma lipids.

METHODS: A double-blind, randomized cross-over clinical trial was carried out in 30 healthy 

normolipidemic adults (BMI <25 kg/m2; mean TG, 84 mg/dL). Treatment periods of 8 weeks were 

separated by an 8-week washout period. Subjects were randomized to receive either 12 g of saury 

oil (3.5 g of LCMUFA and 3.4 g of omega-3 FAs) or identical capsules with control oil (a mixture 

of sardine and olive oil; 4.9 g of shorter-chain MUFA oleate and 3 g of omega-3 FAs).

RESULTS: Saury oil supplementation was safe and resulted in LDL particle counts 12% lower 

than control oil (P <0.001). Saury oil also had a minor effect on increasing HDL particle size (9.8 

nm vs 9.7 nm; P <0.05) based on a linear mixed effect model. In contrast, control oil, but not saury 
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oil, increased LDL-C by 7.5% compared to baseline (P <0.05). Saury oil had similar effects 

compared to control oil on lowering plasma TG levels, VLDL and TG-rich lipoprotein particle 

counts (by ~16%, 25% and 35%, respectively; P <0.05), and increasing HDL-C and cholesterol 

efflux capacity (by ~6% and 8%, respectively; P <0.05) compared to baseline.

CONCLUSION: Saury oil supplementation is well tolerated and has beneficial effects on several 

cardiovascular parameters, such as LDL particle counts, HDL particle size, and plasma TG levels.
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Introduction

Numerous animal and human studies have shown that consumption of polyunsaturated fish 

oils, unlike saturated fatty acids, have favorable effects on plasma lipids, as well as on 

endothelial function, inflammation, thrombosis and arrhythmia1. Most of these favorable 

effects have been attributed to omega-3 fatty acids (FAs), namely eicosapentaenoic acid 

(EPA, C20:5 n-3) and docosahexaenoic acid (DHA, C22:6 n-3). Fish oils, however, also 

contain varying amounts of other unusual types of FA not commonly found in other food 

sources. For example, fish oils derived from saury2, pollock3 and herring4 are all enriched in 

long-chain monounsaturated fatty acids (LCMUFA), with carbon chain length longer than 

C18 (i.e., C20:1 and C22:1 isomers combined). LCMUFA are primarily derived from the 

diet, because FAs longer than 18 carbons are inefficiently synthesized by most mammals, 

including man. Compared to well-studied omega-3-rich fish oils, there is limited knowledge 

about the relationship between LCMUFA-rich fish oil consumption and cardiovascular 

disease (CVD) risk. The original epidemiologic studies of Eskimos that first established a 

link between omega-3 FAs consumption and athero-protection also showed a possible role 

for LCMUFA in promoting cardiovascular health5,6. More recently, the Physician’s Health 

Study showed a strong inverse association between red blood cell LCMUFA levels and CVD 

events, even after adjusting for omega-3 levels7. A limited number of human nutrition 

studies on the consumption of crude marine oils rich in LCMUFA, such as marine mammal 

oils8,9, herring10 and pollock oils11, have shown favorable effects on the plasma lipoprotein 

profile and other CVD risk factors, but whether these beneficial effects are due to LCMUFA 

or some other component in these crude oils is not known.

In various mouse models, we found that dietary supplementation with a highly purified 

concentrate of LCMUFA, but not olive oil enriched in shorter-chain MUFA oleate (C18:1 

n-9), improved the plasma lipid profile, reduced inflammation and atherosclerosis12,13,14. 

LCMUFA, a MUFA family member, is not very abundant in most diets compared with 

oleate, the most commonly consumed naturally occurring MUFA. Olive oil, the major 

source of dietary oleate, has been shown in several studies to decrease triglycerides (TG) and 

raise high density lipoprotein cholesterol (HDL-C)15. Whether LCMUFA would have a 

similar or different effect than oleic acid on lipid metabolism is not known.
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Saury fish (Cololabis adocetus) are widespread in the Eastern Pacific and considered to be a 

pelagic, tropical oceanodromous fish. They are widely consumed in Asian countries, and 

contain a large amount of LCMUFA, particularly C20:1 n-11 (cis-9-eicosenoic acid) and 

C22:1 n-11 (cis-11-docosenoic acid), in addition to omega-3 EPA and DHA. Consumption 

of saury fish was associated with lower post-prandial lipids and glucose16, but no previous 

human studies have investigated the effect of supplementation of LCMUFA-rich fish oil 

produced from saury fish on plasma lipoproteins or other cardiovascular risk markers. In the 

present study, we perform a first-in-human trial to investigate the safety of LCMUFA-rich 

fish oil prepared from saury fish in healthy normolipidemic subjects. We also compared the 

effect of LCMUFA-rich fish oil supplementation on plasma lipids and lipoproteins to a 

control oil enriched in olive oil but containing similar amount of omega-3 FAs.

Materials and Methods

Study design

The study was a randomized, double-blind, cross-over, intervention study (Fig. 1). The 

baseline assessments consisted of a screening and an enrollment visit. After randomization, 

eligible subjects received an 8-week supply of control fish oil or saury oil. Subjects were 

instructed to take 12 capsules (4 capsules, 3 times a day, after meals) per day for 8 weeks 

and were scheduled to return for a second visit. After an 8-week wash-out period, subjects 

returned for a third visit for a second 8-week supply of the other dietary supplement. The 

fourth and final visit occurred 8 weeks after starting the second fish oil supplementation. 

Compliance was checked by 7-day dietary records and pill counting at baseline and at the 

end of each intervention arm. Dietary records by each subject were reviewed by nutrition 

staff for accuracy and analyzed using Nutrition Data Systems for Research software 

2016-2018 (NDSR, Minneapolis, MN). Subjects were counseled to maintain their usual 

lifestyle and diets during the 24-week period of the study.

Intervention

Food-grade purified saury oil and sardine oil were provided by Nippon Suisan Kaisha Ltd. 

(Tokyo, Japan). Food-grade olive oil was obtained from DSP Gokyo Food & Chemical Co., 

Ltd. (Osaka, Japan). The control oil was a mixture of sardine oil and olive oil (1:1, vol/vol) 

matched to the total omega-3 EPA/DHA and MUFA content in saury oil. The FA profile of 

the control and saury oil were determined by gas chromatography (Japan Food Research 

Laboratories, Tokyo, Japan) (Table 1). The content of total saturated fatty acids (SFA), 

MUFA, and polyunsaturated fatty acid (PUFA) are comparable in the control and saury oils, 

except that the MUFA type is different. Control oil is enriched in shorter-chain MUFA 

oleate, whereas saury oil is enriched in LCMUFA. In addition, although the total contents of 

EPA and DHA are comparable in two fish oil supplements (2.5 g in control oil and 2.2 g in 

saury oil), the ratio of EPA to DHA is different: 2.2 in control oil and 0.5 in the saury oil 

supplement. The taste and physical appearance of the two types of fish oil supplements were 

similar. Participants received 12 g, split into three times per day, of control oil (oleate: 4.9 g; 

omega-3 FAs: 3 g) or saury oil (LCMUFA: 3.5 g; omega-3 FAs: 3.4 g).
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Subjects

Thirty-seven healthy volunteers (mean age 34.8 ± 12.5 years), with a mean BMI of 24.3 ± 

3.4, were recruited from June 2017 through March 2018 at the National Institutes of Health 

(NIH) (Bethesda, MD, USA) (Table 2). Eligible subjects were healthy with no history of 

chronic disease. Participants that consumed any source of fish oil more than three times per 

week were excluded. Other inclusion/exclusion criteria are provided in Supplemental Table 

1. Out of 37 participants recruited for the study, 30 completed both arms of the study and 

also completed all clinical and laboratory tests. Study approval was granted by the National 

Heart, Lung and Blood Institute Institutional Review Board in keeping with the Declaration 

of Helsinki. All study participants submitted written informed consent prior to enrollment 

and received financial compensation (ClinicalTrial.gov registration ID: NCT03043365).

Biochemical measurements

Peripheral blood was collected after overnight fasting in EDTA tubes. Plasma was 

immediately stored at − 80°C until further analysis without being exposed to any additional 

freeze-thaw cycles. Traditional lipid parameters included plasma total cholesterol (TC), 

HDL-C and TG levels that were measured using enzymatic methods (Roche Diagnostics, 

Indianapolis, IN, USA). Low density lipoprotein cholesterol (LDL-C) was calculated by the 

Friedewald equation. ApoA-I and apoB were measured by automated turbidometric 

immunoassays (Roche Diagnostics, Indianapolis, IN, USA). Direct HDL-C, LDL-C, apoE-

containing HDL-C (ApoE-HDL), TG-rich LDL (LDL-TG) and small dense LDL (sdLDL) 

were measured by a homogenous assay (Denka Seiken Co, Ltd, Tokyo, Japan)17. All lipid 

measurements were conducted on a Cobas 6000 automatic analyzer (Roche Diagnostics, 

Indianapolis, IN, USA). Plasma oxidized LDL (oxLDL) (U/L) was determined by ELISA 

(Mercodia, Uppsala, Sweden).

Lipoprotein particle profiles were measured using an automated Vantera clinical NMR 

analyzer (Labcorp, Burlington, NC, USA). Mean HDL, LDL and very-low-density 

lipoprotein (VLDL) particle size (HDL-Z, LDL-Z, and VLDL-Z) and lipoprotein particle 

counts (HDL-P, LDL-P, and VLDL-P) were calculated using the LipoProfile-3 algorithm. 

Lipoprotein (HDL, LDL and triglyceride-rich lipoproteins (TRL-P)) particle size subclass 

distributions were calculated, using the LipoProfile-4 algorithm. Total TRL-P includes 

VLDL and chylomicrons, whereas very small TRL-P is defined as the subclass containing 

intermediate-density lipoprotein (IDL) particles.

The HDL cholesterol efflux capacity assay was performed in duplicate with J774 cells 18. 

Briefly, 3 x 105 J774 cells/well were plated and radiolabeled with 2 μCi of 3H-

cholesterol/mL. ATP-binding cassette transporter A1 (ABCA1) was up-regulated by a 16-

hour pre-incubation with 0.3 mmol/L 8-(4-chlorophenylthio)-cAMP. Cells were washed and 

2.8% apoB-depleted plasma was added to the efflux medium for 4 hours. Cholesterol efflux 

was calculated by using the following formula: (μCi of 3H-cholesterol in media containing 

2.8% apoB-depleted subject plasma-μCi of 3H-cholesterol in plasma-free media / μCi of 3H-

cholesterol in media containing 2.8% apoB-depleted pooled control plasma-μCi of 3H-

cholesterol in pooled control plasma-free media). The pooled plasma was obtained from five 

healthy adult volunteers. Insulin, glucose, and high sensitivity C-reactive protein (hsCRP) 
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measurements were performed on a Cobas 6000 automatic analyzer (Roche Diagnostics, 

Indianapolis, IN, USA) in the NIH Clinical Center. The HOMA-IR index was used to 

estimate the degree of insulin resistance (HOMA-IR = fasting glucose [mg/dl] * fasting 

insulin [mU/ml]/405).

Vascular function assessment

The heart rate (HR), blood pressure (BP), cardio-ankle vascular index (CAVI) and ankle-

brachial index (ABI) were measured with the VaSera VS-1500N vascular screening system 

(Fukuda Denshi Co. Ltd, Tokyo, Japan)19. These vascular function indices were measured in 

the morning after 10 minutes of rest with cuffs applied to the bilateral upper and lower 

extremities with the subject in the supine position. The CAVI score was estimated from the 

brachial and ankle pulse wave forms, according to the manufacturer’s instructions. 

Electrocardiography, phonocardiography and BP measurements were performed 

simultaneously. The stiffness parameter was calculated by the following equation: CAVI = 

In (Ps/Pd) × 2p/ΔP × PWV2, where Ps is the SBP, Pd is the DBP, p is the blood viscosity, ΔP 

is Ps-Pd and PWV is the pulse wave velocity from the aortic origin to the ankle via femoral 

artery. ABI was measured based on the SBP for both the upper (brachial artery) and lower 

(tibial artery) and was calculated by dividing the ankle SBP by the brachial SBP.

Statistical Methods

Unless otherwise indicated, all data are presented as the mean ± SD for parametric variables 

or the median (IQR) for non-parametric variables, and as number (%) for categorical 

variables. Skewness and kurtosis measures were used to assess normality and log 

transformations to make residuals closer to normal were employed, although they did not 

affect the significance of any results. P-values were derived from a paired students t-test for 

parametric variables and the Mann-Whitney U test for non-parametric variables. 

Comparisons with baseline were performed by Wilcoxon signed-rank test.

Comparisons between saury and control oils with adjustment for period and arm effects was 

achieved by applying a linear mixed effect model to the differences from each baseline for 

each biological parameter. The model uses all four measures on each subject and a random 

subject effect to allow for the multiple measures. No arm or period effects, however, were 

found in any measured parameters, except for HDL-P and white blood cell concentrations, 

which showed a relatively minor period effect (P <0.05). Analyses were performed using 

Stata/IC 12.0 (StataCorp LP, College Station, TX, USA) and R 3.5.2 (R Core Team https://

www.R-project.org/). P <0.05 was considered statistically significant.

Power calculation for sample size was based on previously published changes in plasma TG 

levels (i.e., an approximately 19% decrease) in response to approximately 2.2 g/day of 

omega-3 fish oil interventions in normolipidemic adults20-25. With a sample size of 30 

subjects, and 2-tailed tests, we estimated that with a sample size of 30 that we have enough 

power (0.80) to detect a ≥ 10% difference in TG levels between baseline and fish oil 

interventions at the P ≤ 0.05 significance level.
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Results

Study population

Baseline characteristics of the study participants are shown in Table 1. The mean age was 

34.8 years and 60% of the subjects were females. About half the population was white. The 

mean BMI of the study population was under 25 kg/m2, with a mean TG of 83.8 mg/dL and 

a mean LDL-C of 97.2 mg/dL. Hence, the study population was considered to be a healthy 

young adult population, with a relatively normal lipid profile.

Safety and tolerability

Supplementation with 12 g saury oil split into three times a day (3.5 g of LCMUFA and 3.4 

g of omega-3 fatty acids), was well tolerated. Out of 37 subjects recruited, a total of 7 

participants did not complete the study for the following reasons: mild GI discomfort (grade 

I; n = 1, on control oil supplement), mild nausea (grade I; n = 1, on saury oil supplement), 

exacerbation of pre-existing acne (n = 1, on saury supplement), unrelated medical condition 

(n = 1, on saury oil supplement), and lost to follow-up or declined further participation (n = 

3). There were no apparent differences in routine clinical laboratory test results before and 

after saury oil intervention, except for a small decrease in WBC (10%; P <0.05), which still 

remained within the normal range (Table 3). Similarly, the control fish oil was also well 

tolerated and did not significantly change routine clinical laboratory test results except for a 

small decrease in plasma creatinine (4.7%; P <0.05). The 7-day dietary records showed that 

fish oil supplementations did not influence the mean intake of daily energy or individual 

nutrients, including fat, carbohydrate, protein, alcohol, cholesterol, total fiber, or the 

individual fatty acid content of the diet, during the study (Supplemental Table 2).

Characterization of lipid/lipoprotein profile on supplements

As shown in Table 4, both fish oil supplements significantly decreased TG levels by 

approximately 16% (P <0.05) compared to baseline. In addition, the TG-lowering effect of 

the fish oil supplements was more prominent in the subgroup of participants in the higher 

TG-tertiles: supplementation with control oil decreased TG by 69% (P <0.05) compared 

with baseline in the high TG-tertile group, and saury oil decreased TG by 32% (P <0.05) 

compared with baseline in the medium TG-tertile group. There were no changes in TG 

levels between fish oil supplementation and baseline in the low TG-tertile group (Fig. 2A). 

Supplementation with either fish oil slightly but significantly increased TC by 4.3% (P 

<0.05) on average compared to baseline. Control oil, but not saury oil, significantly elevated 

calculated LDL-C by 7.5% (P <0.05) compared to baseline, although there was no 

significant difference between control and saury oil (P = 0.17) (Table 4). In addition, NMR-

based measurement also showed that control oil, but not saury oil, significantly increased 

LDL-C by 8.5% (P <0.05) (baseline vs. control oil vs. saury oil: 103.5 ± 44.4 vs. 112.2 ± 

45.2 vs. 104.9 ± 51.9 mg/dL). The homogenous direct LDL-C assay also indicated a similar 

trend and a non-significant increase in LDL-C by 7.1% (P = 0.66) was observed with the 

control oil when compared to baseline (baseline vs. control oil vs. saury oil: 112.5 ± 53.1 vs. 

120.5 ± 53.8 vs. 119 ± 60.2 mg/dL). Furthermore, the increase in LDL-C due to control oil 

supplementation was accompanied by a significant increase in sdLDL by 12% (P <0.05) 
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compared to baseline. There were no changes in oxLDL and LDL-TG on either fish oil 

supplementation.

In terms of HDL, both fish oil supplementations increased HDL-C (Roche direct assay) by 

approximately 6.2% (P <0.05) on average compared to baseline (Table 4). The HDL-C-

increasing effect of both fish oils was further confirmed with a second direct HDL-C assay 

(Denka): HDL-C was increased by 5.4% (P <0.05) in the control oil group and by 7.6% (P 

<0.01) in the saury oil group compared with baseline (baseline vs. control oil vs. saury oil: 

63.4 ± 16.5 vs. 66.8 ± 15.1 vs. 68.2 ± 17.8 mg/dL). Both oil supplements increased apoE-

HDL-C levels by approximately 8.5% (P <0.05) as compared to baseline. There were no 

differences, however, in total plasma apoA-I levels due to either fish oil supplement. Control 

oil, but not saury oil, significantly increased plasma apoB levels by 6.3% (P <0.05) 

compared to baseline.

NMR-determined lipoprotein subclass profile on supplements

NMR spectroscopy was performed to further examine the effect of the two supplements on 

lipid and lipoprotein profiles. In general, the observed lipoprotein changes obtained by 

routine lipid and lipoprotein tests were consistent with the NMR assay, but additional 

changes were noted in the lipoprotein subclass size distributions. In particular, both fish oil 

supplementations significantly decreased VLDL-P by approximately 25% (P <0.05) (Fig. 

3B) and reduced TRL-P, including small- and very small-TRL-P, by approximately 35% (P 

<0.05) compared to baseline (Fig. 3C), although there were no differences in VLDL-Z 

before and after either fish oil supplementation (Fig. 3A). Both fish oil supplements 

decreased TRL-P by ~50% (P <0.01) in the highest TRL-P-tertile group, and by about 35% 

(P <0.01) in the medium TRL-P-tertile group compared to baseline. There were no changes 

in TRL-P with either supplement in the low TRL-P tertile group (Fig. 2B). For LDL-P 

subclasses, in line with changes seen in LDL-C, the control oil significantly increased levels 

of LDL-P by 12% (P <0.001) compared with saury oil, although there were no differences in 

LDL size subclasses or in LDL-Z (Fig. 4A, B).

In terms of HDL-P subclasses, the increase in HDL-C levels after fish oil interventions 

corresponded to a greater increase in HDL-Z (P <0.05) with saury oil than with control oil 

(Fig. 5A). Although there were no differences in total HDL-P levels after either fish oil 

supplementation (Fig. 5B), both fish oils led to a significant increase in large-HDL-P levels 

(P <0.05) and a decrease in medium- and small-HDL-P levels (P <0.05) (Fig. 5C). In 

particular, both fish oil supplements increased the HDL-P5 subfraction (large-HDL-P) by 

56% on average (P <0.05), and decreased the HDL-P3 subfraction (medium-HDL-P) by 

25% (P <0.05) and HDL-P2 (small-HDL-P) by 17% (P <0.05). Assessment of the HDL 

function by ex vivo cholesterol efflux assay revealed that both oil supplementations 

significantly increased cholesterol efflux capacity by approximately 7.6% (P <0.05) 

compared to the baseline (Fig. 5D).

Other risk CVD risk factors and biomarkers

As shown in Table 3, neither fish oil intervention changed high-sensitive CRP (hsCRP) 

plasma levels. The control fish oil increased glucose by 2.4% (P <0.05) and both fish oils 
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increased insulin levels by 28% on average (P <0.05) compared to baseline, but insulin 

values still remained within the reference range. There were no significant changes for either 

fish oil on HbA1C or the calculated HOMA-IR index. In terms of vascular function 

parameters, there were no significant changes in the CAVI index, blood pressure or heart 

rate with either fish oil intervention, except for ankle-brachial index, which was decreased 

by approximately 3% (P <0.05) symmetrically after the control oil treatment.

Discussion

Fish consumption is widely believed to confer cardiovascular benefits26 based on the inverse 

association between fish intake, a major food source of omega-3 EPA/DHA27, and CVD. 

However, a recent meta-analysis involving nearly 78000 individuals failed to show that 

omega-3 supplements were associated with reductions in cardiovascular events28. This 

finding raises the issue of whether other nutritional components, besides omega-3 FAs in 

fish, such as LCMUFA, could account for the inverse association between fish consumption 

and CVD5-14. In the present study, we examine for the first time the safety and potential 

effect of purified saury oil, rich in LCMUFA, on lipid and lipoprotein metabolism in healthy 

adults. It is important to note that although we tried to match the total MUFA and omega-3 

FA content of the control oil and saury oil by using a blend of oils from sardine and olive oil 

in making the control oil, there were still some relatively minor differences in their specific 

fatty acid levels. For example, the content of DHA in the saury oil supplement is ~81% 

higher and the content of EPA is ~56% lower than that in the control oil. We, therefore, 

cannot exclude the possibility that the observed treatment differences in the control oil and 

saury oil could be due to not only differences in LCMUFA but also to other fatty acid 

differences in the two supplements, which will have to be addressed in the future.

Supplementation with saury fish oil was found to be safe and well-tolerated at a dose of 3.5 

g of LCMUFA and 2.2 g of omega-3 EPA/DHA per day. Neither fish oil supplement caused 

significant clinical or laboratory changes. In general, except for mild nausea in one subject, 

the saury oil treatment was well tolerated. We also demonstrated for the first time that 

supplementation with saury oil in normolipidemic non-obese volunteers leads to decreased 

TG levels even though at baseline all subjects except two had TG <150 mg/dL. In addition, 

changes in the lipoprotein particle subclass profiles (i.e., LDL-P and HDL-Z) were observed 

on saury oil compared with the control fish oil that contained a similar level of omega-3 and 

total MUFA, suggesting a possible unique beneficial effect of LCMUFA-rich fish oil on 

these lipid parameters. The main known effects of marine omega-3 (EPA/DHA) oils on 

lipids and lipoproteins are decreased plasma TG levels through reduction of hepatic VLDL-

TG production29. The recent REDUCE-IT clinical trial found that 2 g of highly purified 

EPA twice a day lowers TG from baseline by 45% and approximately doubles the reduction 

in CVD events for those patients that are also on a statin30. In normolipidemic to borderline 

hyperlipidemic healthy individuals, a meta-analysis showed that 1-5 g/day consumption of 

EPA/DHA supplements resulted in a highly variable reduction of TG ranging between 4–

51%31. In other studies, lower doses of EPA/DHA supplements (1.6-3 g/day) resulted on 

average in a 19 ± 10% decrease in TG levels in normolipidemic (TG: 110 ± 44 mg/dL) 

adults20-25. Overall, these findings are in agreement with ours: control and saury oil 

supplementations containing ~2.2 g of EPA/DHA decreased plasma TG levels by ~16% on 
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average. Concomitant with decreased TG levels, both fish oil supplements also decreased the 

levels of potentially atherogenic TRL-P. Our analysis revealed that the decline in TG and 

TRL-P levels due to fish oil supplements was greater in subjects with higher baseline TG 

levels, which is in agreement with previous reports that individuals with higher baseline TG 

respond more strongly to omega-3 fish oil supplementation32.

Both fish oil supplements, which contain the same overall level of omega-3 FAs, increased 

plasma HDL-C levels. A meta-analysis had previously found that omega-3 consumption 

increased HDL-C, whereas dietary MUFA, such as oleate, did not greatly affect HDL-C 

levels33. The HDL-C increasing effect of LCMUFA-rich saury oil, therefore, appears to be 

unique to this type of MUFA. In line with previous reports, a 10-week intervention study 

using marine oils found that circulating LCMUFA positively correlated with HDL-C levels. 

In addition, LCMUFA-rich whale oil also increased HDL-C8. In another cross-over study, a 

salmon blend fish oil enriched in LCMUFA had a stronger effect in increasing HDL2 

compared with tuna fish oil, although the omega-3 levels were comparable between the two 

fish oils, suggesting a possible favorable impact of LCMUFA on HDL size11.

Not only HDL-C levels, but also cholesterol efflux capacity, a functional measure of HDL34, 

was also altered by both fish oil supplements, despite no change in apoA-I levels. Previous 

human studies have indicated a possible beneficial effect of omega-3 treatment on CEC, 

which is thought to occur due to a remodeling of HDL35. Furthermore, our previous rodent 

studies have shown a favorable role of dietary LCMUFA, but not oleate-rich olive oil, on 

increasing CEC, possibly by activating the PPAR signaling pathway and remodeling of the 

HDL proteome13,14. Both fish oils also increased plasma levels of apoE-HDL, a minor HDL 

subclass that is thought to be cardioprotective by several mechanisms, including inhibition 

of arterial stiffening and improvement of reverse cholesterol transport through promoting 

cholesterol efflux36,37. Furthermore, NMR analyses of lipoprotein particle subclasses 

revealed that both fish oils improved HDL particle size subclasses. HDL size subfractions 

are known to vary in their cardioprotective propterties38,39. Compared to small-HDL-P, 

large-HDL-P appears to have more cardioprotective functions, possibly accounting for the 

inverse relationship between large-HDL-P and CVD40. In the current study, both fish oil 

supplements decreased small-HDL-P levels, and increased large-HDL-P levels compared to 

baseline. In addition, although a small but statistically greater change in HDL-Z was 

observed with saury oil compared to the control oil, there were no differences in each HDL-

P subfraction with different particle size between the two fish oil supplements. This may be 

due to the fact that the overall measure of HDL-Z is usually a more reliable measurement 

than the individual HDL subfractions. The size differences in HDL between the two fish oil 

supplements is also relatively small and of unknown clinical significance. To further verify 

the effect of LCMUFA on HDL subtractions and metabolism, a larger sample size will likely 

be needed in a future follow-up study.

In terms of LDL, supplementation of control oil, but not saury oil, significantly increased 

plasma levels of both LDL-C and apoB compared to baseline. It is important to note that we 

used 3 different methods to measure LDL-C change: the Friedwald equation, an NMR-based 

(Vantera) measurement, and a homogenous (Denka) direct assay of LDL-C. Although all 

methods showed similar LDL-C-increasing effect (~7-8.5%) of control oil compared with 
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baseline, the Direct method did not show significant difference between baseline and either 

oil treatment. This may possibly be explained by the fact that direct LDL-C assays can have 

a significant bias in some patients, depending on their lipid composition41, which may have 

contributed to the overall variation of the result for the direct assay and the lack of statistical 

significance. Furthermore, NMR-based measurement of LDL subfractions revealed that 

control oil significantly increased the overall particle number of LDL (LDL-P) compared to 

saury oil. It is known that marine omega-3, in particular DHA, can modestly raise LDL-C 

levels and increase mean LDL particle size42,43. Although the total omega-3 content in both 

fish oil supplements were similar, and the dose of DHA in saury oil was 81% higher than 

that in control fish oil, saury oil supplementation did not increase LDL-P and sdLDL, both 

of which have been shown to be strongly related to CVD44. It is also noteworthy that sdLDL 

levels were not significantly different between the two fish oil supplements (P = 0.32), 

perhaps due to relatively low values of sdLDL in healthy subjects in the current study. 

Further studies in hyperlipidemic individuals with elevated sdLDL will be necessary to 

better determine the effect of saury oil on sdLDL levels in plasma. Our previous animal 

studies12,13 revealed a LDL-C-decreasing effect of purified LCMUFA. The two fish oil 

supplements did not appear to alter LDL size subfractions, although the medium and small 

subfractions did show trends that mimicked the overall difference. The lack of statistical 

significance in the subfractions most likely relates to the greater analytical imprecision of 

the size subfractions compared to LDL-P. Future studies using highly purified LCMUFA oil, 

however, are needed to investigate the direct effect of LCMUFA on lipoprotein metabolism 

in hyperlipidemic patients. Previous animal and human studies from our group12-14 and 

others1 have also shown that dietary LCMUFA or omega-3 may possibly improve 

inflammation and/or glucose metabolism, but neither of the two fish oils used in our current 

study changed hsCRP, HOMA-IR, or vascular CAVI parameters. The fact that all the 

subjects recruited in the current study were relatively healthy with low hsCRP and normal 

insulin sensitivity could possibly explain the lack of an effect observed in this study.

Study strengths and limitations

Strengths of the present study include randomized double-blind design, and the use of a 

placebo supplement matched in fatty acid profile (i.e, total SFA, MUFA, and omega-3 

PUFA), as well as the taste and appearance. Furthermore, there were no major changes in 

lifestyle and dietary factors during the study. Limitations include the relatively small sample 

size, short duration, and single dose design. In crossover studies there is also always the 

potential for carry-over effects, but a relatively long washout period of 8 weeks and the 

analysis of the data by a linear mixed effect model should help minimize this issue. Future 

studies on saury oil should include a red blood cell fatty acid composition analysis to control 

for differences in absorption and metabolism of different FAs by subjects, and to better 

monitor compliance and the effectiveness of the washout period. In addition, it is also 

important to note that the participants in the current study were relatively healthy, with a 

normal lipoprotein profile, thus limiting our ability to fully assess the impact of saury oil 

supplementation on patients with dyslipidemia.
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Conclusion

A saury fish oil supplement that is enriched in omega-11 LCMUFA and omega-3 PUFAs 

was shown to be safe and well-tolerated in this first human study. Saury oil was found to 

have some possible benefits on the lipid and lipoprotein profile in healthy subjects, but these 

findings need to be further verified in larger numbers of other patient populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design. Participants were screened through an exclusion/inclusion questionnaire, 

baseline laboratory tests and a pregnancy test for females. Once eligibility was confirmed, 

subjects were randomized and received an 8-week supply of control fish oil or saury oil for 8 

weeks. After an 8 week wash-out period, subjects received a second 8-week supply of the 

dietary supplement for the second arm of the study.
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Figure 2. 
Mean percentage change of TG (A) and TRL-P (B) at low, medium, and high levels (tertiles) 

from baseline after fish oil supplementations for 8 weeks. TG: triglycerides; TRL-P: 

triglyceride-rich lipoprotein. Data represented as mean ± SD (n = 30). **P <0.01, ***P 

<0.001 compared with baseline.
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Figure 3. 
NMR-determined VLDL and TRL-P subclass before (baseline) and after an 8-week 

ingestion of control or saury oil supplement. (A) VLDL-Z diameters; (B) VLDL-P levels; 

(C) overall measure of TRL-P levels (upper panel) and TRL-P subfractions (large-, 

medium-, small-, and very small-TRL-P; lower panel). VLDL-Z: VLDL particle size; 

VLDL-P: VLDL particle number; TRL-P: TG-Rich Lipoprotein Particle. Data represented 

as mean ± SD (n = 30). Labeled means without a common letter differ (P <0.05).
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Figure 4. 
NMR-determined LDL subclass profile before (baseline) and after an 8-week ingestion of 

control or saury oil supplement. (A) LDL-Z diameters; (B) overall measure of LDL-P levels 

(upper panel) and LDL-P subfractions (large-, medium-, and small-LDL-P; lower panel). 

LDL-Z: LDL particle size; LDL-P: LDL particle number. Data represented as mean ± SD (n 

= 30). Labeled means without a common letter differ (P <0.05).
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Figure 5. 
NMR-determined HDL subclass profile (A-C) and cholesterol efflux capacity (D) before 

(baseline) and after an 8-week ingestion of control or saury oil supplement. (A) HDL-Z 

diameters; (B) overall measure of HDL-P levels; (C) levels of HDL-P fractions (large-, 

medium-, and small-HDL-P; upper panel) and further separated HDL subfractions by 

diameter (HDL-P1~7; lower panel); (D) ex vivo cholesterol efflux capacity in J774 cells. 

HDL-Z: HDL particle size; HDL-P: HDL particle number; HDL-P1~7: HDL subspecies 

fraction 1~7 based on particle diameter. Data represented as mean ± SD (n = 30). Labeled 

means without a common letter differ (P <0.05).
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Table 1

Fatty acid content per day from consumption of control or saury oil supplement

FA (g/day) Control oil
# Saury oil

C14:0 0.28 0.81

C16:0 0.95 1.34

C16:1 n-7 0.55 0.32

C18:0 0.26 0.20

C18:1 n-9 4.92 0.62

C18:2 n-6 0.53 0.20

C18:3 n-3 0.10 0.19

C20:1 n-11 0.01 1.23

C20:1 n-9 0.06 0.32

C20:1 n-7 0.01 0.02

C20:4 n-6 0.09 0.08

C20:5 n-3 1.71 0.76

C22:1 n-11 0.03 1.85

C22:1 n-9 0.01 0.08

C22:1 n-7 0.00 0.03

C22:6 n-3 0.78 1.41

Total SFA 1.56 2.48

Total MUFA 5.83 4.60

Total LCMUFA* 0.11 3.52

Omega-3 EPA+DHA 2.49 2.17

Total omega-3 PUFA 3.01 3.37

Total omega-6 PUFA 0.63 0.29

FA: fatty acid; SFA: saturated fatty acids; MUFA: monounsaturated fatty acid; PUFA: polyunsaturated fatty acids; EPA: eicosapentaenoic acid 
(C20:5 n-3); DHA: docosahexaenoic acid (C22:6 n-3).

#
Control oil: a mixture of sardine oil and olive oil (1:1; vol/vol)

*
LCMUFA: a sum of C20:1 and C22:1 isomers
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Table 2

Characteristics of recruited subjects

Parameters Measures (n=37)

Demographics and medical history

Age (years) 34.8 ± 12.5

Male sex, n (%) 15 (40.5)

Female sex, n (%) 22 (59.5)

Ethnicity, n (%)

 White 19 (51.4)

 Black 7 (18.9)

 Asian 11 (29.7)

Body mass index (kg/m2) 24.3 ± 3.4

Clinical and laboratory values

Systolic BP (mmHg) 118.9 ± 12.6

Diastolic BP (mmHg) 70.6 ± 9

TC (mg/dL) 176 ± 45.7

TG (mg/dL) 83.8 ± 49.1

HDL-C (mg/dL) 62.2 ± 18.4

LDL-C (mg/dL) 97.2 ± 44.6

ApoA-I (mg/dL) 155.1 ± 31.1

ApoB (mg/dL) 88.7 ± 32.4

hsCRP (mg/L) 2.4 (0.5-3.0)

HOMA-IR 1.9 (1.1- 2.4)

Insulin (μU/mL) 8.3 ± 5.2

Glucose (mg/dL) 92.6 ± 8.4

HbA1C (%) 5 ± 0.5

AST (U/L) 21.5 ± 12.5

ALT (U/L) 18.4 ± 9.5

TSH (μlU/mL) 2.1 ± 1.4

Uric Acid (mg/dL) 5.4 ± 1.3

Creatinine (mg/dL) 0.9 ± 0.2

RBC (M/uL) 4.6 ± 0.5

WBC (K/uL) 5.6 ± 1.5

N/A: Not applicable; BP: blood pressure; TC: total cholesterol; TG: triglycerides; HDL-C: HDL cholesterol; LDL-C: LDL cholesterol; hsCRP: 
high-sensitivity C-reactive protein; HOMA-IR: homeostatic model assessment of insulin resistance; HbA1C: hemoglobin A1c; AST: aspartate 
aminotransferase; ALT: alanine aminotransferase; TSH: thyroid-stimulating hormone; RBC: red blood cells; WBC: white blood cells. Data 
represented as mean ± SD (n = 37) or interquartile range (IQR) for parametric and non-parametric variables respectively and as n (%) for 
categorical variables.
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Table 3

Various biomarkers for CVD before (baseline) and after a 8-week ingestion of control or saury oil supplement

Baseline (n=30) Control oil (n=30) Saury oil (n=30)

Mean SD/IQR Mean SD/IQR Mean SD/IQR

Clinical and laboratory values

 hsCRP (mg/L)
(0 – 4.99)

2.4 0.5-3.0 1.4 0.4-2.2 1.6 0.3-2.3

 AST (U/L)
(0 – 32)

21.9 13.8 20.6 6.2 20.9 6.3

 ALT (U/L)
(0 – 33)

18.2 9.9 18 6.9 19.8 12.3

 TSH (μlU/mL)
(0.27 – 4.20)

2.1 1.4 2.2 1.3 2.1 1.1

 Uric Acid (mg/dL)
(2.4 – 5.8)

5.5 1.2 5.3 1.3 5.5 1.4

 Creatinine (mg/dL)
(0.51 – 0.95)

0.86 0.14 0.82 0.15 ** 0.85
0.15 

#

 RBC (M/uL)
(3.93 – 5.22)

4.6 0.4 4.6 0.4 4.6 0.4

 WBC (K/uL)
(3.98 – 10.04)

5.7 1.5 5.4 1.8 5.1 1.3 *

 Glucose (mg/dL)
(74 - 99)

92 7.5 94.2 9 * 92.8 12.7

 HbA1C (%)
(4 - 6)

4.9 0.4 5 0.5 5 0.4

 Insulin (μU/mL)
(2.6 – 24.9)

7.1 3.3 8.6 3.5 ** 9.6 4.7 ***

 HOMA IR 2 1.09- 2.40 2.4 1.11- 2.95 1.8 1.08-2.44

Vascular parameters

 L-ABI 1.03 0.09 1 0.09 * 1.03
0.09 

#

 R-ABI 1.05 0.07 1.02 0.07 * 1.04 0.08

 L-CAVI 6.5 1.1 6.4 1 6.6 1.1

 R-CAVI 6.6 1.1 6.5 1 6.6 1.1

 Systolic BP (mmHg)
(120 - 140)

117.7 12.6 114.7 9.1 115.9 9.7

 Diastolic BP (mmHg)
(80 - 90)

69.5 8.8 68 10.1 67.4 7.6

 Heart rate (bpm) 67.7 11.8 66.1 9.3 69.5 13

hsCRP: high-sensitivity C-reactive protein; AST: aspartate aminotransferase; ALT: alanine aminotransferase; TSH: thyroid-stimulating hormone; 
RBC: red blood cells; WBC: white blood cells; HbA1C: hemoglobin A1c; HOMA-IR: homeostatic model assessment of insulin resistance; L-ABI: 
left ankle-brachial index; R-ABI: right ankle-brachial index; L-CAVI: left cardio-ankle vascular index; R-CAVI: right cardio-ankle vascular index; 
BP: blood pressure. Brackets indicate clinical reference ranges. Data represented as mean ± SD (n = 30) or interquartile range (IQR) for parametric 
and non-parametric variables respectively.

*
P <0.05

**
P <0.01

***
P <0.001 compared with baseline

#
P <0.05 compared with control oil intervention.
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Table 4

Lipoprotein biomarker values before (baseline) and after a 8-week ingestion of control or saury oil supplement

Baseline (n=30) Control oil (n=30) Saury oil (n=30)

Mean SD Mean SD Mean SD

Lipid/Lipoprotein profile

  TG (mg/dL) 64.3 26.2 52 21.1 * 56.1 26.5 *

  TC (mg/dL) 174.8 48.6 184.3 45.6 * 181.7 50.9 *

  LDL-C (mg/dL) 95.5 47.5 102.7 45.2 * 98.6 50.6

  sdLDL (mg/dL) 26.5 15.4 29.7 16.4 * 29 17.9

  oxLDL (U/L) 73.3 24.8 75.3 24.8 72.9 26.1

  LDL-TG (mg/dL) 14.6 6.4 14.4 6.3 14.7 5.7

  HDL-C (mg/dL) 64.4 18 67.9 16.9 * 68.7 19.7 *

  ApoE-HDL (mg/dL) 5.9 1.9 6.3 1.7 * 6.5 2.1 *

Apolipoproteins

  ApoA-I (mg/dL) 155.6 30.5 158.3 26.3 156.1 30.4

  ApoB (mg/dL) 85.97 33.6 91.4 31.1 * 89 33.8

TG: triglycerides; TC: total cholesterol; LDL-C: LDL cholesterol; sdLDL: small dense LDL; oxLDL: oxidized LDL; LDL-TG: TG concentration 
in LDL; HDL-C: HDL cholesterol; ApoE-HDL: ApoE-containing HDL. Data represented as mean ± SD (n = 30).

*
P <0.05

**
P <0.01 compared with baseline. No statistical difference were detected in all the reported parameters between the control and saury oil 

supplements based on a linear mixed effect model.
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