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Tumor-Associated Glycans as Targets for Immunotherapy:
The Wistar Institute Experience/Legacy
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Tumor cells are characterized by the expression of tumor-specific carbohydrate structures that differ from their
normal counterparts. Carbohydrates on tumor cells have phenotypical as well as functional implications,
impacting the tumor progression process, from malignant transformation to metastasis formation. Importantly,
carbohydrates are structures that play a role in receptor–ligand interaction and elicit the activity of growth factor
receptors, integrins, lectins, and other type 1 transmembrane proteins. They have been recognized as biomarkers
for cancer diagnosis, and evidence demonstrating their relevance as targets for anticancer therapeutic strategies,
including immunotherapy, continues to accumulate. Different approaches targeting carbohydrates include
monoclonal antibodies (mAbs), antibody (Ab)–drug conjugates, vaccines, and adhesion antagonists. Devel-
opment of bispecific antibodies and chimeric antigen receptor (CAR)-modified T cells against tumor-associated
carbohydrate antigens (TACAs) as promising cancer immunotherapeutic agents is rapidly evolving. As re-
viewed here, there are several cancer-associated glycan features that can be leveraged to design rational drug or
immune system targets, applying multiple TACA structural and functional features to be targeted as the
standard treatment paradigm. Many of the underlying targets were defined by researchers at the Wistar Institute
in Philadelphia, Pennsylvania, which provide basis for different immunotherapy approaches.
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Introduction

A lteration in glycosylation is a proven characteristic
of cancer, and most known serological biomarkers cur-

rently used in the clinic are cancer-associated glycans. Bio-
synthesis of glycans is non-DNA template dependent and it is
controlled by the expression of glycosyltransferases and gly-
cosidases. Tissues of different origin and cancer cells express
different carbohydrate structures due to expression of these
enzymes. Aberrant glycosylation can include sialylation, fu-
cosylation, O-glycan truncation or incomplete synthesis, and
N- and O-linked glycan branching.(1) Both aberrant expression
of carbohydrates and acquisition of aberrant glycosylation
profiles accompany malignant transformation and progres-
sion.(2) Carbohydrates are the most diverse complex biomole-
cules that also play pivotal roles in many cellular physiological
functions, including cell–cell interaction, cellular signaling
through cell surface receptors, and immune recognition. Al-
though tumor-specific glycans have been known for a long time
(Table 1), only recently, these structures have been identified as
potential targets to recruit the host immune system for cancer
therapy or generate the immune response through vaccines.

Common approaches for immunotherapy include mono-
clonal antibodies (mAbs), vaccines, carbohydrate-specific
antibody (Ab)–drug conjugates, carbohydrate mimetics, an-
tagonists targeting selectins, and Siglec receptors. For ex-
ample, several lectin families play a role in inflammatory
processes and cancer, including selectins, galectins, siglecs,
and macrophage galactose-type lectin (MGL). Glycan–lectin
interactions are critical for cancer progression, cell prolifer-
ation, extravasation, and invasion. Targeting the glycans and
interference in their interactions with specific inhibitors is
currently being explored in clinical trials as a promising
therapy strategy (Table 2).

Research into tumor-associated carbohydrate antigens
(TACAs) has entered an exciting phase because of the recent
identification of their function and implications for clinical
use. These discoveries open up the possibility of using TACAs
and mAbs recognizing TACAs in vaccines and immunother-
apeutic strategies against cancer. Pioneering studies focusing
on cancer-associated cell surface glycans have been carried out
using hybridoma technology and mAbs developed at the
Wistar Institute of Anatomy and Biology starting in the late
1970s.(3–5) Future studies were performed in collaboration
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with the Department of Medical Biochemistry, University of
Goteborg in Sweden; Department of Chemistry, University of
Alberta, Edmonton, Canada; University of Pennsylvania,
Philadelphia, Pennsylvania; and the National Institutes of
Health (NIH), Bethesda, Maryland. These studies succeeded in
identification of multiple carbohydrate tumor-associated anti-
gens (Ags), including the first glycolipid tumor-associated
antigen, sialyl Lewis A (SLea), known as CA19-9.(6,7) The
SLea-specific antibody, named NS19-9, was developed at
Wistar Institute by hybridoma technology using the human
colorectal cancer cell line, SW1116, as an immunizing anti-
gen.(4) The SLea antigen is widely expressed in gastrointestinal
cancers and is one of the most studied serum biomarkers for
diagnosis and monitoring of pancreatic and colorectal cancers.
CA19-9 carbohydrate also plays a role in tumor extravasation
through interaction with selectins, as discussed below. A recent
study postulates that SLea promotes pancreatic cancer. This
study demonstrated the possibility of CA19-9 as a therapeutic
target for treatment of pancreatitis and pancreatic cancer.(8)

Consequently, the CA19-9 antigen itself, its mimic, and the
mAb are utilized for various immunotherapy approaches.

Examples of TACAs found by this group represent blood
group-related carbohydrate series such as A, B, O, and Lewis
(Le) system series, including sialyl-Lea (SLea), sialyl Lewis
X (SLeX), and Lewis Y (LeY), which are widely expressed in
epithelial tumors (Table 1).(9–20) SSEA-1 (CD15 or Lex) was
also identified as a stage-specific embryonic antigen at the
Wistar Institute using hybridoma technology.(21,22)

The ability to detect these aberrant glycans in situ in FFPE
specimens using carbohydrate-specific mAbs has also been
demonstrated by our group. These data indicate that the blood
group ABO, H, Se, and Le genes are subjected to a tissue-
dependent differential expression. The results of these studies
laid the groundwork to evaluate blood group Ags and related
glycolipids as pathological tumor markers and provide im-
munohistochemical evidence for a diverse repertoire of al-
tered antigen expression in different cancers, which can be
exploited for diagnosis and therapeutic intervention.(23–26)

Tumor tissues can also display gangliosides such as GD2,
GD3, GM3, GM2, fucosyl GM1, and Globo-H that are sia-
lylated glycosphingolipids found at elevated levels in tumors
of neuroectodermal origin, including neuroblastomas (NBs)
and melanomas. Specifically, a gradual increase in GD2,
GD3, and 9-0-acetyl-GD3 ganglioside expression in subse-
quent stages of melanoma progression from normal mela-
nocytes to metastatic disease, including the pivotal step of the

early primary melanoma in the radial growth phase (RGP) to
advanced vertical growth phase (VGP) melanoma, was
characterized. The qualitative differences of gangliosides
between the RPG and VGP suggest their role as prognostic
indicators of risk for tumor recurrence and as a therapy tar-
get.(27–30) A phase I clinical trial has been conducted with
murine mAb ME361, which recognizes GD2 and GD3 gen-
erated at the Wistar Institute.(31) The initial study, including
clinical trials from this and other groups, built the foundation
to further exploit the therapeutic and diagnostic potential for
ganglioside-expressing tumors.

The assembly of cell surface complex carbohydrates re-
quires the concerted action of a large number (>100) of
glycosyltransferases, each of which catalyzes the transfer of a
single sugar residue, usually from a sugar nucleotide, to
specific hydroxyl groups on a suitable oligosaccharide ac-
ceptor. Glycosyltransferases such as sialyltransferases and
fucosyltransferases involved in linking terminating resi-
dues on glycans are two of the most common glycosylation
changes in carcinogenesis and progression. The increase in
activity of these glycosyltransferases leads to overexpression
of terminal TACA epitopes commonly found on transformed
cells that include SLeX, SLea, sialyl Tn (STn), Globo H, LeY,
and gangliosides.(32,33) a-2-L-Fucosyltransferase transfers
L-fucose from GDP-L-fucose to the C-2 position of terminal
nonreducing b-D-galactosyl residues, thus forming the H
antigen from its type 1 or 2 chain precursor.

Our group characterized kinetic and structural parameters
of both Secretor (Se) and H a-2-L-fucosyltransferases that
are responsible for the synthesis of H (O-type) blood group
and Lewis series Ags.(34,35) We published the amino acid
sequence for a-2-L-fucosyltransferase and demonstrated that
the enzyme-enhanced expression correlated with colon can-
cer progression.(36) The elevated level of the enzyme in ad-
enomatous polyps may represent an early event associated
with tumorigenesis in colon cancer. A nucleotide sequence
analysis of the protein coding region of the complementary
DNAs (cDNAs) derived from adenoma, and colon adeno-
carcinoma revealed 100% homology, suggesting that there is
no tumor-associated allelic variant within the H a-2-L-
fucosyltransferase cDNA.(37)

Glycosyltransferases represent prime targets for the design
of glycosylation inhibitors with the potential to specifically
alter the structures of cell surface carbohydrates. The study
by our group on the mechanism of glycosyl transfer dem-
onstrated that the reactive acceptor hydroxyl groups are

Table 1. Structure of Common Tumor-Associated Carbohydrate Antigens

Tumor-associated carbohydrate antigens Structure

Tn GalNAcSer/Thr
sialyl Tn Neu5Aca2-6GalNAcaSer/Thr
T antigen Galb1-3GalNAca1-Ser/Thr
Globo-H Fuca1-2Galb1-3GalNAcb1-3Gala1-4Galb1-4Glc
LeY Fuc(a1 / 2)Gal(b1 / 4)[Fuc(a1 / 3)]GlcNAc
SLea Neu5Aca2,3Galb1,3(Fuca1,4)GlcNAc
SLeX Neu5Aca2,3Galb1,4 (Fuca1,3)GlcNAc
GM3 Neu5Aca2,3Galb1,4Glcb1Cer
GD3 Neu5Aca2,8Neu5Aca2,3Galb1, 4Glcb1Cer
GD2 GalNAcb1,4(Neu5Aca2,8Neu5Aca2,3)Galb1, 4Glcb1Cer

LeY, Lewis Y; SLea, sialyl Lewis A; SLeX, sialyl Lewis X; STn, sialyl Tn.

90 THURIN



Table 2. Clinical Trials Targeting Carbohydrate Antigens

Modality Target Histology Phase Clinical Trial

Vaccines
Glycolipids/Glycoproteins Theratope STn

Thomsen-Friedenreich (TF)
Breast
Prostate

3
1

NCT00003638
NCT00003819

Globo-H-GM2-sTn-TF-Tn Ovarian 1 NCT01248273
GD2, GD3, Globo H, Fucosyl

GM1 and N-propionylated
polysialic acid

Lung 1 NCT01349647

Globo-H Breast 2 NCT01516307
GM2, GD2, GD3 Sarcoma 2 NCT01141491
GD3 Melanoma 2

1
NCT00679289,
NCT03159117

GD3L, GD3L Melanoma 1
1

NCT00597272
NCT00911560

GM2 Breast
Melanoma

3
3

NCT00003357
NCT00005052

Anti-idiotype NeuGcGM3

ACA125
CEA
GD2

NSCLC
Pediatric tumors
Ovarian,
Colorectal
Neuroblastoma

3
1
2
2
1

NCT01460472
NCT01598454
NCT00058435
NCT00033748
NCT00003023

Peptide Carbohydrate
Mimotope

LeY, GD2 Breast
Lung

1 and 2
1/2

NCT02229084
NCT02264236

Monoclonal Antibodies
GD2 Neuroblastoma

Neuroblastoma/
Osteosarcoma

1
1 and 2

2
2
2
3

1 and 2

NCT03033303
NCT01757626
NCT00089258
NCT03363373
NCT00002458
NCT01704716
NCT03860207

GD3 Melanoma 2 NCT00679289
LeY Breast

Ovarian

2
2
2

NCT01370239
NCT01370239
NCT00617773

SLea Pancreas
Gastrointestinal

cancers

1
2

NCT02672917
NCT03801915

MUC1 Ovarian,
Solid tumors

2
1

NCT01899599
NCT01222624

Radiolabeled mAb GD2 Central Nervous
System, Lung,
Melanoma,
Neuroblastoma,
Sarcoma

2 NCT00445965

Antibody drug conjugate LeY NSCLC
Prostate
Ovarian
Breast

2
2
2
2

NCT00051571
NCT00031187
NCT00051584
NCT00028483

Lectin antagonists
Selectins Acute Myeloid

Leukemia
3 NCT03616470

Galectins Melanoma, NSCLC,
H&N, Colon
cancer,

Solid tumors
Melanoma

1

2
1

1 and 2
1

NCT02575404,

NCT00110721,
NCT00054977,
NCT01723813,
NCT02117362

Siglec-15 H&N, NSCLC
Ovarian
TNBC

1/2 NCT03665285

(continued)
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involved in a critical hydrogen bond donor interaction with a
basic group on the enzyme, which removes the developing
proton during the glycosyl transfer reaction. The resulting
deoxygenated acceptor analogs can no longer be substrates
for the corresponding glycosyltransferases, which should act
as competitive inhibitors. Alternatively, basic groups would
be logical targets for irreversible covalent inactivation of the
enzymes. Inhibitors of glycosylation can be invaluable tools
in deciphering both the biosynthetic pathways for the as-
sembly of active cell surface oligosaccharides, as well as
tools for drug discovery.(38)

Defining the epitopes for antibodies and T cell receptors
(TCRs) is of great importance for optimization of antigenic and
immunogenic properties of effective vaccines and other im-
munotherapeutic approaches based on the Ab or TCR antigen
recognition. To understand the basic principles of antibody-
targeting TACAs and their binding specificity, structural stud-
ies, including biochemical methods, mass spectrometry, and
proton nuclear magnetic resonance (NMR) spectroscopy, as
well as conformations established by computer modeling, were
undertaken by our group.(39–44)

While missing detailed crystallographic information, topo-
graphical features of antibody recognition and the conforma-
tional properties of a series of related tissue blood group (Lewis)
carbohydrates were established. For example, using two-
dimensional NMR in combination with hard-sphere energy
calculation, it was established that the NS-19-9 antibody does
not cross-react with Lea antigen and the presence of Neu5Ac
residue can cause conformational alteration, which are crucial to
the formation of the antigenic determinant.(39) Combining mo-
lecular modeling and experimental structural information may
be possible to rationally modify Lewis antigen-binding anti-
bodies by fine-tuning specificities and affinities to optimize their
in vivo functionalities.(45,46) Importantly, these studies were
conducted at the time when the methods of cocrystallizing an-
tibody Fab fragments and carbohydrate antigens had not yet
been used for antibody recognition and the conformational
properties of blood group (Lewis) carbohydrates.(47,48)

The efficacy of the antibody can be further improved by
increasing the specificity for the carbohydrate antigen that

may be important for antibody-based approaches, including
chimeric antigen receptor (CAR)-modified T cells, as even
minor alterations in binding of the carbohydrate structure
may have an impact on the bound conformations and af-
finity of the antigen important for recognition of the tumor
antigen.

Recent efforts on carbohydrate-based cancer immuno-
therapies, including bispecific antibodies (BsAbs) and CAR
T cells against TACAs, are rapidly evolving. This perspective
discusses the role of carbohydrates for the current applica-
tions in oncology, including diagnostics and immunotherapy
approaches. We also would like to acknowledge that many of
today’s modern cancer drugs may owe their conceptual basis
to the pioneering work by Koprowski’s team at the Wistar
Institute decades ago, which can inform current and future
developments in the field, including carbohydrate Ags as
diagnostics, mAbs as drugs, vaccines, adhesion antagonists,
and even BsAbs and CARs.

Carbohydrates as Diagnostics

Current clinically approved serological biomarkers for
cancer diagnosis and biomarkers of disease recurrence in
different cancers are glycosylated biomarkers. Most of the
clinically relevant glycoprotein biomarkers in cancer patients
include the prostate-specific antigen (PSA); carcinoem-
bryonic antigen (CEA); ovarian carcinoma antigen CA125
also known as MUC16; breast cancer CA15-3, that is, aber-
rantly glycosylated MUC1; CA72-4 antigen in gastric cancer
alpha fetoprotein (AFP) in liver cancer; and breast cancer
antigen CA27-29.(49) Early studies from our group intro-
duced mAbs for serological detection of TACAs.(50–55) The
SLea antigen expressed in epithelial tumors is detected by the
serological assay NS19-9 used for patients with an estab-
lished diagnosis of pancreatic, colorectal, gastric, or biliary
cancer and is used to monitor clinical response to therapy. It
is the most clinically validated serum biomarker used for the
management of pancreatic cancer patients to date.(56,57) One
of the most important limitations of SLea as a tumor marker is
that 5%–10% of the population lacks the ability to synthesize

Table 2. (Continued)

Modality Target Histology Phase Clinical Trial

CAR T cells
LeY Solid tumors

Myeloid
malignancies

1
1 and 2

NCT03851146
NCT02958384

CEA Pancreatic 2 and 3 NCT04037241
NCT03818165

GD2 Glioma

Neuroblastoma,
Osteosarcoma

B cell lymphoma

1
1
1

1 and 2
1 and 2

1
1

1 and 2

NCT04099797
NCT04196413
NCT04099797
NCT04637503
NCT03373097
NCT01953900
NCT02107963
NCT04429438

Bispecific Antibodies GD2 Neuroblastoma 1 and 2 NCT02173093

CAR, chimeric antigen receptor; CEA, carcinoembryonic antigen; H&N, head and neck cancer; mAbs, monoclonal antibodies; NB,
neuroblastoma; NSCLC, non small cell lung cancer; sTn, sialyl Tn; TNBC, triple negative breast cancer.
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the SLea precursor due to failure of the Lewis a-4-L-
fucosyltransferase expression and, as a result, cannot produce
CA19-9, as noted in our report.(58)

Carbohydrate Targets and mAbs for Immunotherapy

Multiple approaches targeting carbohydrates have been
investigated, and multiple clinical trials support the potential
of targeting glycosylation in cancer immunotherapy. The
comprehensive list of clinical trials applying different ap-
proaches targeting cancer-specific glycans has been listed in
Table 2.(59,60) Considering the therapeutic approaches in
which TACAs are targeted, their expression should be re-
quired as an eligibility criterion for patient stratification or
selection to personalize patients’ clinical outcomes.

Monoclonal Antibodies

Developing antibodies against TACAs for clinical use
has been challenging and few tumor-targeting antibodies
have reached clinical trials due to low affinity and toxicity.
Nevertheless, several glycan-specific mAbs and their chi-
meric and/or humanized versions showed promise in
in vitro and in vivo models and have been used for passive
immunotherapy in clinical protocols. Several mAbs tar-
geting glycolipids, such as GD2, GD3, GM2, LeY, or
SLea, have demonstrated the ability to mediate potent
antibody-dependent cellular cytotoxicity (ADCC) and
complement-mediated cytotoxicity (CMC). The efficacy
of mAb treatment was often enhanced with combination
therapies or antibody-mediated delivery of cytotoxic payloads
such as radioisotope and antibody–drug/toxin conjugates
or cytokines such as granulocyte–macrophage colony-
stimulating factor (GM-CSF) and interleukin-2 (IL-2).

As protein engineering technology has become more
accessible, newer antibody constructs are being tested in
clinical trials. Fully human antibodies were derived from
lymphocytes of individuals immunized with the SLea-
KLH vaccine demonstrated to be potent in CMC and
ADCC.(61,62) SLea-targeting antibody MVT-5873 is cur-
rently in phase I clinical trial (NCT02672917) and
have been reported to be well tolerated. A phase II trial
was designed to determine the efficacy and safety of peri-
operative Ab use in patients with gastrointestinal cancers
(NCT03801915). Promising antibodies with high affinity
for SLea (5B1 and 7E3) were also expressed as recombinant
antibodies and were potent in CDC ADCC assays.(63) The
most recent example demonstrates that reengineering the Fc
portion of SLea-targeting antibodies generated in response
to the SLea/KLH vaccine enhanced their affinity for acti-
vating human FcgRs and led to an enhanced therapeutic
effect suggesting that an Fc-optimized variant could po-
tentially be translated to the clinic.(64) Potentially natural
class-switch variants can also show enhanced therapeutic
potential. Spontaneously occurring mAb specific for SLea
and LeY heavy chain variants, IgG1, IgG2b, and IgG2a,
identified in our study had the same binding specificity and
were active in ADCC; however, IgG2a gave the highest
percentage of lysis and inhibited growth of human colo-
rectal carcinoma, while IgGl and IgG2b were ineffec-
tive.(65–67) The results demonstrate the potential usefulness
of the subclass switching antibody as a therapeutic agent.

Although GD2 and GD3-specific mAbs demonstrated
in vivo and in vitro activity against melanoma and NB, the
concerns with toxicity and low efficacy of mAbs prompted
new advances in genetic engineering and development of
newer generation chimeric and humanized anti-GD2
mAbs. The human–murine chimeric Ab ch14.18, subse-
quently renamed dinutuximab, was generated by combin-
ing the variable regions of the original murine IgG3 anti-
GD2 mAb 14.18 and the constant regions of human
IgG1.(68,69) Dinutuximab was the first antibody to be
approved by the US FDA and the European Medicines
Agency (EMA) for NB and other pediatric solid tumors
and was established as the new standard of care for main-
tenance therapy in patients with high-risk NB. Phase
2 and 3 studies are underway for NB NCT03363373
NCT00002458 NCT01704716.

The LeY antigen is also a member of a family of blood
group antigens expressed in human epithelial cancers, which
makes it an attractive target for treatment with mAbs. Hu-
manized or chimeric forms of LeY-specific mAbs have
demonstrated signal of efficacy in preclinical models and
have been tested in clinical trials.(70) The humanized mAb
against the LeY antigen (Hu3S193) has been demonstrated to
be safe in previous studies and has also been indicated as a
potential intervention in solid tumors.(71–73) Hu3S193 is a
humanized anti-LeY IgG1 mAb with strong complement and
antibody-dependent cytotoxicity with clinical benefit shown
in a phase II study (NCT00617773).

Other applications of TACA-specific mAbs include
drugs delivered through antibody–drug conjugates (ADCs).
LeY-specific BR96 mAbs conjugated to doxorubicin and
docetaxel were tested in phase II trials for advanced non small
cell lung cancer (NSCLC) and breast cancer.(74,75) Multiple
ADC approaches targeting STn antigens by conjugating them
to monomethyl auristatin E (MMAE) showed promising anti-
tumor activity.(76,77) Immunotoxins such as diphtheria toxin
fused to the single-chain variable fragment (scFv) 5F11 and
pseudomonas toxin fused to scFv14.18—demonstrated specific
killing of GD2+ tumor cells. However, immunogenicity of
foreign toxin proteins has remained a major concern, and no
GD2-directed immunotoxins are currently in human trials.(78)

Regression of lung, breast, and bladder carcinomas in patient
derived xenograph (PDX) models was demonstrated upon ad-
ministration of BR96 sFv-PE40 Pseudomonas exotoxin A.(79)

The first human study to obtain data on the safety and feasibility
of 89Zr-DFO-HumAb-5B1 to image pancreatic tumors and
other SLea-positive malignancies is ongoing (NCT02687230).

Vaccines

Targeting TACAs as an immunotherapeutic strategy with
anticancer vaccines provides an appealing option for cancer
treatment. Examples include vaccines targeting the mucin-
related Tn, STn, and T antigens, the gangliosides GM2 and
GD3, and the glycosphingolipid Globo-H.(80–82) Several
carbohydrate-based vaccines have shown some promise and
are presently undergoing clinical evaluation (Table 2). Stra-
tegies to overcome poor immunogenicity of glycan-based
vaccines by displaying vaccine glycans in a multivalent
context are currently being pursued. For example, a trianti-
genic vaccine containing Globo H, Ley, and Tn has been
shown in animal models to elicit an immune response against
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each oligosaccharide antigen and it may result in recruiting
both humoral and T cell-mediated immune responses against
tumors in human patients.(83) Similarly, vaccination of small
cell lung carcinoma patients with polysialic acid (PSA)-KLH
or N-propionylated PSA-KLH (PrPSA-KLH) conjugates was
tested in a clinical trial.(84)

Successful tumor immunotherapy might require the in-
duction of cytotoxic T lymphocytes (CTLs) in addition to
antibodies, which explains early attempts of developing a
carbohydrate-based vaccine such as Theratope that elicits a B
cell-mediated immune response, but does not seem to trigger
a T cell-mediated immune response.(85) Another approach to
overcome poor immunogenicity and lack of T cell engage-
ment has been developed using anti-idiotype antibodies
(Ab2) as surrogate antigens. Ab2 vaccines induce anti-GD2
immune responses and have several advantages over native
gangliosides; as proteins, they induce T cell responses. Anti-
idiotypic GD2 mAbs were tested in phase I trials.(86)

An alternative approach to develop T-dependent responses
to carbohydrate Ags is the use of peptide or polypeptide
surrogates of carbohydrates, which has also been carried out
by our group in collaboration with the University of Penn-
sylvania. Peptides may functionally mimic carbohydrates
and induce IgG and cellular immune responses, which
the carbohydrate itself is usually unable to induce.(87–90)

Carbohydrate-mimetic peptides (CMPs), unlike carbohy-
drate antigens, can prime for memory responses to TACAs,
suggesting that CMPs facilitate cognate interactions between
B cells and T cells. Antibodies induced by a CMP to the
meningococcal group C capsular polysaccharide(91) were
shown to be reactive with the LeY antigen and activated
peptide-specific T helper type 1 (Th1) and type 2 (Th2) re-
sponses.(92,93) To induce sustained immunity against both
LeY and GD2, CMP as a surrogate pan-immunogen that
mimics both was developed. To test the feasibility of in-
ducing proapoptotic antibodies reactive with LeY and
GD2, advanced breast cancer subjects were immunized
with the P10s-PADRE vaccine and limited clinical benefit
was observed following vaccine treatment, which was
not only caspase 3 dependent but also demonstrated syn-
ergy with chemotherapeutics(94) (NCT02229084 and NCT
02264236).

Similarly, a DNA vaccine encoding a peptide isolated with
the GD2-specific mAb 14G2a GD2, resulted in the induction
of antibodies that exhibited CDC against GD2+ melanoma
cells and inhibited growth of human melanoma cell xeno-
grafts. A study suggests that peptides mimicking the GD2
ganglioside inhibit tumor growth through antibody and/or
CD4+ T cell-mediated mechanisms. DNA vaccination studies
in mice showed that plasmids encoding peptides mimicking
LeY induced LeY cross-reactive IgG2a Abs and mediated
CMC.(95) Peptide mimetic of carbohydrate Ags encoded as
DNA plasmids are novel immunogens providing a means to
manipulate carbohydrate cross-reactive Th1 responses.
This approach provides a way for development of mes-
senger RNA (mRNA) vaccines targeting the immune re-
sponse to glycans.

Adhesion Antagonists

Lectins such as C-type, Galectins, and Siglecs are
important for adaptive immune responses. Examples of a

lectin–ligand interaction (important for the homing and tissue
recruitment of leukocytes and tumor cells) involve the C-type
lectins, E-selectin, P-selectin, and L-selectin (CD62E,
CD62P, and CD62L), and LeX or SLea that are the major
ligands expressed on the surface of tumor cells.(96,97) During
inflammation, selectins mediate the initial attachment of
leukocytes to the endothelium during the process of leuko-
cyte extravasation. In cancer, SLeX and SLea interactions
with selectins regulate the metastatic cascade by forming
emboli of cancer cells and platelets and favoring their arrest
on endothelia.

We hypothesized that the tumor cell transmigration from
the bloodstream to metastatic sites in analogy with lym-
phocyte rolling is mediated by interaction of selectins on
endothelial cells and TACAs on the surface of tumor cells.
Applying the concept of the functional equivalence of
chemically dissimilar molecules such as carbohydrates and
proteins sharing common surface topology, our study of
administration of a monovalent peptide mimetic of SLea
showed reduced neutrophil recruitment in vivo.(98–100) In a
subsequent study, colonization of tumor cells expressing
SLea was blocked by the peptide mimetic of this antigen
and was completely abolished in E-selectin knockout
mice.(101,102) Using combinatorial synthetic chemistry
technology, this study allowed for delineating the positions
of amino acids containing carboxyl groups that improved
upon peptide mimicry and increased mAb binding. Devel-
oping reagents that are stereochemically equivalent to
carbohydrate ligands for E-selectin that can effectively
block lymphocyte rolling and tumor colonization in vivo
might provide an effective treatment of the metastatic
process and inflammatory conditions. Consequently, inter-
ference with selectin functions has become a potential
therapeutic strategy, and these compounds are currently in
clinical development. Glycomimetics’ E-selectin inhibitor
Uproleselan in combination with chemotherapy has been
shown to improve survival in patients with acute myeloid
leukemia (NCT03616470).(103)

Galectins are endogenous lectins recognizing galactose
that allows for specific binding to carbohydrate epitopes,
which can be shared by several T cell surface proteins. Ga-
lectins are expressed in cancer and stromal cells and mediate
interactions between tumor cells and innate and adaptive
immune cells. Galectin-3 binds to the cytotoxic T lympho-
cyte antigen 4 (CTLA-4) and lymphocyte activation gene 3
(LAG-3), while galectin-9 binds to T cell immunoglobulin
and mucin-domain containing-3 (TIM-3).(104,105) Galectin-1
binding induces partial phosphorylation of TCRz and induces
partial z-chain phosphorylation (pp21z) that cannot initiate
downstream protein tyrosine phosphorylation, IL-2 pro-
duction, or T cell proliferation.(106) Because of their im-
munosuppressive role, targeting galectins represents a
potential therapeutic approach to restore antitumor immu-
nity. Galectin antagonists in combination with chemother-
apy, peptide vaccinations, or immune checkpoint inhibitors
are currently in clinical trials for treatment of different
cancers (Table 2).

The Siglec family of lectins comprises immunoglobulin-
type lectins, which recognize predominantly sialic acid-
containing glycans that are expressed in most white blood
cells of the immune system and play critical roles in immune
cell signaling.(107) For example, Siglec-9 plays a critical role
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in suppressing antigen-specific T cell responses in vitro and
in vivo. Siglec-9 is coexpressed with several known inhibi-
tory T cell receptors, for example, PD-1, CTLA-4, and TIM-
3, in healthy individuals and melanoma patients.

A subset of Siglec-9 CD8 T effector cell engagement was
associated with phosphorylation of the inhibitory protein
tyrosine phosphatase SHP-1, but not SHP-2, resulting in
suppressed TCR signaling and effector functions.(108) Siglec-
15 is not expressed in normal tissue, but is upregulated in
tumor cells and tumor-associated myeloid cells as well as M2
macrophages, leading to profound immunosuppression in the
tumor microenvironment (TME). Siglec-15 expression is
mutually exclusive with that of PD-L1, suggesting that a drug
that alleviates Siglec-15–driven immunosuppression could
be viable in patients with low PD-L1 expression to benefit
from checkpoint blockade.(109) Many avenues to exploit si-
alic acid–Siglec interactions to advance cancer therapy are
under investigation for advanced solid tumors (NCT
03665285).

CAR-Modified T Cells and BsAbs

CARs and BsAbs are exciting developments for TACA-
based immunotherapy. Adoptive transfer of CAR T cells is a
promising immunotherapy strategy to treat cancer in an
MHC-independent manner. CARs are genetically encoded
artificial TCRs that combine the antigen specificity of an
antibody with the machinery of T cell activation. CARs
are generated by linking the scFv of an mAb with the
TCRz-chain transmembrane and cytoplasmic regions. The
second- and third-generation CARs include additional sig-
naling domains (CD27, 4-1BB, or OX40) aimed at improving
proliferation, survival, and cytokine release from the cells.
CAR immunotherapies have been shown to be highly ef-
fective in hematological malignancies (KYMRIAH and
CARTA) and have been approved by the FDA. However,
translation of CAR-T cell therapies from hematologic ma-
lignancies into solid tumors comes with challenges, including
immunosuppressive TME.

CAR T cells based on mAbs targeting GD2 and LeY
were demonstrated to be effective in eradicating leukemia
and pancreatic cancer in mice(110) and delayed growth
of myeloma xenografts.(111) Humanized Ab-based second
generation of CARs targeting LeY coupled to the cytoplas-
mic domains of CD28 and the TCRz chain showed durable
persistence.(112) An ongoing phase I clinical trial is now
testing the safety and tolerability of using these CAR T cells
in patients with advanced solid tumors presenting Ley surface
expression (NCT03851146). A third generation of GD2-
specific CAR-T cells has been developed and tested in a
phase I clinical trial.(113) Built-in costimulatory domains such
as CD28 and OX40 in T cells help to maintain the ability of
cells to proliferate as well as to reduce T cell exhaustion and
activation-induced cell death.(114) Other stimulatory mole-
cules have been incorporated into GD2 CAR T cells, which
enabled long-term persistence of the cells in human patients
and led to improved clinical outcome.(115)

As an alternative to CAR T cells, BsAbs have shown great
promise in anticancer therapy. BiAbs, similar to CAR T cells,
do not require HLA for antigen presentation. The most
common TACA-based BsAbs target GD2. BsAbs produced
by conjugating anti-CD3 (OKT3) and anti-GD2 (3F8) anti-

bodies recognize the tumor-associated ganglioside GD2, and
the T cell receptor antigen CD3 can activate and redirect non-
MHC-restricted cytotoxic activity.(116) More recent studies
have substituted the 5F11-scFv with the higher-affinity
hu3F8-scFv to form hu3F8-scBA. These BsAb-redirected T
cells induced stronger T cell activation in vitro and more
effectively suppressed NB xenograft growth in vivo com-
pared with 5F11-scBA.(117) Bispecific anti-CD3 · anti-GD2
is tested in children with NBs and other GD2-expressing
tumors (NCT02173093).

A direct comparison of GD2 BsAbs and CAR T cells found
that BsAbs lead to longer survival of activated T cells. Fur-
thermore, BsAb T cells provided more effective tumor pro-
tection in tumor models. The superiority of BsAb T cells could
be partly attributed to the presence of CD4+ helper T cells,
while the infused CAR T cells were almost exclusively CD8+ T
cells. This incomplete benefit may reflect the difficulties of
sustaining human T cell function and trafficking in a xenoge-
neic environment, which may represent the limitations of even
the third-generation constructs that cannot completely reca-
pitulate the temporo-spatial features of costimulatory events
required to physiologically sustain T cell activation.(118)

Concluding Remarks

Advances in molecular targeted therapy and immune
checkpoint inhibition have led to unprecedented improve-
ment in overall survival of patients with cancer. Despite these
improvements, there is an unmet need for novel approaches
for next-generation, antitumor immune modulatory drugs.
There is increasing evidence that altered glycans that are
active players throughout cancer development and progres-
sion can be targeted for effective therapies.

While the results from the studies conducted at the Wistar
Institute decades ago using carbohydrate-binding mAbs have
not been recognized for their clinical potential, these early
studies provided the conceptual framework for the current
advances that will likely further progress in development of
agents based on recognition of TACAs.

Currently, diverse and innovative approaches targeting
cancer-associated glycans, such as mAbs, BsAbs, and glycan-
specific CAR-T cells; carbohydrates and carbohydrate analog-
based vaccines; adhesion antagonists; and small molecules
with potential clinical application are tested. A structure-based
design of mAbs with improved potency and selectivity for
tumors over normal tissues may now be a tangible option,
especially in systems where detailed, three-dimensional
structural information is available, such as the Lewis histo-
blood group and related TACAs. Such innovative strategies are
likely to overcome many current limitations in the diagnosis
and treatment of cancer patients. As discussed in this review,
the strategies that exploit aberrant glycosylation of cancer cells
can provide therapeutic options and act synergistically with
current targeted approaches and immunotherapy approaches,
improving their specificity and efficacy.
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