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IL‑1β augments TGF‑β inducing 
epithelial‑mesenchymal transition of epithelial 
cells and associates with poor pulmonary 
function improvement in neutrophilic 
asthmatics
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Abstract 

Background:  Neutrophilic asthmatics (NA) have less response to inhaled corticosteroids. We aimed to find out the 
predictor of treatment response in NA.

Methods:  Asthmatics (n = 115) and healthy controls (n = 28) underwent clinical assessment during 6-month follow-
up with standardized therapy. Asthmatics were categorized by sputum differential cell count. The mRNA expressions 
were measured by RT-qPCR for sputum cytokines (IFN-γ, IL-1β, IL-27, FOXP3, IL-17A, and IL-5). The protein of IL-1β in 
sputum supernatant was detected by ELISA. Reticular basement membranes (RBM) were measured in the biopsy 
samples. The role and signaling pathways of IL-1β mediating the epithelial-mesenchymal transition (EMT) process 
were explored through A549 cells.

Results:  NA had increased baseline sputum cell IL-1β expression compared to eosinophilic asthmatics (EA). After 
follow-up, NA had less improvement in FEV1 compared to EA. For all asthmatics, sputum IL-1β mRNA was posi-
tively correlated with protein expression. Sputum IL-1β mRNA and protein levels were negatively correlated to FEV1 
improvement. After subgrouping, the correlation between IL-1β mRNA and FEV1 improvement was significant in NA 
but not in EA. Thickness of RBM in asthmatics was greater than that of healthy controls and positively correlated with 
neutrophil percentage in bronchoalveolar lavage fluid. In vitro experiments, the process of IL-1β augmenting TGF-β1-
induced EMT cannot be abrogated by glucocorticoid or montelukast sodium, but can be reversed by MAPK inhibitors.

Conclusions:  IL-1β level in baseline sputum predicts the poor lung function improvement in NA. The potential 
mechanism may be related to IL-1β augmenting TGF-β1-induced steroid-resistant EMT through MAPK signaling 
pathways.
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Background
Asthma is a heterogeneous respiratory disease involv-
ing with airway inflammation and hyperresponsiveness. 
Although eosinophil cell count could be a very good 
marker to predict therapy response in type-2 asthma, it 
is not clear which innate biomarkers could predict the 
poor improvement in non-type-2 asthma patients. Inter-
leukin (IL)-1β is a typical innate immune cytokine which 
can be mediated by inflammasomes [1]. A recent study 
shows both leucine-rich repeat-containing family protein 
3 inflammasome activation and IL-1β gene expression 
increase in neutrophilic asthma [2].

Respiratory symptoms and lung function tests are very 
important for asthma patient evaluation. According to 
GINA2020, lung function should be evaluated regularly 
for asthma patients [3]. Low forced expiratory volume in 
one second (FEV1) is a strong independent predictor for 
acute exacerbations [4, 5] and lung function decline [6]. 
Since the correlation between lung function and symp-
toms is weak, it is suggested to monitor lung function in 
addition to symptoms when evaluating the efficiency of 
asthma therapy [7].

Airway remodeling has been implicated in persistent 
airflow obstruction, irreversible decline of lung function, 
and increased airway hyper-responsiveness in asthma [8]. 
Airway remodeling is considered the result of repetitive 
injury caused by chronic airway inflammation. However, 
the relation between chronic airway inflammation and 
airway remodeling remains unclear. Epithelial-mesenchy-
mal transition (EMT), a dynamic process by which epi-
thelial cells lose their original epithelial phenotype and 
transformed into cells with a mesenchymal phenotype, 
has been demonstrated to play an essential role in airway 
remodeling. Previous studies have shown that a variety of 
inflammatory factors, including innate immune cytokine 
and type 2 cytokines, are involved in EMT [9], that may 
contribute to airway remodeling and then leads to poor 
asthma control.

To investigate the values of typical innate immune 
biomarkers and type-2 biomarkers in predicting the 
response to asthma therapy and the potential mecha-
nisms, we conducted a prospective study. Our results 
indicated that IL-1β level in induced sputum of untreated 
patients predicts the poor lung function improvement 
in neutrophilic asthmatics. The potential mechanism is 
related to IL-1β augmenting TGF-β1 induced EMT.

Methods
Subjects and study design
Adults patients with physician diagnosed asthma, 
according to the Global Initiative for Asthma 2014, were 
recruited if they met the following key criteria: bron-
choprovocation test with methacholine PD20 < 2.505 mg 
or bronchodilation FEV1 change > 200  ml and 12%; not 
received treatment with any inhaled or systemic gluco-
corticoids in the previous three months; and successfully 
induced sputum at baseline during June 15, 2015-April 
20, 2017 from the Department of Respiratory and Criti-
cal Care Medicine at Tongji Hospital (Wuhan, China) 
of Huazhong University of Science and Technology. 
The exclusion criteria included: acute episode in recent 
one month; respiratory infection in the last two weeks; 
comorbid with chronic obstructive pulmonary disease; 
bronchiectasis; other respiratory disease; pregnancy; or 
serious organ failure. Nonsmokers were defined as never 
smokers or ex-smokers who had the smoking history 
of less than five pack-years and quit smoking for longer 
than six months, otherwise defined as smokers. Atopy 
was defined as at least one specific IgE (≥ 0.35  kUI/L) 
toward common aeroallergens, a positive skin prick 
test response, or both. Healthy controls had no history 
of chronic respiratory disease; no respiratory infection 
within two weeks; no history of atopy; no family history 
of asthma; no smoke; no severe systemic disease.

Participants at the baseline visit (labeled as visit 1, V1) 
underwent clinical characteristics assessment, spirom-
etry and sputum induction. In the follow-up, only those 
received 6-month standardized therapy with good adher-
ence were recorded ACT score and pulmonary function 
test at the end of 6-month treatment (labeled as visit 2, 
V2). The improvement of FEV1 was calculated in three 
ways [10]: (1) absolute change in FEV1, calculated by the 
difference between FEV1 after six months treatment and 
baseline FEV1, labeled as ΔFEV1(V2-V1); (2) FEV1 change 
ratio, calculated by absolute change in FEV1 divided by 
baseline FEV1, labeled as ΔFEV1(V2-V1)/FEV1(V1) baseline; 
(3) absolute change in percentage of the predicted FEV1, 
calculated by the difference between percentage of the 
predicted FEV1 after six months treatment and baseline, 
labeled as ΔFEV1%(V2-V1).

All participants were given a written informed con-
sent prior to clinical data and sample collection. The 
study was approved by the Ethics Committee of Tongji 

Trial registration: This study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology (IRB ID: 20150406).
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Hospital, Tongji Medical College, Huazhong University 
of Science and Technology (IRB ID: 20150406).

Sputum induction
Sputum induction was processed and cytospins were pre-
pared as described before [11]. Using sputum eosinophils 
and neutrophils count, participants were categorized as 
eosinophilic (eosinophils ≥ 3% and neutrophils < 61%), 
neutrophilic (neutrophils ≥ 61% and eosinophils < 3%), 
mixed-granulocytic (neutrophils ≥ 61% and eosino-
phils ≥ 3%) or pauci-granulocytic asthma (sputum neu-
trophils < 61% and sputum eosinophils < 3%) [2]. Sputum 
samples with enough cells for mRNA isolation and less 
than 3% epithelial cells were processed for gene expres-
sion using quantitative reverse transcription (RT-qPCR), 
sputum supernatant was measured for IL-1β concentra-
tion with enzyme-linked immunosorbent assay (ELISA) 
as previously described [12].

RT‑qPCR and ELISA
Total RNA was extracted from the cell pellets if they were 
enough. Reverse transcription was performed using the 
PrimeScript RT reagent Kit (Takara, Dalian, China). The 
specific PCR primers were synthesized by Riobio Co. Lit. 
(Guangzhou, China). RT-qPCR assays were performed 
using the SYBR PremxiExTag (Takara, Dalian, China) on 
a 7500 RT-qPCR System (Life Technologies, Carlsbad, 
CA). The relative expression levels were normalized to 
β-actin and calculated using the 2−ΔCT method.

Sputum supernatant was store in at −  80  °C for sub-
sequent detection. IL-1β in sputum supernatant was 
measured by Human IL-1beta DuoSet ELISA Kit (R&D 
Systems Inc. MN, USA) according to the manufacturer’s 
instruction. The detection limits were 3.91  pg/mL. All 
values below the detection limits were set as 3.91 pg/mL.

Bronchoscopy and endobronchial biopsy
Bronchial alveolar lavage cells were obtained broncho-
scopically from fourth- to fifth-generation airways of the 
right middle lobe. Endobronchial biopsy was taken from 
R8-R9 ridge of the right lower lobe subsegments and 
fixed in 4% formalin for further hematoxylin–eosin stain-
ing, as previously described [13].

Measurement of the thickness of reticular basement 
membrane
The section of each endobronchial biopsy was taken 2–5 
micrographs for the best preserved mucous membrane 
and reticular basement membrane (RBM) under micro-
scope with Qian Ping image system. The thickness of 
RBM was calculated by dividing the area by the length of 
RBM using an image analysis system (Image Plus Pro), as 
previously described [13].

Cell culture and cytokine stimulation
The A549 cells were grown in DMEM (HyClone, CT, 
USA) supplemented with 10% fetal bovine serum (Gibco, 
Australia). The cells would be put in DMEM medium 
with 1% low concentration fetal bovine serum for 24  h 
before the cytokines stimulation. 10  ng/ml IL-4, 5  ng/
ml transforming growth factor (TGF)-β1, and 10  ng/ml 
IL-1β (PeproTech, Princeton, USA) were used separately 
or in combination to stimulate the cells. The stimulation 
would last for 24 h to observe morphological change of 
A549 cells or detect mRNA expression of EMT markers, 
or 48 h to detect protein expression EMT markers, or for 
1 h to detect the phosphate kinase expression. Before the 
cytokines stimulation, cells were pretreated for 1 h with 
MEK inhibitor U0126, p-JNK1/2 inhibitor SP600125, or 
p38 inhibitor SB203580 (10 μM, MCE, Shanghai, China) 
if necessary. To detect the effect of glucocorticoid and 
montelukast sodium on TGF-β1 combined with IL-1β-
induced EMT in A549 cells, methylprednisolone (Sigma, 
USA) or montelukast sodium (Merck, NJ, USA) were 
dissolved in phosphate buffer saline, then cells were pre-
treated for 24 h with methylprednisolone (0.5 mg/ml) or 
montelukast sodium (0.01 μM) followed by TGF-β1 com-
bine with IL-1β stimulation.

Western blot
RIPA lysis buffer (Aspenbio, Wuhan, China) was used 
to extract total cellular protein. The primary antibod-
ies including E-cadherin, Fibronectin (1:2000 dilution, 
Proteintech, Wuhan, China), p-ERK1/2, p-JNK, p-p38, 
p-AKT, p-NF kB, and p-smad3 (1:1000 dilution, Cell 
Signaling Technology, Danvers, MA, USA) were incu-
bated in 4 ̊C overnight. Goat anti-rabbit IgG and Goat 
anti-mouse IgG (1:4000 dilution, Aspenbio, Wuhan, 
China) were used as secondary antibodies. The protein 
expression levels were normalized to GAPDH or β-actin 
(1:2000, Sungenebiotech, Tianjin, China).

Statistical analyses
Data were expressed as means ± standard deviation or 
medians with interquartile range. Sputum gene expres-
sion levels were log-transformed. Parametric continuous 
variables were tested by Student’s t-test. Multiple groups 
were compared using one-way analysis of variance with 
a Bonferroni correction (normal data) or a Kruskal–Wal-
lis test with a Dunn intergroup comparison (non-normal 
data). Categorical variables were analyzed using Chi-
Square or Fisher exact test. Spearman’s rank correlation 
coefficient was used for correlation analyses. P < 0.05 was 
considered statistically significant. SPSS software V.20.0 
was used for analyses.
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Results
Subjects characteristics
Baseline characteristics of the subjects were summa-
rized in Table 1. 28 healthy controls and 115 asthmatics 
were enrolled with induced sputum samples. Identified 
by sputum differential cell counts, asthmatic patients 
were subgrouped into eosinophilic (n = 32), neutrophilic 
(n = 30), mixed (n = 11) and pauci-granulocytic (n = 42) 
asthmatics. Although healthy controls were younger than 
asthmatic patients, the differences of age, sex, body mass 
index (BMI), smoking status, and baseline lung function 
among the four asthmatic subgroups were not signifi-
cant. The eosinophilic group was presented with higher 
levels of blood eosinophil counts, higher exhaled NO and 
higher levels of total IgE than the neutrophilic group at 

the baseline visit. More details were also summarized in 
Table 1.

Sputum profile of asthmatic patients
The eosinophilic group had higher baseline sputum 
cell IL-5 mRNA expression compared to neutrophilic 
(p = 0.004) and pauci-granulocytic groups (p < 0.001) 
(Additional file  1: Figure S1b). Mixed-granulocytic 
group had higher baseline sputum cell IL-17A mRNA 
expression compared to neutrophilic (p = 0.005) and 
pauci-granulocytic groups (p = 0.020) (Additional 
file 1: Figure S1d). Neutrophilic group had higher base-
line sputum cell IL-1β mRNA expression compared to 
eosinophilic (p < 0.0001) and pauci-granulocytic groups 
(p = 0.024) (Fig. 1a). Neutrophilic group had higher lev-
els of IL-1β protein in sputum supernatant than healthy 

Table 1  Baseline demographic characteristics of all groups (n = 143)

Normal data are expressed as mean ± SD and non-normal data are described as median (IQR). Multiple groups were compared using one-way analysis of variance 
(ANOVA) with a Bonferroni correction (normal data) or a Kruskal–Wallis test with a Dunn intergroup comparison (non-normal data). The Levene method was used 
to test for multiple-sample homogeneity of variance, and Welch method was performed when data are heterogeneous. The χ2 or Fisher exact tests were used to 
compare ratios;

BMI body mass index, FENO fraction of exhaled nitric oxide, ACT​ Asthma Control Test, IQR interquartile range, NA not available

Atopy was defined aswas defined as at least one specific IgE (≥ 0.35 kUI/L) toward common aeroallergens, a positive skin prick test response, or both

Smoker was defined as current smokers or ex-smokers who had the smoking history of more than 5 pack-years or quit smoking for less than 6 months
‡ Data were missing for five patients in healthy group
§ p < 0.05 versus healthy subjects
k p < 0.05 versus patients with eosinophilic asthma
† p < 0.05 versus patients with neutrophilic asthma
¶ p < 0.05 versus patients with mixed asthma
£ p < 0.05 versus patients with Paucigranulocytic asthma

Asthmatic patients

Healthy (n = 28) Eosinophilic (n = 32) Neutrophilic (n = 30) Mixed (n = 11) Paucigranulocytic 
(n = 42)

Overall P value

Age (y) 25 (23–26) 44 (27–50)§ 43 (34–51)§ 49 (41–51)§ 46 (31–52)§  < 0.001

Male sex n. (%) 14 (50) 20 (63) 9 (30) 8 (73) 17 (41) 0.035

BMI (kg/m2) 20.3 (18.9–23.5) 22.5 (20.7–24.6) 22.3 (20.3–23.4) 23.7 (22.3–27.2) 22.4 (18.7–25.6) 0.152

Smoker n. (%) 0 (0) 10 (31)§ 5 (17)§ 3 (27)§ 13 (31)§ 0.016

Atopy n. (%) 0 (0) 18 (56)§† 9 (30)§ 4 (36)§ 16 (38)§  < 0.001

Asthma course (y) NA 2.0 (1.0–7.5) 2.8 (1.0–8.0) 4.0 (2.0–11.0) 1.0 (0.25–7.0) 0.121

Blood eosinophils (%) 1.8 (1.3–2.7) 6.4 (3.3–8.8)§†£ 2.6 (0.9–4.6) 5.5 (2.4–7.9)§£ 2.1 (1.2–3.2)  < 0.001

Blood neutrophils (%) 56.7 (53.7–61.5) 54.6 (49.2–61.7) 61.2 (53.6–65.6) 59.7 (55.6–66.1) 56.3 (52.7–63.3) 0.356

FEV1 (L) 3.35 ± 0.55 2.55 ± 0.64§ 2.59 ± 0.79§ 2.66 ± 0.86 2.64 ± 0.59§  < 0.001

FEV1 (%) 90.9 ± 7.2 82.8 ± 17.1 90.1 ± 18.2 83.7 ± 19.3 90.1 ± 13.2 0.163

FEV1/FVC (%) 87.3 ± 6.1 67.0 ± 8.9§ 71.9 ± 11.8§ 64.3 ± 9.7§ 73.2 ± 10.1§  < 0.001

Serum IgE (IU/ml) 40 (12–66) 215 (60–519)§£ 92 (36–254) 118 (78–410) 52 (14–193)  < 0.001

FENO (ppb) NA 86 (30–112)†£ 27 (17–45) 48 (31–85) £ 23 (11–33)  < 0.001

ACT score NA 16.0 (14–18)£ 16.5 (13–19) 16.0 (14–19) 18.0 (16–19) 0.038

Induced sputum characteristics‡

 Macrophages (%) 37.3 (28.1–50.2) 22.1 (11.5–35.8)£ 8.9 (4.3–18.2)§k£ 4.6 (3.4–9.4)§k£ 47.7 (37.1–58.4)  < 0.001

 Neutrophils (%) 51.3 (43.2–64.7) 31.7 (18.3–45.7)§†¶ 81.7 (68.6–89.6)§£ 74.1 (64.6–84.9) £ 39.1 (30.3–46.0)  < 0.001

 Eosinophils (%) 0.1 (0–0.2) 21.1 (7.7–43.1)§†£ 0.5 (0.1–1.6) 8.1 (5.0–15.1)§†£ 0.2 (0–0.9)  < 0.001

 Lymphocytes (%) 4.1 (2.6–6.8)k£ 8.1 (5.0–13.7) 4.7 (3.1–10.7) 4.6 (2.7–10.1) 7.8 (5.5–13.8) 0.002
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controls (p < 0.001) and eosinophilic groups (p < 0.001). 
There was no significant difference of the baseline 
mRNA level of sputum IFN-γ, IL-27 or FOXP3 mRNA 
expression among the four subgroups (Additional file 1: 
Figure S1a, b, and e).

As is shown in Additional file  2: Table  S1, IL-1β 
mRNA expression was positively correlated with neu-
trophil percentage (R = 0.459, p < 0.0001), but negatively 
correlated with eosinophil percentage (R = −  0.224, 
p = 0.017) and macrophage percentage (R = −  0.230, 
p = 0.014). IL-27 mRNA expression was positively cor-
related with IFN-γ (R = 0.658, p < 0.0001) and IL-5 
mRNA expression (R = 0.442, p < 0.0001). IFN-γ mRNA 
expression was positively correlated with IL-5 mRNA 
expression (R = 0.564, p < 0.0001). Eosinophil percent-
age was positively correlated with IL-5 mRNA expres-
sion (R = 0.370, p < 0.0001), but negatively correlated 
with neutrophil percentage (R = − 0.196, p = 0.035) and 
macrophage percentage (R = − 0.270, p = 0.003).

Poor pulmonary function improvement in neutrophil 
asthmatic patients
54 patients were followed up for six months with stand-
ardized asthma therapy. Baseline demographic charac-
teristics of these patients are summarized in Additional 

file  3: Table  S2. There was no significant difference in 
age, sex, BMI, smoking status, or baseline lung function 
among the four asthmatic groups.

The neutrophilic asthmatics had less improvement in 
FEV1 as compared with eosinophilic asthmatics (Fig. 2a-
c). Mixed-granulocytic and pauci-granulocytic asthmat-
ics had less improvement in ACT scores as compared 
with eosinophilic asthmatics (Fig. 2d). There was no sig-
nificant difference in post-treatment FEV1 levels or ACT 
scores among four asthmatic groups (Additional file  4: 
Figure S2).

For all asthmatic patients (n = 54), baseline sputum 
IL-1β mRNA was negatively correlated with abso-
lute change in FEV1 (R = −  0.316, p = 0.020), absolute 
change in percentage of the predicted FEV1 (R = − 0.339, 
p = 0.012), and FEV1 change ratio (R = − 0.282, p = 0.039) 
(Fig. 3a–c). Baseline sputum IL-1β mRNA was positively 
correlated with baseline sputum IL-1β protein expres-
sion (R = 0.363, p = 0.008). Baseline sputum IL-1β pro-
tein expression was negatively correlated with absolute 
change in percentage of the predicted FEV1 (R = − 0.271, 
p = 0.049) (Fig.  3e), but had no significant correlation 
with absolute change in FEV1 and FEV1 change ratio 
(Fig.  3d and f ). Eosinophil percentage was positively 
correlated with absolute change in FEV1 (R = 0.383, 

Fig. 1  The baseline a sputum cell IL-1β mRNA levels and b IL-1β protein levels in sputum supernatant among healthy controls and four subgroups 
of asthmatic patients. The data are presented as dot plots, mRNA and protein expression were log transformed
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p = 0.004), absolute change in percentage of the pre-
dicted FEV1 (R = 0.382, p = 0.004), and FEV1 change ratio 
(R = 0.387, p = 0.004) (Additional file 5: Table S3.1).

Subgroup analysis showed that in neutrophilic asth-
matics (n = 12), baseline sputum cell IL-1β mRNA 
expression was negatively correlated with absolute 
change in FEV1 (R = −  0.624, p = 0.034) and absolute 

Fig. 2  The improvement of lung function a–c and ACT scores d after six months standardized therapy among four subgroups of asthmatic 
patients. ΔFEV1(V2-V1): absolute change in FEV1, calculated by the difference between FEV1 after six months treatment and baseline FEV1; 
ΔFEV1%(V2-V1): absolute change in percentage of the predicted FEV1, calculated by the difference between percentage of the predicted FEV1 after 
six months treatment and baseline percentage of the predicted FEV1; ΔFEV1(V2-V1)/FEV1(V1): FEV1 change ratio, calculated by absolute change in FEV1 
divided by baseline FEV1. ΔACT​(V2-V1), absolute change in ACT, calculated by the difference between ACT after six months treatment and baseline 
ACT​
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change in percentage of the predicted FEV1 (R = − 0.692, 
p = 0.012), but had no significant correlation with FEV1 

change ratio (Fig. 3g–i). IL-1β protein expression had no 
significant correlation with change in FEV1 (Fig.  3j–l). 
For the eosinophilic asthmatics (n = 20), neither IL-1β 

Fig. 3  a–c The correlations of baseline IL-1β mRNA expression with spirometry change in all asthmatic patients. d–f The correlations of baseline 
IL-1β protein level in sputum supernatant with spirometry change in all asthmatic patients. g–i The correlations of baseline IL-1β mRNA expression 
with spirometry change in neutrophilic asthmatic patients. j–l The correlations of baseline IL-1β protein level in sputum supernatant with 
spirometry change in neutrophilic asthmatic patients. The data are presented as dot plots, with fitted regression lines. mRNA and protein expression 
were log transformed, Spearman R-values and p-values are indicated
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mRNA expression nor IL-1β protein expression had 
significant correlation with change in FEV1 (Additional 
file  5: Table  S3.2). For pauci-granulocytic asthmatics 
(n = 17), IL-1β protein expression was negatively corre-
lated with absolute change in percentage of the predicted 
FEV1 (R = − 0.495, p = 0.045), but had no significant cor-
relation with absolute change in FEV1 and FEV1 change 
ratio (Additional file  5: Table  S3.4). More details were 
also summarized in Additional file 5: Table S3.

The thickness of reticular basement membrane in asthma 
correlated with neutrophil percentage in BALF
29 asthmatic patients and four healthy controls under-
went bronchoscopy and yield sufficient tissue to evalu-
ate the RBM thickness. The thickness of RBM in asthma 
patients was significantly greater than that of healthy 
controls (9.6 ± 3.9  μm vs 4.4 ± 1.1  μm, p = 0.003) 
(Additional file  6: Figure S3a). The thickness of RBM 
in asthmatics was positively correlated with neutro-
phil percentage in bronchoalveolar lavage fluid (BALF) 
(R = 0.414, p = 0.032), but had no significant correlation 
with eosinophil percentage in blood and eosinophil per-
centage in BALF (Additional file 6: Figure S3b-d).

IL‑1β augmented TGF‑β1 inducing epithelial‑mesenchymal 
transition of epithelial cells
Under microscopy observation, a part of A549 cells devel-
oped a spindle fibroblast-like morphology after treatment 
with TGF-β1. While, treatment with IL-1β alone could 
not induce the morphological change, TGF-β1 in combi-
nation with IL-1β would induce a majority of A549 cells 
transforming into a spindle fibroblast-like morphology 
(Fig.  4a). The expression of an epithelial marker, E-cad-
herin significantly decreased by TGF-β1 treatment both 
in mRNA (Fig.  4b) and protein level (Fig.  4d and e) in 
A549 cells. The expression of E-cadherin mRNA was sig-
nificantly lower after stimulated by TGF-β1 in combina-
tion with IL-1β compared with treatment with TGF-β1 
alone. The decrease of E-cadherin mRNA in A549 cells 
after stimulation by TGF-β1 in combination with IL-1β 
could be partially reversed by additional IL-4 (Fig.  4b). 

The TGF-β1 stimulation induced an increase in Fibronec-
tin mRNA in A549 cells as well as the corresponding 
changes in the protein levels (Fig.  4). The expression of 
Fibronectin mRNA was significantly higher after stimu-
lation by TGF-β1 with IL-1β compared with that with 
TGF-β1 alone. While the expression of Fibronectin was 
lower after stimulation by IL-4, TGF-β1, and IL-1β com-
pared with that with TGF-β1 and IL-1β (Fig. 4c) as well 
as the corresponding trends in the protein levels (Fig. 4d 
and f ).

Neither glucocorticoid or montelukast inhibited EMT 
induced by IL‑1β and TGF‑β1 in A549 cells
A549 cells were pretreated with glucocorticoid or mon-
telukast sodium for 24  h and subsequently stimulated 
with TGF-β1 in combination with IL-1β for two days. 
While TGF-β1 in combination with IL-1β significantly 
decreased E-cadherin and increased Fibronectin in A549 
cells, neither glucocorticoid or montelukast sodium of 
pretreatment could inhibit the change of EMT protein 
expression (Additional file 7: Figure S4).

MAPK signaling pathways mediated IL‑1β augmenting 
epithelial‑mesenchymal transition of epithelial cells
To further investigate the mechanism of IL-1β augment-
ing TGF-β1 inducing EMT, Western Blot was used to 
detect the expression of candidate signaling pathways 
related proteins. The results showed that after the stimu-
lation by TGF-β1 with IL-1β, the expression of p-ERK1/2, 
p-JNK1/2, and p-p38 increased significantly in A549 
cells compared with control group and the group stimu-
lated with TGF-β1 alone (Fig. 5a–d). Both MEK inhibitor 
U0126, p-JNK1/2 inhibitor SP600125, and p38 inhibi-
tor SB203580 significantly inhibited the expression of 
Fibronectin induced by TGF-β1 in combination with 
IL-1β (Fig. 5e–g). P38 inhibitor SB203580 could partially 
reverse the inhibitory effect of TGF-β1 with and without 
IL-1β on E-cadherin expression in A549 cells (Fig. 5g).

Discussion
There is increasing evidence that asthma is a heterogene-
ous inflammatory airway disorder involving Th2-driven 
and non-Th2-driven mechanisms approximately half by 

Fig. 4  The effect of IL-1β on TGF-β1-induced EMT in asthmatic A549 cells. a Morphological change of A549 cells (magnification × 100). The relative 
b E-cadherin and c Fibronectin mRNA expression were assessed by means of quantitative real-time PCR. Expression levels were normalized to 
the housekeeping gene β-actin and calculated over untreated control cells. d Western blot analyses of E-cadherin and Fibronectin in A549 cells. 
The relative e E-cadherin and f Fibronectin protein expression were assessed by means of western blot. Expression levels were normalized to the 
housekeeping gene GAPDH and calculated over untreated control cells. The figures b, c illustrate cumulative data from 3 independent experiments. 
The figures e, f illustrate cumulative data from 5 independent experiments. A549 cells were cultured in the absence (−) or presence (+) of IL-4, 
TGF-β1, and IL-1β. Error bars represent standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001compared with control group. #p < 0.05 compared with 
TGF-β1 treated group.^p < 0.05 compared with TGF-β1 combined with IL-1β treated group

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 10 of 15Zhang et al. Respir Res          (2021) 22:216 

half [14]. Recent studies demonstrate non-Th2 inflam-
mation in asthma may lead to poor control of asthma. 
Especially, the asthmatic patients who have neutrophil-
predominant airway inflammation defined by induced 
sputum cell counts, had less improvement in lung func-
tion and symptoms control after treatment with inhaled 
corticosteroids [15]. To our best knowledge, this is the 
first study that revealed higher IL-1β expression in spu-
tum may predict less improvement of lung function in 
neutrophilic asthma patients.

In this study, we picked cytokines in sputum which 
represent innate immune response or Th2 immune 
response. Our findings are consistent with recent stud-
ies that the sputum mRNA and protein expression lev-
els of IL-1β were significantly elevated in neutrophilic 
asthmatics [2] and the sputum mRNA expression levels 
of IL-5 mRNA were significantly elevated in eosinophilic 
asthmatic patients which confirmed the effect of IL-5 on 
eosinophilic inflammation [16]. This consistency shows 
that our results are reliable. Neutrophilic asthmatics had 

Fig. 5  The candidate signaling pathways mediated the process of IL-1β augmenting TGF-β1-induced EMT in A549 cells. A549 cells were cultured 
in the absence (−) or presence (+) of TGF-β1, IL-1β. a Proteomic analyses of p-ERK1/2, p-JNK1/2, p-p38, p-AKT, p-NFκB, and p-smad3. The relative 
b p-ERK1/2, c p-JNK1/2, and d p-p38 protein expression were assessed by means of western blot. Expression levels were normalized to the 
housekeeping gene GAPDH and calculated over untreated control cells. Then the inhibitors of e MEK, f p-JNK1/2, and g p-p38 were used to 
determine if the process of IL-1β augmenting TGF-β1-induced EMT in A549 cells was mediated by MAPK signaling pathways. A549 cells were 
cultured in the absence (−) or presence (+) of TGF-β1, IL-1β, and three inhibitors of MAPK signaling pathway. The protein expressions of E-cadherin 
and Fibronectin were assessed by western blot analysis. The figures b–d illustrate cumulative data from 3 independent experiments. Error bars 
represent standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control group. #p < 0.05, ##p < 0.01, ###p < 0.001 compared with 
TGF-β1 treated group
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less improvement in FEV1 (calculated in three ways) as 
compared with eosinophilic asthmatics. The results have 
shown that baseline sputum IL-1β mRNA and protein 
expression were negatively correlated with the improve-
ment of lung function, eosinophil percentage was posi-
tively correlated with the improvement of lung function 
for all asthmatics. However, for neutrophilic asthmat-
ics, categorized by sputum eosinophils and neutrophils 
count, only IL-1β mRNA expression correlated with the 
less improvement of lung function, indicating that IL-1β 
may be an important biomarker for poor lung function 
improvement in neutrophilic asthmatics.

Patients with impaired lung function are inclined to 
have acute exacerbation, poor quality of life and uncon-
trolled asthma [17]. However, those neutrophilic asth-
matics, which had poor lung function improvement after 
standardized therapy, had no statistical difference in 
baseline lung function and symptoms scores compared 
with asthmatics with other phenotypes, and there is no 
significant correlation between neutrophil percentage 
and lung function improvement, means that it is diffi-
cult to distinguish asthmatics who may have worse lung 
function from all patients in the early stage. The results 
of this study show a possibility that baseline sputum cell 
IL-1β mRNA expression may be used as a predictive fac-
tor for less lung function improvement in neutrophilic 
asthmatics.

IL-1β elevation has been reported in asthmatics with 
sputum neutrophilia in several recent studies [2, 18, 19]. 
Evans et al. have reported that IL-1 receptor as an impor-
tant predictor of both neutrophilic asthma and worse 
lung functions, however, IL-1β was not measured in their 
study [20]. Juan-juan et al. observed a trend of increased 
IL-1β gene and protein expression in asthmatics with fre-
quent exacerbations [12]. IL-1β was also confirmed to be 
involved in the viral stimulus-induced asthma exacerba-
tion [21, 22]. Due to the small sample size of asthmatics 
with at least one exacerbation during six months of fol-
low-up period (only three patients), we could not analyze 
the relationship between IL-1β mRNA expression and 
asthma exacerbation in our study. IL-1β and IL-1 sign-
aling were also found to contribute to lung neutrophilic 
inflammation, which negatively impacts lung function in 
experimental fungal-associated asthma mice model [23].
These studies have shown that IL-1β plays an impor-
tant role in airway inflammation, especially neutrophil 
inflammation, in bronchial asthma.

However, it is not clear how IL-1β affects lung func-
tion in asthmatic patients. Mehta et  al. have found 
that IL-1β is essential in recurrent rhinovirus infection 
induced airway remodeling in the absence of allergen 
[24].This finding suggests that IL-1β may contribute 
to the decline of lung function by promoting airway 

remodeling. In our study, we found that mean thickness 
of RBM in asthma was significantly greater than that of 
healthy controls. For asthmatic patients, the thickness 
of RBM was positively correlated with neutrophil per-
centage in BALF, indicating that airway neutrophilic 
inflammation may play an important role in airway 
remodeling. EMT is regarded as an important patho-
physiological process in airway remodeling in asth-
matic patients [9]. Previous studies have demonstrated 
that IL-1β can induce EMT or endothelial-to-mesen-
chymal in a variety of epithelial or endothelial cells, 
such as hepatocellular carcinoma cells, esophageal 
squamous cell carcinoma cells, aortic endothelial cells, 
and so on [25–27]. However, in human bronchial epi-
thelial cell lines the results are inconsistent, a previous 
study found that stimulation with IL-1β alone cannot 
induce EMT [28]. Other studies found that IL-1β alone 
can induce a significant reduction in E-cadherin pro-
tein expression [29, 30]. E-cadherin is usually expressed 
in the cell membrane adhering junctions of epithe-
lial cells, which connects epithelial cells together, the 
decrease of E-cadherin can be a marker of EMT [31]. 
In our study, treatment with IL-1β individually could 
not induce changes in morphological or EMT markers 
expression in A549 cells. Transforming growth factor-β 
(TGF-β), a multifunctional cytokine that induces tis-
sue fibrosis, is the main factor responsible for driving 
EMT [32]. As IL-1β was negatively correlated with the 
improvement of lung function, we hypothesized that 
IL-1β augmented TGF-β1 induced EMT of human 
lung epithelial cells. Our results showed that TGF-β1 
induced part of A549 cells developed a spindle fibro-
blast-like morphology, and IL-1β could significantly 
enhance this effect. Interestingly, when add together 
with IL-4, after treatment with IL-4/TGF-β1/IL-1β, 
the proportion of cell morphological changes seems to 
have decreased compared with treatment with TGF-β1/
IL-1β. At the mRNA and protein level, this effect has 
been confirmed. These results indicate that IL-4 can 
partly reverse EMT induced by TGF-β1/IL-1β. This 
may be one of the reasons why eosinophilic asthmatics 
had more improvement of lung function after therapy 
as compared with neutrophilic asthmatics.

Glucocorticoid and leukotriene receptor antago-
nists (LTRA) are the most commonly used drugs in the 
therapy of asthma [33].The abilities of dexamethasone 
and fluticasone propionate to inhibit MMP-2 expres-
sion, which has been associated with airway remodeling, 
induced by cigarette smoke extract have been demon-
strated [34]. Budesonide can inhibit chlorine-induced 
airway fibrosis [35]. And the effect of LTRA on attenuate 
airway remodeling by inhibiting TGF-β/Smad signaling 
has been also demonstrated [36]. However, recent studies 
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have also focused on the ineffective of glucocorticoid in 
treating airway remodeling [37, 38]. Our results showed 
that neither glucocorticoid or montelukast sodium can 
reverse the changes of EMT markers induced by TGF-
β1/IL-1β. This may explain why neutrophilic asthmatics 
with higher airway IL-1β expression had poor lung func-
tion improvement although they also received sufficient 
standardized therapy.

Previous studies have demonstrated the critical role of 
MAPK signaling pathways (such as ERK1/2, JNK, and 
p38 signaling pathways) and other signaling pathways 
(such as PI3K/AKT, NF-κb, and Smads signaling path-
ways) in EMT induced by TGF-β1 or other cytokines and 
airway remodeling [39–46].Some of drugs, chemicals, 
and probiotics can alleviate airway remodeling through 
attenuation these signaling pathways [38, 47–50]. To 
further investigate the mechanism of IL-1β augment-
ing TGF-β1 induced EMT, candidate signaling pathways 
related proteins were detected. In our cellular model, 
we find that TGF-β1combine with IL-1β, but not TGF-
β1 alone, induces ERK1/2, JNK1/2, and p38 activation. 
Inhibitors of MEK, p-JNK1/2, and p-p38 can reverse 
the changes of EMT markers induced by TGF-β1/IL-1β. 
These results indicate that IL-1β may act through MAPK 
signaling pathways to augment TGF-β1 induced EMT.

Evidences show that IL-17A is associated with airway 
neutrophilic inflammation in asthmatic patients through 
promoting neutrophils recruitment and accumulation by 
inducing cytokines released from structural cells, such 
as bronchial epithelial and venous endothelial cells [51]. 
In this study, the expression of IL-17A mRNA was not 
increased in sputum of neutrophilic asthma in this study. 
The reasons may be due to several issues. Firstly, the 
sputum may differ from the epithelial cells or bronchial 
biopsy in IL-17 expression. Previous literatures reported 
gene expressions of IL-17 response signatures in epithe-
lial brushing or bronchial biopsy can be used to identify 
an IL-17–high asthma phenotype [52]. However, Man-
ise et  al. [53] have reported that IL-17 levels in sputum 
supernatant of neutrophilic asthmatics were similar to 
those of eosinophilic or pauci-granulocytic asthmatics. 
Another study showed that, in steroid-naïve asthmatic 
patients, IL-17A mRNA levels in sputum did not sig-
nificantly correlate with the percentage of neutrophil in 
sputum [54]. In our study, all patients were steroid-naïve 
at the time of enrollment. Secondly, in this study, the 
IL-17A mRNA significantly increased in the mixed phe-
notype of asthma patients compared with pauci-granu-
locytic phenotype. Molet et  al. [55] have demonstrated 

that eosinophils in asthmatic airway expressed IL-17. 
Wakashin et  al. [56] showed that IL-23/IL-17A axis 
enhances Th2 cytokine mediated eosinophil recruitment 
into the airways. A novel subset of dual-positive Th2/
Th17 cells co-expressing IL-4 and IL-17 was identified 
and the number of this subset cells was positively cor-
related with eosinophil count in BALF [56]. In addition, 
the frequency of circulation Th2 cells that produce both 
IL-17A and classical Th2 cytokines (IL-4, IL-5, and IL-13) 
is higher in patients with atopic asthma than healthy 
controls [57]. These studies showed a significant cross-
talk exists between IL-17 and eosinophilic inflamma-
tion which may explain why IL-17A mRNA significantly 
increased in asthmatics with mixed-granulocytic phe-
notype, a special phenotype with both neutrophilic and 
eosinophilic inflammation. Finally, the mRNA expression 
of IL-17A may not be consistent with its protein expres-
sion. We have tried to measure IL-17 protein in spu-
tum supernatant by ELISA. However, sputum IL-17 was 
below the limit of detection in all samples. This may be 
caused by DTT (0.1% concentration) used in our study 
decreased the level of IL-17 in sputum supernatant [58] 
and made it below the limit of detection [59].

Of note, in our study, healthy controls were younger 
than asthmatic patients, although the difference of age 
among the four asthmatic subgroups were not signifi-
cant. While the six genes included in this study were 
carefully chosen to characterize the innate and type-2 
adaptive immunity, testing a larger number of cytokines 
using high-throughput approaches will provide a full 
understanding of the immune network in neutrophilic 
asthmatics. We also note, previous study defined persis-
tent inflammation as stability of elevated inflammatory 
markers over one year [60], thus sampling only once may 
not represent persistent inflammation levels. Finally, the 
subjects in this study are relatively mild asthma patients 
which may differ with the severe asthma patients in the 
mechanism of airway remodeling.

Conclusions
In conclusion, we have identified IL-1β mRNA in induced 
sputum of untreated asthmatics as an important predic-
tor for poor lung function improvement at response of 
6-month standardized therapy in neutrophilic asthmat-
ics. The underlying mechanism is related to IL-1β aug-
menting TGF-β1 induced EMT through MAPK signaling 
pathways, and this process cannot be abrogated by gluco-
corticoid or LTRA.
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