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Cytokines: From Clinical Significance to Quantification

Chao Liu, Dewei Chu, Kourosh Kalantar-Zadeh, Jacob George, Howard A. Young,*
and Guozhen Liu*

Cytokines are critical mediators that oversee and regulate immune and
inflammatory responses via complex networks and serve as biomarkers for
many diseases. Quantification of cytokines has significant value in both
clinical medicine and biology as the levels provide insights into physiological
and pathological processes and can be used to aid diagnosis and treatment.
Cytokines and their clinical significance are introduced from the perspective of
their pro- and anti-inflammatory effects. Factors affecting cytokines
quantification in biological fluids, native levels in different body fluids, sample
processing and storage conditions, sensitivity to freeze-thaw, and soluble
cytokine receptors are discussed. In addition, recent advances in in vitro and
in vivo assays, biosensors based on different signal outputs and intracellular
to extracellular protein expression are summarized. Various quantification
platforms for high-sensitivity and reliable measurement of cytokines in
different scenarios are discussed, and commercially available cytokine assays
are compared. A discussion of challenges in the development and
advancement of technologies for cytokine quantification that aim to achieve
real-time multiplex cytokine analysis for point-of-care situations applicable for
both biomedical research and clinical practice are discussed.

1. Introduction

Cytokines are soluble proteins with low molecular weight
(≈6–70 kDa), secreted from a variety of cells (lymphocytes,
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macrophages, natural killer (NK) cells, mast
cells, and stromal cells). They participate
in the immune response and act as impor-
tant mediators associated with the commu-
nication network of the immune system.[1,2]

Cytokines are responsible for the dynamic
regulation of the maturation, growth and
responsiveness of immune cells, and are
important determinants of health.[3–5] A
single cytokine may be secreted by different
cell types and can act on several cell types,
producing multiple biological activities.[6]

Variation in cytokines levels in various bi-
ological fluids such as serum, blood, stool,
saliva, and sweat, provides valuable infor-
mation regarding the diagnosis, stage, and
prognosis of various diseases. Abnormal or
increased production of cytokines such as
during a cytokine storm can lead to organ
failure and death. For example, a consen-
sus is that “cytokine storm syndrome” is
responsible for the poor prognosis of crit-
ical Corona Virus Disease 2019 (COVID-
19) cases.[7,8] Consequently, the levels of

cytokines are recognized as an essential indicator for evaluating
clinical disorders. Accurate quantification of cytokines offers
valuable information in the clinical context to monitor the
immune status of patients and for adjusting therapies in differ-
ent diseases, including asthma,[9] atherosclerosis,[10] cancer,[11]
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depression,[12] heart disease,[13] Acquired Immune Deficiency
Syndrome (AIDS),[14] kidney injury,[15] sepsis,[16] rheumatoid
arthritis,[17] and other chronic diseases.[18]

In practice, accurate detection of cytokines is challenging
because of their trace amounts (pm range) in the body, their dy-
namic secretion processes,[19] and short half-lives.[20] Cytokines
form complex networks that serve to modulate immune pro-
cesses; different cytokines may have an antagonistic, additive, or
synergistic influence on the same biological process. Due to the
extreme complexity of the network, measuring cytokines in real
time during their response to the surrounding microcellular mi-
lieu remains a challenge.[21] The most commonly used methods
for cytokine quantification are the enzyme linked immunosor-
bent assay (ELISA)[22] and polymerase chain reaction (PCR).[23]

These methods are reliable but time-consuming, requiring ex-
pensive lab-based instruments, trained personnel, a long sample
preparation time (over 6 h), and high levels of complexity in sam-
ple handling. In addition, some approaches may not allow the
measurements of multiple cytokines in real time. Consequently,
there are unmet demands to develop sensitive, selective, and
rapid real time cytokine analysis platforms for quantitative analy-
sis of cytokines from in vitro to in vivo for predicting disease and
monitoring the effects of drug for treatments.[19] In this regard,
biosensors are increasingly attracting attention and being more
widely employed.[24–26] Current investigations are dedicated to
developing biosensors such as immunosensors for cytokine de-
tection from intracellular to extracellular regions,[19] especially in
infectious disease diagnostics[27] and drug screening. Aptamers
have also garnered interest in biosensing applications due to
their small size, reusability as compared to single use antibod-
ies and efficient immobilization at high density.[26] A variety
of biosensing platforms for quantification of cytokines rang-
ing from sandwich immunosensors[28–30] to aptasensors,[31,32]

nanosensors[33,34] implantable medical devices,[30,35–37] point-of-
care (POC) diagnostics,[31] in vivo real-time monitoring,[38] and
from intracellular bioimaging[39] to extracellular detection[40]

have been reported.
This review will introduce cytokines from the perspective of

the pathways they trigger and whether they are inflammatory
or anti-inflammatory. The stability of cytokine levels in different
body fluids and upon freeze/thawing and sample processing will
be discussed. Next, the current biological needs and clinical util-
ity of cytokine detection will be detailed. After that, we summa-
rize recent advances regarding the development of biosensors
for cytokine detection both in vitro and in vivo, as well as cur-
rent commercially available cytokine assays. Their performance
(in terms of sensitivity, sample volume, assay time and many
other parameters) for cytokines quantifications will be discussed
and compared. Finally, we will provide a perspective on the ap-
proaches for cytokine detection. The schematics showing the
main content of this review is shown in Figure 1. To our knowl-
edge, this is the first comprehensive review on highlighting the
biological significance of cytokines and the various methods of
their detection although reviews on some related topics were pub-
lished such as the bioanalytical chemistry of cytokines (2015),[41]

cytokine immunosensing (2016),[19] emerging cytokine biosen-
sors with optical detection modalities and nanomaterial-enabled
signal enhancement (2017),[42] and structure-switching aptamer-
based biosensors for real-time detection of cytokines (2018).[26]

Figure 1. The outline of contents.

2. Classification of Cytokines and Their Clinical
Significance

Cytokines can be classified into a number of categories including
tumor necrosis factors (TNFs), interleukins (ILs), lymphokines,
monokines, interferons (IFNs), colony stimulating factors
(CSFs), and transforming growth factors (TGFs). Based on their
cellular source, cytokines are classified into type 1 cytokines,
produced by cluster of differentiation 4 (CD4)+ T-helper 1
(Th1) cells, including IL-2, IL-12, IFN-𝛾 , and TNF-𝛽; and type
2 cytokines, produced by CD4+ Th2 cells, including IL-4, IL-5,
IL-6, IL-10, and IL-13.[6] Depending on their role cytokines may
also be classified as pro-inflammatory or anti-inflammatory.[6]

Pro-inflammatory cytokines including IL-1𝛽, IL-6, IL-8, IL-12,
TNF-𝛼, and interferons among others, facilitate inflammatory
reactions and tend to stimulate immunocompetent cells. In
contrast, anti-inflammatory cytokines such as IL-4, IL-6, IL-10,
IL-11, IL-13, IL-1 receptor antagonist (IL-1RA), and TGF-𝛽,
inhibit inflammation and suppress immune cells.[43] Some
cytokines (such as IL-6) have both pro- and anti-inflammatory
properties. These classifications of cytokines, especially the
families of pro- and anti-inflammatory cytokines, offer broad
perspectives for understanding the pathways triggered by the
host response. A single cytokine may be secreted by different
cells and have both pro-inflammatory or anti-inflammatory
activities depending on context, generating multiple immune
responses.[44] Consequently, a dynamic and ever-shifting balance
between pro- and anti-inflammatory cytokines plays a significant
role in the host immune system through mediating and mod-
ulating inflammation. Proinflammatory cytokines contribute to
the initiation and propagation of autoimmune inflammation,
whereas anti-inflammatory cytokines facilitate the regression
of inflammation and recovery from the acute phases of the
autoimmune disease.[45]

This section introduces the pro- and anti-inflammatory cy-
tokines, and their biological and clinical significance, providing
a broad and objective understanding about their role in the in-
flammatory response essential to maintaining our health. Table 1
summarizes characteristics of the different cytokines and cell
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sources; functions of pro- and anti-inflammatory cytokines are
also compared.

2.1. Pro-Inflammatory Cytokines

The inflammatory response is controlled primarily by cytokines
which induce an acute phase response to protect the host against
irritation, injury, and infection. This reaction starts with the re-
lease of pro-inflammatory cytokines such as IL-1𝛽, IL-6, IL-8, IL-
12, IFN-𝛾 , and TNF-𝛼 from the same cell or different cells. The
major role of these cytokines is to communicate to surrounding
tissues the occurrence of infection or injury. In addition, these
cytokines can enter the systemic circulation, producing immune
cell activation and significant alterations in host physiology such
as fever and the acute-phase reaction.[43]

Pro-inflammatory cytokines have immune properties that can
be beneficial to the host against invasion by bacteria and other
microorganisms in the immediate environment, or the endoge-
nous flora of the skin and intestinal tract.[46] Pro-inflammatory
cytokines released from macrophages are critical in defense
against infection.[47] Macrophages are the first line of host de-
fense against bacterial infection, playing important roles in the
initiation of adaptive immune responses. They are stimulated
by bacterial products and release several pro-inflammatory cy-
tokines including IL-1, IL-6, IL-8, IL-12, IL-18, IFN-𝛼/𝛾 , and TNF-
𝛼. Consistently, these cytokines also directly induce inflammatory
activity in macrophages: IL-1 has direct in vitro cytostatic and cy-
tocidal effects; IL-6 is considered as a major mediator for immune
and inflammatory responses; IL-12 enhances T-cell responsive-
ness; and IFNs mediate host protection against viral infection.
These cytokines are related to each other in that they are coor-
dinately released from activated macrophages and modulate the
immune response to protect the host.[48]

It is important to consider that an excessive pro-inflammatory
response may lead to chronic inflammation and disrupt path-
ways responsible for biological homeostasis causing detrimen-
tal health problems such as cancer,[49] diabetes,[50] cardiovascu-
lar diseases,[51] gastrointestinal diseases,[52] Parkinson’s disease,
and[53] aging and aging-related diseases.[54] Several excellent re-
views have comprehensively summarized the essential roles of
cytokines in these various medical conditions.[3–5,51,55–59] Autoim-
mune diseases[60,61] (such as type 1 diabetes, rheumatoid arthri-
tis, inflammatory bowel disease and multiple sclerosis) are con-
ditions in which the immune system attacks the self mistakenly.
Contributions of individual cytokines and chemokines to mul-
tiple autoimmune diseases are discussed by Santamaria.[62] Pro-
inflammatory interferons play essential roles in the development
of autoimmune diseases. There are reports on the role of IFN-𝛾
in the pathogenesis of autoimmune disease and its impact on as-
sociated co-morbidities and side effects of therapeutic interven-
tions in the absence or presence of cancer.[63,64] In this regard, in
a pre-clinical mouse model of autoimmunity, chronic IFN-𝛾 ex-
pression has been shown and the mice gradually develop mild
to moderate active IFN-𝛾-driven autoimmune disease.[63] Such
models allow the study of inflammation and autoimmune dis-
ease progression under different threshold levels of IFN-𝛾 pro-
tein that, when crossed, leads to much stronger immunopathol-
ogy. Recently, Bae et al. reported that pathway-based integration

of multi-omics data can provide systemic and cellular insights
about how chronic inflammation driven by IFN-𝛾 results in the
development of autoimmune diseases with specific etiopatholog-
ical features.[65]

Research has shown that during the growth and spread of
tumors, pro-inflammatory cytokines such as IL-1, IFN-𝛾 , and
TNF-𝛼 induce chemokines that attract neutrophils which are
key factors in the generation of reactive oxygen species and
carcinogenesis.[46] Relevant to such research, elevated levels of
pro-inflammatory cytokines (IL-6, IL-1𝛽, and TNF-𝛼) are ob-
served in mouse models of Parkinson’s disease.[66] Additionally,
pro-inflammatory cytokines induce adhesion molecules and met-
alloproteinases which permit specific mechanisms for tumor in-
vasion. As a whole, such excessive pro-inflammatory responses
need to be regulated and controlled or else they may result in
pathological states related to the aberrant expression of immune
mediators.

2.2. Anti-Inflammatory Cytokines

The anti-inflammatory cytokines such as the IL-1 receptor an-
tagonist, IL-4, IL-6, IL-10, IL-11, IL-13, and TGF-𝛽 are a series
of immunoregulatory molecules which inhibit the excess in-
flammatory response of pro-inflammatory cytokines.[67] For in-
stance, IL-10 is a potent anti-inflammatory cytokine with im-
munoregulatory functions that inhibit the production of several
pro-inflammatory cytokines. IL-10 also has an anti-inflammatory
effect on eosinophils, basophils, and mast cells, and thus plays a
major role in the control and regulation of allergy and asthma.[68]

The physiologic properties of anti-inflammatory cytokines have
been recognized.[67]

Under physiologic conditions, these cytokines limit the poten-
tially injurious effects of sustained or excess expression of pro-
inflammatory reactions. These anti-inflammatory cytokines have
already proven beneficial under various clinical conditions asso-
ciated with excess inflammation. For example, anti-inflammatory
cytokines can be used as drugs to treat inflammation-related
diseases. However, cytokine therapy also suffers from a num-
ber of limitations as compared to anti-inflammatory biologics
such as neutralizing antibodies.[69] For example, specific anti-
inflammatory cytokines might effectively inhibit arthritis by af-
fecting innate immune cells or interfering with the activation
of B cells or T cells.[70] IL-35 is an anti-inflammatory cytokine
that regulates T cell function and suppresses pathogenic cells
such as Th1 and Th17 cells, and thus ameliorates the severity of
collagen-induced arthritis.[57] In contrast, under pathologic con-
ditions these anti-inflammatory mediators may overcompensate
and suppress the immune response, exposing the host to sys-
temic infection.[67] Although research suggests that endogenous
IL-10 has protective effects in severe sepsis by reducing the pro-
duction of TNF, the overproduction of IL-10 resulting in excessive
TNF downregulation might be deleterious due to the impairment
of the antibacterial activity provided by TNF.[71]

2.3. Biological Consequences of Imbalanced Cytokines in a
Clinical Context

Considering innate and adaptive immunity, both pro- and
anti-inflammatory cytokines have major biological and clinical
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Table 2. Multiple cytokines related to different biological conditions.

Diseases Relate cytokines References

Autoimmune diseases IL-1, IL-2, IL-6, IL-12, IL-15, IL-16, IL-17, IL-18, IL-23,TNF-𝛼, IFN-𝛼, IFN-𝛾 [62]

Allergy IL-1, IL-4, IL-5, IL-9, IL-10, IL-13 [219]

Alzheimer’s disease TNF-𝛼, TGF-𝛽, IL-1, IL-4, IL-6, IL-10 [220]

Atherosclerosis TNF-𝛼, IFN-𝛾 , TGF-𝛽, IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, IL-18, IL-20, IL-33, IL-37 [221]

Cardiovascular disorders TNF-𝛼, TGF-𝛽, IL-1, IL-6, IL-10, IL-17, IL-18 [51]

Cancer TNF-𝛼, TRAIL, IL-6, IL-10, IL-12, IL-17, IL-23 [3]

Depression TNF-𝛼, IFN-𝛾 , IL-1, IL-2, IL-6 [222]

Gastrointestinal diseases TNF-𝛼, IFN-𝛾 , TGF-𝛽, IL-1, IL-4, IL-6, IL-8, IL-10 [223]

Sepsis TNF-𝛼, IFN-𝛾 , TGF-𝛽, MIF, IL-1, IL-6, IL-4, IL-10, IL-12 [224]

Aging IL-6, IL-8, IL-10, IL-13, TNF-𝛼, IFN-𝛾 [225]

significance on immune cell differentiation, inflammation,
angiogenesis, tumorigenesis, neurobiology, viral pathogenesis,
atherosclerosis, cancer, and aging.[72] Table 2 illustrates different
typical diseases related to the interactions of various cytokines.
This supports the model that cytokines act as biomarkers for a
variety of autoimmune and inflammatory diseases.

Our immune system acts as a “double edged sword” that can
either heal or harm that is based on differentiating between
the “self”’ and the “non-self”’ and destroying only those tissues
that are recognized as “non-self.” Failure of immune recog-
nition of the body’s normal constituents as “self” results in
inflammation and tissue damage. Inflammation is a complex
biological response of the body to injury and infection which is
regulated and mediated by the balance of inflammatory activities
associated with cytokines. The imbalance between tissue home-
ostasis and inflammatory cytokines, and the unregulated pro-
and anti-inflammatory cytokine levels, can lead to significant
negative health impacts.[73] For example, in the pathogenesis
of inflammatory bowel disease,[5] risk factors such as microor-
ganisms, infections and cytokines may initiate alterations in
epithelial barrier function thereby allowing the translocation of
luminal antigens (for example, bacterial antigens from the com-
mensal microbiota) into the bowel wall. Subsequently, excessive
cytokine responses to such environmental triggers may cause
subclinical or acute mucosal inflammation in a susceptible
host.[74] To suppress this inflammation, the administration of
recombinant anti-inflammatory cytokines or the neutralization
of pro-inflammatory cytokines could be used for both the preven-
tion and the therapy of chronic intestinal inflammation.[5,74–76]

As a topical example, with the spread COVID-19 pandemic,
research has found that there is high disparity in the suscep-
tibility of COVID-19 severity in individuals. To identify the
underlying factors for this disparity, Gou et al.[77] developed
a proteomic risk score (PRS) based on 20 blood proteomic
biomarkers which predicts the progression to severe COVID-19.
The authors discovered that the PRS is positively associated
with pro-inflammatory cytokines mainly among the elderly, but
not younger individuals, suggesting that profiling cytokines in
the gut may underlie the predisposition of normal individuals
to severe COVID-19.[78] A discussion on the possible systemic
production and injection of cytokines in the gut of COVID-19
patients can be found a recent perspective.[79]

Additionally, the excessive or uncontrolled release of proin-
flammatory cytokines may contribute to the potentially life-
threatening cytokine release syndrome (CRS), a condition with
an immune system gone awry and an inflammatory response
out of control.[80] CRS can be triggered by many factors includ-
ing infections, administration of natural and bispecific antibody
pharmaceuticals and following adoptive T-cell therapies for can-
cer. CRS presents with a variety of symptoms ranging from mild,
flu-like symptoms to severe life-threatening manifestations of the
overactive inflammatory response.[81] Figure 2 illustrates a patho-
mechanism whereby activation of T-cells or lysis of immune cells
induces the production of IFN-𝛾 or TNF-𝛼. In turn, this can acti-
vate macrophages, dendritic cells and other immune cells. These
cells then further release several proinflammatory cytokines such
as IL-6, IL-10, IL-2, and IL-8, contributing to a positive feedback
loop to activate T-cells that are capable of causing life-threatening
toxicities. Accumulating evidence suggests that severe cases of
COVID-19 presenting with high viral loads, respiratory distress,
and pulmonary damage might relate to surges in cytokines levels
due to CRS.[8] Initial research has suggested that elevated serum
IL-6 levels are associated with respiratory failure and adverse clin-
ical outcomes in COVID-19.[82,83] Further studies have demon-
strated persistently raised levels of the additional cytokines such
as TNF-𝛼 and IL-1RA in severe cases.[84,85] Yang et al.[84] exam-
ined 48 cytokines in the plasma samples from 53 COVID-19 cases
and found that 14 cytokines were significantly elevated. Serial de-
tection of IP-10, MCP-3, and IL-1RA in 14 severe cases showed
that a continuous high level of these cytokines is associated with
disease deterioration and fatal outcomes. Given these findings,
immunosuppression using tocilizumab to reverse CRS and con-
sequently lowering mortality has entered clinical trials to treat
COVID-19.[8] Thus, the evaluation of the rise in cytokines levels
is essential to diagnose and manage the complications of CRS in
clinical immunotherapies[86,87]

3. Factors Affecting Cytokine Quantification in
Biological Fluids

Many factors can affect the measurement of cytokines in bio-
logical fluids as discussed by Heney and Whicher in 1990s,[88]

such as 1) the quality of the cytokines assays, 2) the nature of cy-
tokines under biological conditions affected by cytokine-binding
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Figure 2. Proposed mechanism of cytokine release syndrome.

proteins, inhibitors and soluble cytokine receptors, 3) interfer-
ences in the matrix of biological samples causing false positive
signals, and 4) assay standardization, which is a popular and bot-
tleneck problem for the majority protein assays. Additionally, the
handling of biological samples also has a remarkable impact on
cytokines detection due to the fact that cytokine measurements
normally involve the process by which samples are handled from
the point of sampling to the laboratory.[89] Furthermore, the short
half-life of cytokines (Table 1), their binding to soluble recep-
tors as well as the production or the potential degradation of
cytokines affects the precision of cytokine measurement, anal-
yses and interpretations.[90] For example, the half-life of TNF-𝛼
is 18.2 min.[91] Therefore, to make measurement accurate, con-
ditions related to sample collection and handling should be re-
ported with the quantification data. In this section we specif-
ically discuss the stability of cytokines in body fluids such as
plasma and serum, the influence of sample handing conditions
and freeze-thaw cycles on cytokines levels, and the effects of sol-
uble cytokines receptors, all of which may impact the reliability
of cytokines measurements.

3.1. Effects of Blood Sample Processing on Cytokine Stability

Cytokines are measured in different body fluids including blood,
saliva, tears, urine, and stool. Blood is close to the internal envi-
ronment of an individual, reflecting the state of individual cells,
tissues, organs and the body as a whole. Analysis of cytokine lev-
els in clinical blood specimens, especially plasma or serum is im-
portant for disease diagnosis as the subtle change in levels may
reflect the status of immune function.[92] However, the majority
of cytokines are known to have a short half-life (Table 1) in vivo
and are subject to rapid degradation during sample collection and

preparation. This results in false negative signals if appropriate
blood handling procedures are not adopted.[93]

Serum and plasma are derived from whole blood and han-
dled by differently after blood collection. Serum is the soluble
part of clotted blood and is obtained following blood coagulation.
Blood cells may be activated during this clot formation and cy-
tokines may be released from platelets into the serum as a re-
sult (such as IL-1, IL-6, and IL-8).[4] Plasma represents the solu-
ble fraction of anticoagulated blood.[4] Prior to plasma separation
from whole blood, leukocytes can secrete cytokines in vitro and
change cytokines levels in plasma.[94] To obtain plasma, various
anticoagulants can be used before the removal of blood cells, such
as ethylenediaminetetraacetic acid (EDTA) and lithium/sodium
heparin, thereby inhibiting both coagulation and the activation of
the complement system. Studies have suggested that the use of
various anticoagulants, endotoxins tube contamination, and de-
lays in blood processing (centrifugation) can have a major impact
on cytokines concentrations in plasma or serum and can result
in falsely increased or decreased cytokine measurements.[95] For
instance, heparin, an anticoagulant in whole blood processing,
can induce cytokines release from monocytes. Lithium heparin
and sodium citrate were shown to affect levels of IL-6 and TNF-
𝛼,[96] which could be attributed to anticoagulant-induced release
of cytokines by blood cells, notably in heparin plasma but not in
EDTA plasma. Friebe and Volk reported the stability of TNF-𝛼,
IL-6, and IL-8 in blood samples and found that levels of TNF-𝛼
and IL-8 increase in heparin plasma and serum, but their concen-
trations were stable in EDTA plasma.[97] In contrast, IL-6 levels
were stable for 8 h in all blood types. The higher cytokine levels
in serum compared with those in plasma suggest that the coag-
ulation process promotes cytokine release. This result is consis-
tent with those of previous studies.[98,99] Plasma collection with
the use of EDTA seems to bring the most consistent results and
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more closely resembles data obtained in serum. In summary,
EDTA plasma seems to be the most suitable for cytokine mea-
surements, primarily for stability reasons.[100] Additionally, quick
sample preparation is usually recommended, although there is
always a time gap between blood collection and arrival in the lab-
oratory for testing.

3.2. Effects of Sample Storage on Cytokine Stability

To obtain reliable results, many studies have examined the effects
of storage on cytokine levels in blood. Cohen et al.[94] evaluated
the impact of sample storage on IL-6, IL-10, IFN-𝛾 , and IL-2 mea-
surements in plasma. Their results have shown that whole blood
storage at room temperature results in decreased cytokines levels
but that whole blood storage at 4 °C results in cytokines stability.
A recent study by Vincent et al. evaluated the effect on cytokine
stability of storage duration prior to freezing of serum, and com-
pared the results to plasma samples obtained from patients with
systemic lupus erythematosus (SLE).[101] In this study, patients’
serum and plasma samples were prospectively stored at 4 °C for
pre-determined periods between 0 and 30 days, prior to freezing.
Almost all analyzed cytokines (11 out of 12) were stable when
stored for up to 30 days at 4 °C prior to freezing. Only a single an-
alyte, chemokine (C-C motif) ligand 19 (CCL19) showed signifi-
cant signal degradation from the fourth day of storage at 4 °C. Cy-
tokines levels were more stable in unseparated serum compared
to plasma for most analytes with the exception of IL-37 which
appeared slightly more stable in plasma. This study suggests a
maximum 3 days of storage at 4 °C for unseparated serum sam-
ples. Recently Valaperti et al. analyzed the variability of cytokine
levels over time in whole blood before and after cell separation
to establish a protocol that reflects the best storage conditions
for reliable measurements.[102] This research demonstrated that
many cytokines are stable for a brief time after sample collec-
tion at room temperature. It is recommended that freshly col-
lected whole blood samples be quickly processed and frozen to
avoid false positive results, a finding that is further supported
by Panicker et al. who studied the effect of snap-freezing and
refrigeration at the time of collection from cervical mucous.[93]

TNF-𝛼, IFN-𝛾 and IL-1𝛽, were significantly different between the
pairs with refrigerated samples showing higher levels for each of
these cytokines. This finding suggests that refrigeration of mu-
cous samples immediately after collection would allow for better
conservation of the cytokines in cervical mucous.

3.3. Effect of Freeze-Thaw on Cytokine Stability

A review by Simpson et al. summarized the stability of 33
cytokines when samples were stored at various temperatures
or exposed to repetitive freeze-thaw cycles.[103] Assessment of
freeze-thaw stability is an important consideration for the mea-
surements of cytokines because of the common use of previously
thawed samples. The levels of cytokines can either be stable,
increase or decrease after multiple freeze–thawing cycles, and
is different for each cytokine.[104] In general, most cytokines are
stable for up to three freeze–thaw cycles.[90] Jae et al. assessed the
impact of repeated freezing and thawing on plasma and serum

concentrations of different cytokines. They found that the levels
of IFN-𝛾 and IL-8 were stable in both plasma and serum during
repeated freeze-thaw cycles.[105] However, concentrations of
certain cytokines change with each successive freeze–thaw cycle
becoming significant after three cycles.[90] Henno et al. studied
the effect of freezing and thawing on cytokines stability in EDTA
and citrate plasma and reported that there were no significant
change in the cytokine levels in plasma frozen and thawed up to
three times.[106] However, after freezing and thawing six times,
there was a slight but biologically significant decrease in the
IL-1𝛽 level and an increase in the CCL5 level in EDTA plasma.
This suggests a maximum of three freeze-thaw cycles for sample
handling in order to perform the accurate cytokines analysis.

On a final note, there are a wide variety of reported cytokines
storage and freeze-thaw stability studies. IL-6 and TNF-𝛼 are the
most widely studied cytokines in regard to temperature stability.
For a few cytokines, a clear consensus can be reached as to stor-
age safety at particular temperatures, but in most, more research
needs to be undertaken and we advise clinicians and researchers
to use caution in interpreting cytokines concentrations after a
long period of storage or several freeze-thaw cycles. In general,
in order to maintain stable cytokines levels for accurate measure-
ments, samples should undergo minimal freeze–thawing.

3.4. Antagonistic and Agonistic Effects of Soluble Cytokine
Receptors on Cytokine Detection

Soluble cytokine receptors or cytokine binding proteins (e.g.,
IL-18 bp) arise from the proteolytic cleavage of membrane-bound
receptors or from the translation of alternatively spliced mRNAs
which are released from the cells and appear in biological fluids
or tissue culture supernatants.[107] These receptors, acting as
competitive inhibitors, have antagonistic effects on their respec-
tive cytokines in vitro. There are many examples illustrating that
most soluble cytokine receptors can interfere and compete with
cell surface receptors for the binding of free cytokines. Conse-
quently, cytokine receptors prevent cytokines from binding their
specific membrane receptors and generating a signal, leading
to inhibition of cytokines activity.[107] The antagonistic effects
of soluble cytokine receptors may play an important role in the
down-regulation of immune responses and in the inhibition of
“overactivity” of some cytokines. For example, Levine reported
that soluble IL-1 receptors can attenuate excessive IL-1 bioactivity
by preferentially binding IL-1𝛽.[108]

Despite the fact that most soluble cytokine receptors have the
ability to function as competitive inhibitors of cytokines, several
receptors may potentiate the activity of their own cytokines in vivo
or have properties that are consistent with an added role as car-
rier proteins. This type of soluble receptor enhances, rather than
inhibits, the activity of cytokines by interacting with their signal
transducing subunit, thus generating a signal (i.e., the soluble IL-
6 receptors (sIL-6R) and glycoprotein 130 (gp130)). In contrast to
the antagonistic effect of soluble IL-1 receptors on IL-1 signals,
Levine reported the agonistic effects of sIL-6R for the amplifica-
tion of IL-6 signals.[108] Therefore, binding of a cytokine by its sol-
uble receptor may improve the molecular stability of the cytokine
leading to reduced activity. This hypothesis is consistent with the
idea that the binding of the bioactive TNF trimer to soluble TNF
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receptors slows its breakdown into inactive monomers resulting
in increased biological activity after long-term incubation.[107]

These antagonistic and agonistic effects of soluble cytokine
receptors can potentially affect the detection of cytokines. A
study[109] shows that in some cases, like inflammatory diseases,
the presence of soluble cytokine receptors in biological fluids may
interfere with immunoassays such as bead-based multiplex im-
munoassays and ELISA. Several cytokines, notably IL-1𝛽, TNF-𝛼,
and IL-6, may bind to soluble receptors generating bound forms
which may not be recognized by immunoassays. For example, in
cancer patients, competitive immunoassays are often detectable
for TNF-𝛼, but ELISA assays detect no TNF-𝛼 in plasma of can-
cer patients, in agreement with the bioassay data.[88] Engelberts
et al.[110] studied these effects and showed that TNF-𝛼 bound to
the p55 TNF receptor was not well recognized by sandwich ELISA
assays. In addition, in the case of IL-6, plasma contains several
bound forms of IL-6 with molecular weights ranging from 50–
150 to 400–500 kDa, which react poorly with some antisera, and
consists of complexes with the soluble form of the IL-6 receptor.
This has led to controversy over what concentrations of IL-6 are
actually present in plasma. Most immunoassays find that con-
centrations of IL-6 in normal plasma are undetectable or range
between 10 and 75 ng L−1, with levels rising to 1–2 µg L−1 in
sepsis or, exceptionally to 200 µg L−1 in meningococcal disease.
However, May et al.[111] have reported that most assays recognize
only IL-6 of low molecular mass. Using a monoclonal antibody
that recognizes the high molecular mass forms, they have shown
concentrations of IL-6 in normal plasma of 1–10 µg L−1, and, in
a serum sample from a patient after bone marrow transplanta-
tion, a concentration of 5–10 mg L−1. Therefore, it is necessary to
know exactly which component of a cytokine or cytokine complex
that an assay is measuring, and ideally levels of soluble receptors
should be taken into account.

4. Quantification of Cytokines

4.1. Detection of Cytokines In Vitro and In Vivo

Cytokines, considered as biomarkers for many diseases plays an
important role for the assessment of physiological and pathologi-
cal processes. Quantifying cytokines can provide highly valuable
clinical information to measure the immune status of the host
and to adjust therapies in different inflammatory diseases such
as sepsis and cancer.[24] Cytokines are present in different in vitro
body fluids (blood, tears, urine, and stool) and in vivo body flu-
ids (interstitial fluids, cerebrospinal fluids, and gut), and can be
detected in vitro or in vivo.

Cytokine detection in vitro is flexible and effective, and has
been utilized widely across the research community. A vast range
of samples including cells, tissues, and body fluids have been
used for in vitro cytokines tests. There are multiple techniques
which are being used for cytokines measurements in vitro,
including ELISA, PCR, and advanced biosensors including POC
testing. However, there are some challenges to in vitro cytokines
detection. One important issue is that they require accurate and
consistent processing of samples to avoid changes of cytokine
concentrations before testing. Another challenge is to realize
real-time detection for in vitro analysis. Not only must the
analytical requirements such as high sensitivity and precision

Figure 3. Schematic illustration of A) The PhLoC with integrated opti-
cal and microfluidic components. Reproduced with permission.[112] Copy-
right 2016, American Chemical Society. B) A 3D graphical representation
of the unit cell fluidic arrangement during the initial phase of the assay.
C) A 3D graphical representation of the unit cell fluidic arrangement dur-
ing the second phase of the assay, detailing fluidic ports and connections
between assay area and electrochemical sensor test cartridge of a Proxim
handheld instrument. Reproduced with permission.[117] Copyright 2018,
MDPI.

be met, but the test must be fast, and integrated for ease-of-use
and in real time. To deal with these challenges, LoC devices have
been developed to realize fast and real-time cytokine detection
in vitro.[112–115] For example, Usuba et al. fabricated a photonic
lab-on-a-chip (PhLoC) with a microfluidic structure for rapid
IL-2 detection.[112] The PhLoC is shown in Figure 3A, including
optical components, the measuring chamber, the air bypass,
and other flow channels for the introduction and flushing of
solutions. In their work, the flow channel only enabled the
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introduction of solutions into the measuring chamber and im-
proved the immobilization of antibodies on the surfaces of the
measuring chamber. The IL-2 secreted from lymphocytes could
be measured within 15 min for concentrations ranging from 50
to 103 pg mL−1. In the lab-on-a-chip devices, microfluidics pro-
vides an effective solution for achieving more rapid and efficient
in vitro detection, because 1) microfluidic channels have large
surface-to-volume ratios, accelerating antigen-antibody reac-
tions, 2) the microfluidic platform minimizes the consumption
of expensive reagents and precious samples, and 3) multiplexed
analyses can be implemented by integrating multiple sensors
into channels. Consequently, in the past decade, microfluidic
techniques have been widely developed for quantitative mea-
surements of secreted cytokines. Cui et al. reported a highly
integrated microfluidic device that allows for on-chip isolation,
culture, and stimulation, as well as sensitive and dynamic
cytokine profiling i immune cells.[113] This microfluidic sensing
chip was integrated with cytometric fluorescent microbeads
for real-time and multiplexed monitoring of cytokine secretion
dynamics required a relatively small extracted sample volume
(160 nL) and a short assay time of less than 30 min. Such
automated, rapid, and high-throughput microfluidics-based
optical biosensing platforms can potentially help unleash the
mechanisms of systemic immune responses and enable effi-
cient assessments of the pathologic immune status. Recently,
Liu et al. developed a microfluidic chip based aptasensor for
electrochemical detection of IFN-𝛾 in human serum with a
linear range of 10–500 pg mL−1 and the lowest detection limit of
6 pg mL−1.[31] Due to ease of use, low cost and rapid diagnosis
of disease, POC assays also play important roles for cytokine
detection in vitro. For example, a POC assay was developed for
real-time monitoring and management of IL-6 release syndrome
and sepsis.[116] This device demonstrated good sensitivity (2.0
pg mL−1) and a wide dynamic range (from 2.0 pg mL−1 to 15 ng
mL−1) that could be implemented for on-site evaluation with
results available as quickly as 15 min, with enhanced diagnostic
speed and accuracy. Evans et al.[117] developed a novel POC
biosensor system on a printed circuit board (PCB) for IFN-𝛾
detection. This full in-line assay system consists of an assay area
and an electrochemical cell at the surface of a PCB as shown
in Figure 3B,C. It was demonstrated that the entire assay could
be completed within 8 min, which significantly reduced the test
time comparing with conventional ELISA.

In vivo, cytokines have complex networks to regulate immune
and inflammatory responses. Many studies have focused on
detecting cytokines in vitro to understand how cytokines are
trafficked and how their expression is regulated. However,
inappropriate processing and storage conditions of samples may
influence cytokines levels, causing inaccurate measurements.
Additionally, the non-homogeneous distribution of cytokines
also makes in vivo localized cytokine detection essential to un-
derstand cytokine expression and release dynamics. Thus, there
is high demand to capture and quantify in vivo cytokines in body
fluids (blood, interstitial fluids, cerebrospinal fluids, gut fluids,
and tears) in real time. After the successful demonstration of an
electrochemical immunosensor for detection of IL-6 in vivo,[30]

Qi et al. pioneered the development of an optical fiber based
immunosensing device for spatially localized cytokine detection
in discrete brain regions with a sensitivity of 3.9 pg mL−1.[118] An

increase in fluorescence detection of spatially localized intrahip-
pocampal IL-1𝛽 release was observed following a peripheral
lipopolysaccharide challenge in Sprague–Dawley rats. This novel
immunosensing technology represented an opportunity for
unlocking the function of neuroimmune signaling. Recently
this in vivo device was successfully used for investigating IL-1𝛽
extracellular release in the dorsal hippocampus after an acute
stressor induced by exposing male Sprague–Dawley rats to
inescapable tail-shock.[119]

Considering the potential complexity of optical fibers for in
vivo measurements, further steps have been taken to replace the
optical fiber with transducers based on stainless steel (SS) wires.
With the guidance of an implanted intrathecal catheter, this SS
based sensing device could be inserted along the spinal cord of
rats to quantify in vivo intrathecal IL-1𝛽 concentrations permit-
ting monitoring of the molecular signals of neuropathic pain.[120]

This in vivo cytokine assay established a possible correlation be-
tween biochemical spinal marker expression and in vivo quan-
tification of IL-1𝛽. Although these deployable sandwiched based
immunosensors were able to capture and measure cytokines in
vivo, they belong to two-step assays (in vivo capture and subse-
quent in vitro quantification) resulting in an overall process de-
lay. Immune reactions associated with cytokines as we know are
often extremely dynamic and may be transient in nature. Thus,
access to single step real-time detection of cytokines in vivo can
provide more accurate and reliable information. In this regard,
structure-switching molecules have demonstrated their potential
in real-time detection of analytes.[26] A molecular beacon aptamer
based biosensing device has been developed toward the near real-
time[36] and real-time monitoring of IFN-𝛾 .[121] Such a platform
has been proven sensitive for the detection of cytokines in the pg
mL−1 range. Specifically, we developed a proof-of-concept in vivo
sensing device for simultaneously monitoring IFN-𝛾 at a sensitiv-
ity of 10 pg mL−1 and the subsequent release of aspirin triggered
by IFN-𝛾 . This in vivo cytokine assay based on the aspirin interca-
lating hairpin aptamer realized continuous monitoring of IFN-𝛾 .
This technology thus provides a promising strategy for in vivo
real-time monitoring of cytokines and subsequent drug delivery
toward precise theranostics. However, background signal drifting
and stability under in vivo conditions are potential challenges as-
sociated with structure-switching aptamer-based in vivo cytokine
sensing. Ratiometric detection[122] and aptamer modification[123]

are promising solutions for these challenges.

4.2. Biosensors for Cytokines Detection

The ultralow concentration of cytokines (generally in the pm
range), and extremely dynamic, transient cytokine secretion pro-
cesses make cytokines quantification challenging. By integrat-
ing with nanotechnology, biosensors as the analytical devices
for the detection of analytes that combines biological compo-
nents with a physicochemical detector, has demonstrated great
potential for sensing. Such cytokines biosensors[124] can rely
on fluorescence or electrochemical signal readouts to quantify
intracellular and extracellular cytokines in non-real-time[39,125]

or in real-time.[31,126] They can also use other transducing ele-
ments. Table 3 compares various biosensors for cytokine detec-
tion based on different signaling strategies such as fluorescence
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Table 3. Overview of biosensors for cytokine detection based on different detection techniques.

Cytokines Detection technique Detection limit Linear range Sample volume Assay time Reference

IL-2, IL-4, IL-6, IL-10,
IFN-𝛾 , TNF-𝛼

FI 41 pg mL−1 41–104 pg mL−1 50 µL ≈3 h [226]

TNF-𝛼 FI 20 pg mL−1 105–106 pg mL−1 – Near real time [227]

IFN-𝛾 FI 1.5 × 104 pg mL−1 (0.2–8) × 105 pg mL−1 – ≈6 h [130]

IFN-𝛾 FI 2 pg mL−1 5–102 pg mL−1 – ≈30 min [33]

IFN-𝛾 FI 0.1 pg mL−1 0.1–1.5 × 103 pg mL−1 – ≈2 h [131]

IFN-𝛾 FI 2 pg mL−1 0–102 pg mL−1 – ≈45 min [228]

IFN-𝛾 , TNF-𝛼 FI 21 pg mL−1 0–3.6 × 102 pg mL−1 – ≈40 min [128]

IL-1𝛽 FI 3.2 pg mL−1 3.5–2 × 102 pg mL−1 5–10 µL – [35]

IL-20 FI 0.2 pg mL−1 2–2 × 104 pg mL−1 5 µL – [229]

IL-1𝛽 FI 4.7 pg mL−1 13–2 × 102 pg mL−1 1 µL – [230]

IL-1𝛽 FI 10 pg mL−1 25–4 × 102 pg mL−1 – – [125]

IL-6 FI 1 pg mL−1 1–4 × 102 pg mL−1 1 µL – [37]

IL-6 FI 0.1 pg mL−1 0.4–4 × 102 pg mL−1 1 µL – [231]

IFN-𝛾 FI 103 pg mL−1 5 × 103-1 × 105 pg mL−1 – Near real time [32]

IL-2, IL-4, IL-6 SPR 5–20 pg mL−1 10–104 pg mL−1 1 µL ≈40 min [24]

IL-6 SPR 10 pg mL−1 10–102 pg mL−1 – ≈30 min [232]

IL-6, TNF-𝛼 SPR 5 pg mL−1 4–5 × 102 pg mL−1 – – [137]

IL-6, IL-4, IL-10,TNF-𝛼 SPR 20 pg mL−1 10–104 pg mL−1 1 µL ≈30 min [233]

IFN-𝛾 SPR 5 × 104 pg mL−1 (0.5–8) × 105 pg mL−1 800 µL Real time [136]

IL-6 SPR 104 pg mL−1 104–2 × 105 pg mL−1 100 µL Real time [138]

TGF-𝛽1 EC 10 pg mL−1 15–3 × 103 pg mL−1 25 µL ≈60 min [234]

IL-6, IL-1𝛽, TNF-𝛼 EC 5 pg mL−1 5–2 × 102 pg mL−1 – – [28]

IFN-𝛾 EC 1.6 pg mL−1 2.5–2 × 103 pg mL−1 5 µL ≈200 s [152]

IFN-𝛾 EC 0.2 ng mL−1 0.2–2.8 × 102 ng mL−1 – – [156]

IFN-𝛾 EC 3 pg mL−1 10–5 × 103 pg mL−1 30 µL ≈60 min [155]

TNF-𝛼 EC – 1–15 pg mL−1 – – [235]

IFN-𝛾 EC 6 pg mL−1 10–5 × 102 pg mL−1 100 µL Real time [31]

VEGF EC 0.1 pg mL−1 2–5 × 102 pg mL−1 – Real time [126]

TNF-𝛼 EC 0.1 pg mL−1 0.1–1.5 × 102 pg mL−1 – ≈20 min [29]

IL-1𝛽, IL-10 EC 0.3 pg mL−1 (IL-10)
0.7 pg mL−1 (IL-1𝛽)

1–15 pg mL−1 – ≈45 min [149]

TNF-𝛼 EC 0.1 pg mL−1 in tears
2 pg mL−1 in cerebrospinal

fluid and blood serum

1–25 pg mL−1 1 µL – [147]

TNF-𝛼 EC 38 pg mL−1 0–2.9 × 102 pg mL−1 – ≈5 min [236]

IL-6 EC 1.5 pg mL−1 4.7–3 × 102 pg mL−1 – Real time [237]

TNF-𝛼 EC – 1–102 pg mL−1 – – [25]

IL-6, TNF-𝛼 EC 20 pg mL−1 – – Near real time [238]

TNF-𝛼 EC 38 pg mL−1 76–5 × 103 pg mL−1 250 µL – [239]

IL-1𝛽, TNF-𝛼 EC 0.4 pg mL−1 1–2 × 102 pg mL−1 2.5 µL ≈200 s [153]

IL-3 EC 5 pg mL−1 – 100 µL ≈50 min [240]

IFN-𝛾 EC 10 pg mL−1 10–103 pg mL−1 10 µL Real time [121]

IL-1, IL-6, TNF-𝛼 EC 5 pg mL−1 5–150 pg mL−1 – – [66]

IL-1𝛽 Optoelectronic biosensor 0.3 pg mL−1 0.1–103 pg mL−1 – ≈10 min [241]

TNF-𝛼 Piezoelectric biosensor 1.6 pg mL−1 – 50 µL – [242]

IL-1𝛽, IL-1𝛼 IL-6, IL-10,
TNF-𝛼, GM-CSF

ELISA 0.01–0.03 pg mL−1 – 150 µL ≈45 s [243]

IFN-𝛾 ELISA 40 pg mL−1 16–2 × 103 pg mL−1 – ≈8 min [117]

(Continued)
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Table 3. (Continued).

Cytokines Detection technique Detection limit Linear range Sample volume Assay time Reference

IL-1𝛽, IL-2, IL-4, IL-6,
IL-10, IL-12𝛽, IL-18,
IFN-𝛾 , TNF

PCR 0.03 pg mL−1 – – – [244]

IL-1𝛽, IL-10 TNF-𝛼, PCR 10–102 copies 10–107 copies per µL 50 µL – [245]

IL-2 LoC 50 pg mL−1 50–103 pg mL−1
≈30 min [112]

IL-6, IL-8, TNF LoC 20 pg mL−1 – 0.16 µL 15–30 min [113]

IL-10 LoC 1 pg mL−1 1–15 pg mL−1 3 µL – [150]

TNF-𝛼 Surface-enhanced Raman
spectroscopy (SERS)

4.5 pg mL−1 0–105 pg mL−1 – ≈2.5 h [141]

TNF-𝛼 SERS 1 pg mL−1 – – – [142]

IL-10 SERS 0.1 pg mL−1 0.1–102 pg mL−1 – – [144]

IL-6, VEGF CLISA 0.05 pg mL−1 (IL-6)
0.03 pg mL−1 (VEGF)

0.2–102 pg mL−1 – [160]

VEGF Colorimetric sensor 7.4 × 103 pg mL−1 – – ≈60 min [163]

VEGF Colorimetric sensor 4 × 103 pg mL−1 4 × 103–1.6 × 106 pg mL−1 10 µL ≈60 min [164]

Figure 4. Schematic illustration of label-free and labeled biosensors (FI, SPR, SERS, and EC) using antibodies.

immunoassays (FI), surface plasmon resonance detection (SPR),
electrochemical-based methods (EC), surface enhanced Raman
spectroscopy (SERS), colorimetric, CRISPR/Cas signal amplifi-
cation linked immunosorbent assay (CLISA) and other methods,
in terms of their performance (i.e., sensitivity, and levels of sam-
ples required). To understand the scheme of the above biosensors
we mentioned, here we take label-free and labeled biosensors us-

ing antibodies as examples, showing the basic scheme and signal
readouts of these biosensors in Figure 4, and more detailed in-
formation of each biosensor for cytokine detection is introduced
respectively in the following part. This section will introduce re-
cent advances of the different strategies used for the in vitro or in
vivo detection of cytokines and their analytical performance will
be compared and discussed.
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Figure 5. Schematic illustration of A) Sensing with microcapsules. Reproduced with permission.[128] Copyright 2019, American Chemical Society. B)
An assay where magnetic fluorescent nanoparticles are captured by antibodies on the biotinylated surface of cells. Reproduced with permission.[40]

Copyright 2019, Elsevier. C) A T cell-surface aptamer sensor for measuring cytokine secretion at the single-cell level. Reproduced with permission.[130]

Copyright 2017, The Royal Society of Chemistry. D) The fluorescent method for IFN-𝛾 detection using three target-responsive liposomes activated by
CHA. Reproduced with permission.[131] Copyright 2018, The Royal Society of Chemistry.

4.2.1. Fluorescence Based Cytokines Biosensors

A fluorescent biosensor is an assay that operates based on a
change in the properties of fluorescence signatures upon inter-
actions with target analytes. It is widely used for both analytical
sensing and optical imaging. When the analyte is recognized by
its receptor, the fluorescence signal, such as fluorescence inten-
sity, emission wavelength and fluorescence lifetime, can be ob-
served in the form of quenching, enhancement or shift in the
fluorescence maxima via different mechanisms (electron transfer
(eT), charge transfer (CT), or energy transfer (ET) processes).[127]

Due to its high sensitivity, fast response time, technical simplic-
ity, varieties in dye selection for multiplexing, and capability to
realize on-site and real-time detection in an inexpensive manner,
fluorescence immunoassays have been one of the most widely
employed methods for qualitative and quantitative detection of
cytokines. Rahimian et al. reported a microencapsulated fluores-
cent immunoassay[128] (Figure 5A) for detection of IFN-𝛾 and
TNF-𝛼 in minimally processed blood with a limit of detection
of 14.8 and 14.4 × 10−12 m for IFN-𝛾 and TNF-𝛼, respectively.
Cytokines secreted from leukocytes diffuse into the core of a mi-
crocapsule and are captured by antibody-modified beads resid-
ing in the core. The target analyte is detected by staining with
secondary fluorescently-labeled antibody. The fluorescence inten-
sity of encapsulated microbeads is related to its concentration

in blood. This encapsulated immunoassay symbolizes a promis-
ing strategy for keeping sensing elements operational in a highly
complex environment such as blood. To detect cytokine secre-
tion from individual cells by applying a capture technology on
the cell membrane, the configuration of on-cell surface ELISA
(OnELISA) is presented in Figure 5B. This has been developed
for identifying and selecting high cytokine secreting cells.[40] Tak-
ing advantage of commercially available magnetic beads labeled
with dragon green fluorescence, the OnELISA is a sandwich im-
munosensor capable of detecting IL-6 in a single cell level (0.1 pg
mL−1). These on-cell surface biosensors provide promising ap-
proaches for identifying and selecting high cytokine secretions
for applications in regenerative medicine. Avoiding cell internal-
ization of the sensing interface on the cell-membrane is still a
major challenge needing further investigation.

The combination of aptamers in fluorescent biosensors has
become a promising assay for the selective and sensitive recogni-
tion of cytokines. Hashim et al.[129] reported a turn-on fluorescent
aptasensor for detection IFN-𝛾 with a low-nanomolar Kd value
(33.7 ± 9.5 × 10−9 m) at 37 °C. This was prepared by simple label-
ing of fluorescein at the 3′-end of a short IFN-𝛾 aptamer. Similar
to this turn-on fluorescence biosensor, Qiu et al.[130] developed
a cell membrane-anchored sensor for the detection of IFN-𝛾
at single-cell level by combining a fluorescent aptamer based
sensor and droplet microfluidics (Figure 5C). In their work, the
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cholesterol-linked aptamer probe (CLAP) could efficiently anchor
onto the cell surface based on hydrophobic interactions between
the cholesterol tail and the cellular phospholipid layer. Thus,
the fluorescence of the aptamer probe could be turned on in the
presence of IFN-𝛾 . Finally, aptamer-decorated T cells can be indi-
vidually encapsulated into droplets by microfluidic chip systems,
enabling the detection of cytokine secretion at the single-cell
level with a sensitivity of 15 ng mL−1 (1.5 × 104 pg mL−1).

The analytical methods based on single target-aptamer inter-
actions always lack sensitivity for clinical use. Thus, introducing
signal amplification strategies in aptamer-based biosensors is
of great importance. Cui et al.[131] proposed a novel fluores-
cent assay to detect the tuberculosis-related cytokine IFN-𝛾
by combining DNA self-assembly based signal amplification
with liposome-based signal amplification, offering a high sen-
sitivity of 0.047 × 10−12 m (0.068 pg mL−1). The principle of
this fluorescence-based biosensor is illustrated in Figure 5D.
Firstly, the sensing hairpin probe (HP) HP1 containing the
sequence of the IFN-𝛾 aptamer is immobilized onto the surface
of magnetic nanoparticles (MNPs). Another DNA hairpin probe,
the signaling hairpin probe HP2, is available for hybridization
with HP1 and is tethered by a dibenzocyclooctyne (DBCO)
group. Without target IFN-𝛾 , the HP1 and HP2 probes maintain
their stem-loop structures. Once target IFN-𝛾 is present, the
combination of IFN-𝛾 and the aptamer region (blue) causes
conformational change to HP1 and exposes the single-stranded
sequence (green) that is partially complementary to HP2, pro-
moting strand displacement to form an HP1/HP2 duplex and of
release IFN-𝛾 from the aptamer region. Then, the released IFN-𝛾
is free to interact with another intact HP1, initiating a new cycle
of catalytic hairpin assembly (CHA). After numerous cycles, a
large amount of HP1/HP2 duplexes are produced on the MNPs
surface. Finally, an azido-labeled peptide probe is conjugated to
the MNP surface through click chemistry which can destroy the
liposome membrane and promote the leakage of fluorescence
molecules, realizing the highly sensitive detection of IFN-𝛾 .

In addition to extracellular cytokine detection, fluorescence
biosensors have been applied to intracellular cytokine detection.
For instance, a simple and sensitive “switch-on” nanosensor
based on graphene quantum dots (GQDs) for the intracellular
detection of IFN-𝛾 has been developed that offers a sensitivity of
2 pg mL−1.[33] The self-quenching of aggregated GQDs turns off
the fluorescence and the disaggregation of GQDs induced by the
presence of the target analyte IFN-𝛾 results in fluorescence re-
covery that is proportional to the concentration of IFN-𝛾 . These
fluorescent nanosensors were successfully used for the detection
of intracellular IFN-𝛾 in live PBMCs and BV2 cells as basic mod-
els, and can be used as universal switch-on sensing probes target-
ing a spectrum of intracellular cytokines. Taking advantage of the
property of aggregation induced emission agents, a fluorescent
aptasensor for the measurement of intracellular IFN-𝛾 secreted
by live cells was reported, with a low detection limit of 2 pg mL−1

under in vitro conditions.[39] This aptasensor consists of a fluo-
rogen (TPEN3) that shows strong red emission only in the pres-
ence of IFN-𝛾 and an oligonucleotide which has a high affinity
to IFN-𝛾 . The probe is able to localize the intracellular IFN-𝛾 at
a low concentration, and it was successfully used for real-time
imaging showing excellent cellular permeability and biocompati-
bility as well as low cytotoxicity. Consequently, fluorescence based

biosensors offer the advantages of sensitivity. They are also rapid
response, non-destructive and real-time for cytokine detection.
However, the major disadvantage of using fluorescence-based op-
tical biosensors is background interference and the requirement
for sample labeling with fluorescent reagents which adds time
and cost to the procedure.

4.2.2. Surface Plasmon Resonance Based Cytokines Biosensors

Sensing using SPR is widely used for implementing biosensing
in clinical analysis as it provides a label-free and real-time format
to measure biomolecular interactions.[132] The basic principle of
SPR biosensors has been reviewed by Guo[133] In SPR systems,
the analyte is captured by biomolecular recognition elements on
the metal surface of a SPR biosensor, changing the refractive
index at the metal surface. The changes of refractive index can
then be accurately measured by different optical means such as
intensity modulation, angular modulation, wavelength modula-
tion, phase modulation, and even polarization modulation. As
an advantage, the concentration of analytes can be monitored
continuously by measuring the spectral shift of the resonance
dip without additional labels. SPR-based biosensors[134,135] have
been successfully applied to measure cytokines for the diagnosis
of diseases, due to their sensitivity and ability to perform label-
free measurement in real time. For instance, Wu et al. reported
a label-free SPR biosensor for real-time monitoring of captured
human CD4+T-cells, and their dynamic IFN-𝛾 production (Fig-
ure 6A),[136] enabling the diagnosis of tuberculosis (TB) in clinical
samples with high sensitivity (85.5%) and specificity (97.7%). The
CD4+- T cells were captured by anti-CD4 Abs, and the culture
media containing the TB-specific proteins was injected to stimu-
late the captured CD4+ T cells to release IFN-𝛾 . SPR signals were
monitored in real-time when adding TB-specific proteins, allow-
ing for quantification of IFN-𝛾 protein secreted by CD4+ cells.
Lau et al.[137] fabricated a localized surface plasmon resonance
(LSPR) immunoassay (Figure 6B) for the detection of secreted
cytokines (IL-6 and TNF-𝛼) from stimulated macrophages utiliz-
ing electron beam lithography and a trehalose glycopolymer for
the direct writing of antibodies on silicon substrates. This sand-
wich immunoassay was visualized via dark-field microscopy, ex-
ploiting the surface plasmon resonance of silver-enhanced gold
nanoparticle secondary antibodies. Multiplexing measurement
of IL-6 and TNF-𝛼 on a single chip was also successfully demon-
strated with high specificity and sensitivity (5 pg mL−1 for TNF-𝛼
and 50 pg mL−1 for IL-6). This direct fabrication of capture anti-
body patterns for cytokine detection could be useful for biosens-
ing applications.

Chen et al. developed a label-free, multiarrayed localized SPR
(LSPR)-based optical biosensor chip (Figure 6C) for massively
parallel high-throughput detection of multiple cytokines (IL-
2, IL-4, IL-6, IL-10, IFN-𝛾 , TNF-𝛼).[24] The device was fabri-
cated using easy-to-implement, one-step microfluidic pattern-
ing and antibody conjugation of gold nanorods (AuNRs). The
nanorod microarray fabrication was performed using a one-step
microfluidic patterning technique assisted by electrostatic attrac-
tive interactions between the nanorods and the substrate sur-
face within microfluidic channels. Subsequently, these nanorod
microarrays were integrated in a microfluidic chip with eight
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Figure 6. Schematic illustration of A) CD4+ T-cell capture and real-time monitoring of IFN-g release. Reproduced with permission.[136] Copyright 2018,
Taylor & Francis Group. B) Direct protein patterns for multiplexed cytokine detection. Reproduced with permission.[137] Copyright 2016, American
Chemical Society. C) LSPR microarray chip. Reproduced with the permission.[24] Copyright 2015, American Chemical Society. D) Integrated localized
surface plasmon resonance (LSPR) cytokine detection. Reproduced with permission.[138] Copyright 2020, MDPI.

parallel microfluidic detection channels consisting of inlet and
outlet ports for reagent loading and washing. Specific antibod-
ies were conjugated to the patterned AuNR microarrays us-
ing thiolated crosslinker and EDC/NHC chemistry. The current
chip design integrates 480 AuNR microarray sensor spots. The
prepared LSPR microarray chip was then imaged under dark-
field microscopy and scanning electron microscopy (SEM). This
LSPR biosensing technique allowed for high-sensitivity quan-
titative cytokine measurements at concentrations down to 5–
20 pg mL−1 from a 1 µL serum sample. Zhu et al.[138] reported
the simple synergistic integration of cell trapping of the mi-
crowell chip and gold-capped nanopillar-structured cyclo-olefin-
polymer (COP) films using LSPR technology for IL-6 detection
(Figure 6D) with sensitivity of 190.2 nm RIU−1 and detection
limit of 10 ng mL−1. In this research, fresh cultured IL-6 over-
expressed Jurkat cells were utilized to evaluate the sensitivity and
capability of this LSPR based biosensor. The cultured cells were
directly trapped by thick COP cell trapping chips and started to
release IL-6 which would immediately bind with the antibody
on the surface of the nanopillar-structured LSPR detection film
without stimulation. The fabricated device shows the potential
for real-time monitoring of cytokines which would allow one to
identify the viability and biological variation of the tested single
cell. Although SPR has wide applications for sensing proteins, a
common challenge with SPR-based sensors is the issue of signals
produced via non-specific binding events on the sensor. This is
an issue that requires more investigation by applying strategies
for avoiding anti-fouling.[139]

4.2.3. Surface Enhanced Raman Spectroscopy Based Cytokine
Sensors

SERS has become a powerful vibrational spectroscopy technique
that allows for high-sensitivity detection of low concentration an-
alytes through the amplification of electromagnetic fields gen-
erated by the excitation of localized surface plasmons[140] SERS
based biosensors, a popular and promising assay, has been widely
used for the fast and quantitative measurement of cytokines ow-
ing to its outstanding features such as high sensitivity, high speci-
ficity and multiplexed non-destructive detection capability.[141]

Lai et al. used a magnetic bead pull-down assay combined with
SERS[142] (Figure 7A) for the rapid and sensitive detection of TNF-
𝛼. The stable, monodisperse, and highly sensitive SERS labels
were fabricated by purified silica-encapsulated small AuNP clus-
ters. Silica encapsulation improves the stability of SERS labels for
reproducible signals and offers a robust surface for subsequent
bioconjugation providing high specificity, selectivity and sensi-
tivity of 1 pg mL−1 for TNF-𝛼 measurement. The characteristic
Raman peaks and barcode signals from up to three different Ra-
man reporters in colloidal mixtures could be identified, indicat-
ing the great potential of these SERS labels as sensitive reporters
in multiplexed bioanalytical applications. Kamińska et al. devel-
oped a SERS immunoassay[143] based on diatom biosilica as the
immune substrate and gold nanoparticles (AuNPs) functional-
ized with DTNB (i.e., 5,5′-dithiobis(2-nitrobenzoic acid)) as the
Raman reporter for the detection of IL-8 in blood plasma. These
DTNB-labeled immune-AuNPs can form a sandwich structure
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Figure 7. Schematic illustration of A) Multiplexed SERS nanotags for the detection of cytokines secreted by lymphoma. Reproduced with permission.[142]

Copyright 2018, Springer. B) Multiplexed SERS nanotags for the detection of cytokines secreted by a lymphoma. Reproduced with permission.[143]

Copyright 2017, Springer. C) Multiplexed SERS nanotags for the detection of cytokines secreted by a lymphoma. Reproduced with permission.[141]

Copyright 2019, American Chemical Society. D) The workflow of the assay on the paper-based substrate for MCP-1 and IL-10 duplex detection. Reproduced
with the permission.[144] Copyright 2019, The Royal Society of Chemistry.

with IL-8 antigens and the antibodies immobilized on the biosil-
ica material; this is illustrated in Figure 7B. The established SERS
immunoassay with lower detection limit of 6.2 pg mL−1 offers a
valuable platform for the ultrasensitive and highly specific detec-
tion of cytokines in a clinical setting.

The narrow SERS vibrational bands promise multiplex capa-
bility that can produce a unique fingerprint of the cytokine net-
work in a single test by using different SERS nanotags. Thus,
efforts have been devoted to the development of SERS-based
biosensors for sensitive and multiplexed cytokine detection in
different diseases.[144] For sensitive and simultaneous detection
of multiple cytokines, Li et al. developed SERS nanotags (Fig-
ure 7C) composed of a gold core, Raman reporter cells, and a
silver shell, which has been used for sensitive and multiplexed
identification of cytokines (IFN-𝛾 , TNF-𝛼, and IL-10) secreted
from lymphoma cells.[141] This SERS immunoassay showed high
sensitivity (4.5 pg mL−1) with good specificity. More importantly,
this sandwiched immunoassay strategy was much faster in re-
sponse than many traditional approaches for its multiplex ca-
pability, while its detection limit and accuracy were compara-
ble to those of the standard ELISA assay. The identification of
three cytokines, IFN-𝛾 , TNF-𝛼, and IL-10, secreted from the lym-
phoma cell lines upon Con A stimulation further demonstrated
the potential of the proposed assay for clinical diagnosis. In an-
other work and for atherosclerosis (AS) associated disease diag-
nosis, a paper-based SERS assay (Figure 7D) was reported for
sensitive duplex cytokine (IL-10 and MCP-1) detection.[144] This
SERS biosensor combines a nanoporous networking membrane
by utilizing a polymer membrane fabricated from a polypropy-
lene (PP) substrate with a polytetrafluoroethylene (PTFE) coating
as the substrate and SERS nanotags as the probe for signal detec-
tion, together with a sandwich design. It demonstrated sensitive
and specific identification and quantification of cytokines targets

in human serum with excellent sensing characteristics. In this
work, the increased surface area offered high loading of capture
antibodies which enhanced the sensitivity. Due to its unique fea-
ture of two-layer AuNPs in the sandwich design, a small gap was
generated between the AuNPs; this produced a “hot-spot” effect
that could enhance the SERS signal, allowing high sensitivity de-
tection with a low detection limit (0.1 pg mL−1). Therefore, paper-
based SERS assay platforms can be potentially used for cytokines
detection, even as commercial units, and holds great potential for
applications in complicated environments for multiplexed target
analysis.

4.2.4. Electrochemical Based Cytokine Biosensors

Electrochemical transduction is very popular as a biosen-
sor technology. Compared with other methods, electrochemical
techniques have their own advantages, such as low cost, high sen-
sitivity particularly in amperometric based measurements, and
the possibility of facile device miniaturization.[145,146] The out-
put of electrical signals can be impedance, current, and voltage.
Many electrochemical biosensors have been developed for the de-
tection of cytokines.[147–150] Filik et al.[151] summarized the recent
developments of numerous electrochemical assays for the mea-
surement of TNF-𝛼, illustrating various novel sensing strategies
for immunoelectrochemical sensor improvement to selectively
detect cytokines. Sanchez-Tirado et al.[152] reported a simple and
sensitive amperometric immunosensing assay taking advantage
of the great performance of grafted electrochemical scaffolds for
covalent immobilization of biomolecules for the detection of IFN-
𝛾 in saliva. Figure 8A shows a schema of the steps for the fabri-
cation of this electrochemical immunosensor as well as the reac-
tions involved in the amperometric detection. The screen-printed
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Figure 8. Schematic illustration of A) Steps involved in the preparation of the electrochemical immunosensor for the determination of IFN-𝛾 . Repro-
duced with the permission.[152] Copyright 2020, Elsevier. B) The different steps involved in the preparation of the dual electrochemical immunosensor
for multiplexed determination of IL-1𝛽 and TNF-𝛼. Reproduced with permission.[153] Copyright 2016, Elsevier. C) The stepwise aptasensor fabrication
based on exonuclease-catalyzed target recycling and surface-initiated enzymatic polymerization for amplification. Reproduced with the permission.[155]

Copyright 2015, The Royal Society of Chemistry. D) An aptamer-based electrochemical sensor for IFN-𝛾 . Reproduced with the permission.[156] Copyright
2017, American Chemical Society.

carbon electrode (SPCE) was functionalized by grafting of the
diazonium salt of p-aminobenzoic (p-ABA) by cyclic voltammetry
(step 1) for the covalent immobilization of the capture antibody
(step 2), and the remaining free active sites were blocked with
BSA (step 3). After capture of IFN-𝛾 , a sandwich-type immunoas-
say was implemented using biotin-anti-IFN and peroxidase-
labeled streptavidin (HRP-Strept) (step 4). Amperometric
measurements were carried out by adding hydrogen peroxide
solution to the electrode surface in the presence of hydroquinone
(HQ) as the redox mediator (step 5), obtaining a low limit of
detection of 1.6 pg mL−1 for IFN-𝛾 quantification. The analytical
performance displayed by this electrochemical immunosensor
including disposability and the possibility of using pocket-sized
electrochemical instrumentation makes it attractive for the de-
velopment of POC systems for on-site measurement of salivary
IFN-𝛾 . In another development electrochemical nanosandwich
devices based on a graphene oxide (GO) thin film modified
sensing interface was fabricated for the detection of IL-6.[30]

To realize the measurement of multiple cytokines via electro-
chemical assays, Shen et al. fabricated label-free electrochemical
biosensors for in vivo cytokine detection of multiple cytokines in

a Parkinson’s disease mice model.[66] Wei et al. also developed
an electrochemical immunosensor[28] for the simultaneous de-
tection of three cytokines IL-6, IL-1𝛽, and TNF-𝛼. The glassy car-
bon (GC) surface was functionalized by attaching mixed layers of
4-carboxylic phenyl and 4-aminophenyl phosphorylcholine (PPC)
as the sensing interface for immobilization of the capture mono-
clonal antibodies for IL-6, IL-1𝛽, and TNF-𝛼. After capturing IL-6,
IL-1𝛽 and TNF-𝛼, GO loaded with redox probes (Nile blue (NB),
methylene blue (MB), or Ferrocene (Fc)) and anti-cytokine an-
tibodies for the specific cytokines were introduced. The quan-
titative detection of the cytokines was achieved by monitoring
the change in electrochemical signals from signal reporters. This
system was successfully used for detection simultaneously with
desirable performance in sensitivity, selectivity, stability, and re-
covery. Sanchez-Tirado et al. developed an electrochemical im-
munosensor using dual SPCE functionalized with double-walled
carbon nanotubes for simultaneous detection of IL-1𝛽 and TNF-
𝛼 in serum and saliva.[153] The scheme for the preparation of the
dual electrochemical immunosensor is shown in Figure 8B. Af-
ter dropping Mix&GO onto each surface of the dual SPCE, anti-
bodies to IL-1𝛽 and TNF-𝛼 were immobilized, following with a
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blocking step of the remaining active free sites on the electrode
surfaces via BSA. Then, sandwich type assays were implemented
by combining the target cytokines and biotinylated detector anti-
bodies. A further conjugation with poly-HRP-Strept allowed the
amperometric determination of IL-1𝛽 and TNF-𝛼 using H2O2 as
HRP substrate and HQ as the redox mediator.

Electrochemical immunoassays have seen great improve-
ments and they are expected to make significant contributions
in future studies of disease pathologies. For immunosensors,
structure-switching aptamer based electrochemical biosen-
sors can also be implemented to realize real-time cytokines
detection.[31,36,38] Specifically, in order to enhance the sensi-
tivity and robustness of aptamer based cytokine biosensing,
the surface nanofabrication and ratiometric measurements
are important.[126,154] Liu et al. developed an aptamer-based
electrochemical immunosensor (Figure 8C) depending on
exonuclease-mediated surface-initiated enzymatic polymeriza-
tion (SIEP) combined with [Ru(NH3)6]3+ for IFN-𝛾 detection.[155]

First, the electrode surface was functionalized with gold
nanoparticles-graphene nanocomposite (Au-Gra). Then, the
hybridized double-stranded DNAs (dsDNA) were immobilized
on the modified electrode surface following with a block of non-
specific sites by hexanethiol solution (HT). After adding IFN-𝛾 ,
the aptamer was liberated from dsDNA, and selectively digested
by the RecJf exonuclease, making IFN-𝛾 released for target
recycling. After that, a great number of single-stranded capture
probes were formed during the cyclic process. Subsequently, nu-
merous signal probe-labeled Au@Fe3O4 (SP-Au@Fe3O4) were
captured by single-stranded capture probes on the electrode sur-
face. Finally, the labeled signal probe sequences were catalyzed
by the terminal deoxynucleotidyl transferase (TdT)-mediated cas-
cade extension to form a long ssDNA structure for electrostatic
adsorption of [Ru(NH3)6]3+, generating the electrochemical sig-
nal. This proposed aptasensor displayed a low detection limit of
0.003 ng mL−1, providing a simple, sensitive, and powerful tool
for the reliable detection of IFN-𝛾 and other cytokines. Further-
more, the proposed sensor has potential for clinical diagnostics,
infectious disease monitoring, and point-of-care testing. Ni et al.
developed a robust aptasensor[154] by modifying methylene blue
loaded graphene oxide (GO/MB) and ferrocene-labeled aptamer
onto GC electrodes to realize the dual electrochemical signal
mode ratiometric quantifications of vascular endothelial growth
factor (VEGF) in serum with wider linear range (10–5 × 102 pg
mL−1) and better sensitivity (10 pg mL−1). The advantages of
large nanostructured surfaces in aptamer-based electrochemical
biosensors was shown by Liu et al. to result in more sensitive
analysis of cell-secreted cytokines, by improved transport and
enhanced surface area per footprint. Liu et al employed silicon
nanowires (Si NWs) covered with gold as working electrodes
for aptamer-based detection of IFN-𝛾 .[156] Aptamer molecules
were designed to form a hairpin structure and the redox reporter
molecule methylene blue was in close proximity to the electrode
surface (Figure 8D, a). Binding of IFN-𝛾 caused the redox label
to move further away from the electrode by changing the con-
formation of the hairpin and inhibited electron transfer from
redox reporters, decreasing the electrochemical redox signal.
The differences in the faradaic current before and after IFN-𝛾
binding were quantified using square wave voltammetry (SWV).
Figure 8D, b) shows the different behavior of cell deposition and

cytokine IFN-𝛾 secretion for floating cells and surface deposited
cells on planar Au electrode and the AuNWs electrode. A series
of experiments demonstrated that NW aptasensors responded
faster and were more sensitive to IFN-𝛾 compared to standard
flat electrodes, allowing measurement of IFN-𝛾 with a low
detection limit of 0.14 ng mL−1. This NW aptasensor possesses
a larger surface area and higher aptamer packing density and
is minimally affected by the direct deposition of leukocytes. It
shows great potential for cytokine detection and addresses the
important need for sensitive diagnosis of diseases.

4.2.5. Other Types of Cytokine Biosensors

The CRISPR/Cas (clustered regularly interspaced short palin-
dromic repeats/CRISPR associated proteins) biosensing is a
highly sensitive and selective tool for detection of different targets
including cytokines.[157,158] In addition to Cas9 and Cas12 factors,
the recent discovery of the collateral RNA cleavage activity of
the Cas13a effector has attracted greater attention to develop
novel biosensing technologies for nucleic acid detection.[159]

CRISPR/Cas13a also enables the development of direct RNA
assays with high sensitivity for cytokine detection. Chen et al.[160]

reported a CRISPR/Cas13a signal amplification linked im-
munosorbent assay (CLISA) for the detection of IL-6 and VEGF.
This assay (Figure 9A) double-amplifies the output signal by T7
RNA polymerase transcription and CRISPR/Cas13a collateral
cleavage activity. T7 polymerase can recognize the promoter se-
quence to perform the transcription, and many copies of single-
stranded RNA molecules are produced. The CRISPR/Cas13a
system enables to recognize the transcribed RNA molecules
accurately, leading to the activation of trans-cleavage activity
of CRISPR/Cas13. Short single-stranded RNA reporter labeled
with fluorophore and quencher groups at both ends of the se-
quence in the system can be cleaved by the transcleavage activity,
generating fluorescent signal. This CRISPR/Cas13a biosensing
possessed high sensitivity and achieved lower detection limits
of femtomolar level for cytokine measurement, which allows
for rapid screening of large numbers of samples simultane-
ously, providing potential ultrasensitive detection methods for
biosensing, medical research, and molecular diagnostics.

Colorimetric sensors[161,162] based on color changes have
attracted attention for the instantaneous detection of various
analytes owing to its intrinsic advantages, such as the simple
processing and visual indication. The optical property of noble
metal nanoparticles provides a visual color change when they
interact with the analyte due to the dispersion and aggregation of
nanoparticles.[161] Consequently, noble metal nanoparticles have
potential for biomolecular detection in colorimetric sensing.
Gold nanoparticles (AuNPs) are one of the most popular noble
metal entities in colorimetric assay for cytokine detection. For
example, Chang et al.[163] reported an aptamer-based colorimet-
ric biosensor using AuNPs combined with a branched DNA
amplification strategy for the quantification of VEGF, an impor-
tant cytokine for angiogenesis and vascular permeabilization.
Using this colorimetric biosensor, as few as 3.7 fmole of VEGF
could be detected within an hour. Wu et al.[164] proposed a colori-
metric sensor for VEGF measurement based on target-triggered
activation of aptazyme with AuNPs. As shown in Figure 9B,
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Figure 9. Schematic illustration of A) The CRISPR/Cas13a signal ampli-
fication system. Reproduced with the permission.[160] Copyright 2019,
American Chemical Society. B) The proposed method for protein detec-
tion, utilizing VEGF as an example. Reproduced with the permission.[164]

Copyright 2016, Elsevier.

an aptazyme consisting of a VEGF aptamer (black), DNAzyme
(purple) and a short stem sequence (yellow) is designed for this
assay. Additionally, a linker is designed to contain the sequence
to crosslink AuNPs and to have the substrate sequence of the
DNAzyme. Therefore, in the presence of VEGF, the recognition
between VEGF and its aptamer causes the conformational
change of the aptazyme which activates the DNAzyme. Thus, the
color of AuNPs solution remains red since the AuNPs cannot be
crosslinked. Nevertheless, in the absence of the target protein,
the color change will happen. Based on the change of the color,
a simple, rapid, and cost-effective method was developed for
VEGF quantification with as low as 0.1 × 10−9 m detection limit.

Microring resonator (MR) sensing, based on the accurate mea-
surement of changes in the index of refraction of the recep-
tor layer toward surface binding between a target and antibody-
modified microrings, has found numerous applications for the
label-free and real-time detection of biomolecules.[165–168] The ad-
vantages of this MR based sensor include high mechanical stabil-
ity, detection sensitivity, scalability to sensor networks, and cost
reduction due to wafer scale processing.[169] Thus, this method
represents a promising platform for real-time detection of cy-

tokines. Silicon photonic microring resonators, a class of high-
Q optical microcavities, have recently shown promise for label-
free bioanalysis of cytokines due to real-time reaction monitoring
capabilities, high scalability on a small footprint, low per-device
cost, and ease of fabrication.[170] For example, Kindt et al. reported
a multiplexable silicon photonic MR platform integrated with an
enzymatic signal enhancement scheme for simultaneous quan-
tification of IL-2, IL-6, and IL-8 in undiluted cerebrospinal fluid,
providing a limit of detection at or below 1 pg mL−1.[171] This re-
search has shown that MR based sensing platforms have signifi-
cant potential for multiplexed cytokine measurement at ultralow
concentrations. In addition, silicon photonic MR platforms com-
bined with sandwich immunoassays can achieve real-time mon-
itoring of multiple cytokines. Luchansky and Bailey realized this
simultaneous detection of four cytokines (IL-2, IL-4, IL-5, and
TNF-𝛼) secreted from primary human T cell populations using
only a 5 min assay performed on an intrinsically scalable silicon
photonic MR analysis platform.[170] Altogether, MR based biosen-
sors are promising platforms for a number of multiplexed and
real-time in vitro diagnostic applications and should be investi-
gated further.

The interferometric reflectance imaging sensor (IRIS) is an-
other potential technique for label-free and real-time detection of
cytokines. In this biosensing process, transduction is based on
spectral reflectivity. As the overall thickness of the upper layer
is increased due to biomass accumulation on the surface of the
layered substrate, the optical path difference (OPD) between the
top surface of the substrate and the silicon substrate covered with
a layer of silicon diooxide (Si-SiO2) interface also increases; this
in turn results in a quantifiable shift in spectral reflectivity.[172]

Thus, this functional platform allows for accurate, label-free and
dynamic monitoring of surface bound biomolecules. The utility
of the IRIS technique has been demonstrated in the real-time
measurement of IL-6 in cell culture medium.[173] The label-free
biosensor resulted in more than sevenfold signal improvement
for detecting IL-6 with the expected limit of detection approach-
ing 2 ng mL−1. Therefore, IRIS can be used as a platform for in
vitro analysis of an immunological response or to monitor dis-
ease progression.

4.3. Commercial Cytokine Detection Assays

As we have discussed in previous sections, quantification of mul-
tiple cytokines in clinically relevant samples is essential in bi-
ology and medicine. In addition, ELISAs are available to de-
tect the single cytokine and a number of commercial multiplex
technologies (Luminex-based or flow cytometry (FCM)-based) are
available. Most of these assays, based on fluorescent bead-based
technology allows the profiling of multiple cytokines in a small
volume.[174] These commercial multiplex assays possess more
advantages[175] than singleplex assays (e.g., ELISA), including 1)
small sample volume requirement, 2) reduction in assay time,
and 3) a larger range of quantification for each analyte. This sec-
tion introduces three main commercial cytokine detection assays,
Luminex assays, flow cytometry and mesoscale discovery (MSD)
assays by discussing performance (Table 4), principles, and ap-
plications.
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Table 4. Performance of the commercial cytokine kits.

Kit name Platform Sample media Cytokine sources
Number of
cytokines Signal readout

Linear range
[pg mL−1]

Bio-Plex Pro assay Luminex Tissue and cell culture
supernatants, plasma,
and serum

Human 27 Median fluorescence
intensity (MFI)

10–104

MILLIPLEX MAP plex kit Luminex Human serum, plasma
and cell culture
supernatants

Human 13 MFI 3.2–104

Invitrogen 25-plex kit Luminex Human serum, plasma
and cell culture
supernatants

Human 25 MFI 0.5–3.6 × 104

Invitrogen magnetic
30-plex kit

Luminex Human serum, plasma
and cell culture
supernatants

Human 30 MFI 0.5–3.6 × 104

Human enhanced
sensitivity 3-plex kit

Flow cytometry Tissue culture
supernatants, plasma,
and serum samples

Human 3 MFI 0.3–2 × 102

Becton Dickinson human
Th1/Th2 cytokine kit

Flow cytometry Tissue culture
supernatants, EDTA
plasma, and serum
samples

Human 14 MFI Nondetermined
−5 × 103

MACSPlex cytokine kit Flow cytometry Serum, plasma, and cell
culture supernatants

Human 12 MFI Nondetermined
−104

Plex Th cytokine 13-plex
panel

Flow cytometry Serum and cell culture
supernatant samples

Human 13 MFI Nondetermined
−104

U-PLEX biomarker group
1 (NHP) assays

MSD Serum, plasma, cell
culture supernatant

Nonhuman primates 30 Light signal Nondetermined
−1.8 × 105

Human Th1/Th2 10-plex
Ultra-Sensitive kit

MSD Serum, plasma Human 10 Light signal Nondetermined
−104

Human
pro-inflammatory-9
ultrasensitive kit

MSD Serum, plasma Human 9 Light signal Nondetermined
−105

4.3.1. Luminex Assays

Luminex assays have become increasingly important for the de-
tection and quantification of multiple cytokines due to its capacity
to measure many cytokines simultaneously in a single assay with
a small sample volume requirement.

The Luminex system[176,177] enables fast and accurate measure-
ments of cytokines based on utilizing hundreds of microsphere
or bead sets marked with differing ratios of two different fluo-
rophores (Figure 10A) conjugated with monoclonal antibodies
specific for different cytokines (Figure 10B). When cytokines
(Figure 10C) have bound, secondary detection antibodies (Fig-
ure 10D) for the specific cytokines are added. The detection
antibodies are conjugated with signal dyes, providing the micro-
sphere with an additional distinct fluorescent emission signature
upon binding the cytokine (Figure 10F). Then the beads are read
on a Luminex machine (Bioplex-100, Bio-Rad) which has two
lasers (Figure 10E) for the identification of the bead and for
quantifying the detection agent on the beads respectively, thus
realizing quantification of multiple cytokines in a single sample.

Applications of Luminex cytokine assays have rapidly ex-
panded for monitoring of immunity in clinical trials, espe-
cially for early diagnosis of many diseases. For example, Koshiol

et al.[178] evaluated the performance of the Luminex assay for
quantifying various cytokines and other biomarkers in cervi-
cal secretions; the results provided initial evidence for possible
associations between those markers and progression of HPV-
associated cervical pre-cancers. Troy et al.[175] measured cytokines
in bile obtained from gallstone patients utilizing Luminex and
studied the role of immune processes in gallbladder-related dis-
eases. Thus, this technology enables measurements of numer-
ous cytokines within and between experiments providing a more
inclusive and comprehensive depiction of disease than the de-
tection of individual cytokines. However, several factors[176] may
limit the utility and availability of Luminex, such as the dedicated
requirement for analysis instruments and the upfront costs. Lu-
minex assays are also subject to variability because of assay man-
ufacturer, product lot number, and assay execution.

4.3.2. Flow Cytometry

The measurement of intracellular cytokines has a significant im-
pact on the way that immune function is assessed. FCM[179,180]

based on staining of cytokines and cell surface markers with spe-
cific fluorescence-labeled antibodies is a highly effective assay for
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Figure 10. Luminex technique and general principles. Reproduced with the permission.[176] Copyright 2015, The Society for Investigative Dermatology.

the detection of cytokines. This technology permits simultaneous
detection of multiple cytokines at the single cell level with high
throughput, thus offering a tremendous advantage over other
single-cell methods.

The main steps in the FCM assay[179] are cell collection,
fixation, permeabilization, blocking, intracellular staining,
and analysis by FCM. Cells are treated with protein secretion
inhibitors (monensin or brefeldin A) to block intracellular cy-
tokine transport and then digested with tryptase. Subsequently,
paraformaldehyde fixation is applied for the stabilization of cell
membranes and for preservation of intracellular antigenicity
of the cytokines, as well as for enabling the cells to withstand
permeabilization by a detergent. Then, the cell membranes are
permeated using the detergent to permit the cytokine-specific
monoclonal antibodies to penetrate the cell membrane, cy-
tosol, and membranes of the endoplasmic reticulum and Golgi
apparatus. Next, a blocking step is necessary before intracel-
lular cytokine staining to block the nonspecific binding of the
antibodies which reduces nonspecific staining and improves
the specificity of detection. Staining is based on the utilization
of specific fluorescence-labeled antibodies for intracellular cy-
tokines. Finally, samples are measured by FCM, revealing the
size and fluorescence intensity of the cells, and the populations
that express the target cytokine.

Traditionally monensin or brefeldin A (BFA) are used as
protein transport inhibitors, to inhibit cytokine transport.
This results in the accumulation of the cytokine of interest

intracellularly.[181] The distinct mechanism[182] of both inhibitors
to prevent intracellularly produced proteins is well known. In
FCM, it is necessary to discuss the influence of the chosen
protein transport inhibitor on cytokine detection. In general,
monensin[183] is more toxic than BFA when incubation periods
exceed 18 h. To compare the capacity of cytokine secretion in-
hibitors, Schuerwegh et al.[182] evaluated the efficiency of both
monensin and brefeldin A in inhibiting the cytokine secretion of
peripheral blood monocytes in rheumatoid arthritis patients and
healthy persons. The study found that, for flow cytometric detec-
tion of intracellular monocytic cytokines (IL-1𝛽, IL-6, and TNF-𝛼),
brefeldin A was a more potent, effective, and less toxic inhibitor
of cytokine secretion than monensin. More research about mon-
ensin or brefeldin A on the influence of cytokine measurement
was reported by Muris et al.[181] and Miguel and co-workers.[183]

The flow cytometric assay based on intracellular cytokine stain-
ing is the primary immunological technique for evaluating vac-
cine efficacy in clinical trials. This technique allows for the mea-
surement of antigen-specific T cell function, specific cytokines
and cell surface markers expression.[180] This technology permits
identification of antigen-specific T cells induced in response to
the proteins expressed in a candidate vaccine. De Rosa[184] re-
ported the use of flow cytometry for the measurement of several
cytokines in HIV vaccine clinical trials and investigated the ac-
curacy, specificity and precision of these assays. Smith et al.[185]

assessed flow cytometry in clinical trials for the detection of T-
cell immune responses induced by tuberculosis vaccines and

Adv. Sci. 2021, 8, 2004433 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2004433 (21 of 29)



www.advancedsciencenews.com www.advancedscience.com

determined the specifics of this assay as a possible measurement
of biomarkers. In summary, flow cytometry has been standard-
ized and validated, and has been fully implemented as an end-
point assay in several vaccine trials. Although flow cytometry is
a superior method of cell analysis, its biggest disadvantage is the
high cost. Therefore, less expensive devices using the principles
of flow cytometry are likely to be developed.

4.3.3. Mesoscale Discovery Assays

MSD[186] using an improved electrochemiluminescence detec-
tion system, provides an alternative multiplexing technology
platform for the detection of protein biomarkers, especially cy-
tokines, with high sensitivity. In contrast to the Luminex sys-
tem that is in a liquid phase, the MSD detection system is per-
formed on a solid phase. This system[187] uses multi-well plates
fitted with up to ten carbon electrodes per well, with each elec-
trode being coated with a specific capture-antibody. The assay
procedure follows that of a sandwich ELISA, with analytes cap-
tured on the electrode being detected with an analyte specific
ruthenium-conjugated secondary antibody. Upon electrochemi-
cal stimulation, the ruthenium label emits light at the surface of
the electrodes, then sensitive photodetectors collect and quanti-
tatively measure the light emitted from the microplates, allowing
the concentration of the analyte to be determined relative to the
particular electrode.

Due to high-sensitivity, short assay time and the capability
for multiplex detection, MSD technology has been used to
detect ultralow levels of cytokines (up to five logs of linear
dynamic range) performed with very low amounts of sample.[188]

Dabitao et al.[189] compared the multiplex measurement of pro-
inflammatory cytokines (IL-6, IL-8, IL-10, TNF-𝛼, IL-12p70, and
IL-1𝛽) in human serum using two commercial assays, the MSD
assay and the Cytometric Bead Array (CBA) flow cytometric
assay. It was demonstrated that the MSD assay provided a more
reliable assessment of the pro-inflammatory cytokines tested in
the serum of healthy and HIV-infected individuals. In serum,
the MSD platform consistently quantified levels of endogenous
IL-12p70, TNF-𝛼, and IL-10 that were undetectable by the CBA
assay. Chaturvedi et al.[190] developed a novel panoptic IL-6 MSD
assay for quantification of both high and low molecular weight
(MW) IL-6 with sensitivity of 9.77 pg L−1. The top-performing
antibody pair from 36 capture and four detection candidates was
validated on the MSD platform. High MW forms of IL-6, in size
fractionated serum samples from myelodysplastic syndrome and
rheumatoid arthritis patients were detected by the assay but not
by a commercial kit. This panoptic IL-6 MSD assay may be useful
to evaluate total IL-6 concentrations across normal and diseased
indications for greater understanding of IL-6 functionality and
responses and/or resistance to anti-IL-6 therapeutics. Thus,
the MSD assays have great advantages for high-sensitive quan-
tification of cytokines but it is expensive requiring centralized
instrument and kits and is not suitable for PoC testing.

4.4. Mass Cytometry

In recent years, mass cytometry,[191,192] a fusion of two experi-
mental platforms (flow cytometry and elemental mass spectrom-

etry), has been increasingly used for the rapid analysis of sin-
gle cells. This assay enables measurement of over 40 simulta-
neous cellular parameters at single-cell resolution, significantly
facilitating high-dimensional, quantitative analysis of the effects
of bioactive molecules on cell populations and thus enhancing
the ability of cytometry to evaluate complex cellular systems and
processes.[192,193] Mass cytometry utilizes rare earth metal iso-
topes as tags bound to antibodies, instead of fluorophores.[194]

Additional details regarding the basic principles and workflow of
a typical mass cytometry technology platform can be found in
Spitzer and Nolan[192]

Due to the characteristic of discrete readouts, the use of iso-
topes in mass cytometry as reporters increases the number of
measurable parameters per cell.[193] Additionally, this platform is
quantitatively accurate with linear sensitivity across four orders
of magnitude. Thus, the high-dimensional mass cytometry en-
ables simultaneous and highly sensitive measurement of multi-
ple cytokines from innate and adaptive immune cell subsets with
single-cell granularity. For example, Baxter et al.[194] developed a
comprehensive mass cytometry assay for single-analysis of im-
munophenotype and cytokine production in peripheral whole
blood. This single-cell proteomic approach enables simultane-
ous evaluation of multiple immune cell types, and detection
of various cytokine perturbations in the milieu of patient spe-
cific "pathogenic" peripheral blood. The peripheral blood analysis
via mass cytometry also provides a platform to identify patient-
specific dysregulated cell subsets and their abnormal cytokine
production in autoimmune disease, which allows for the person-
alization of therapeutic options. As a consequence, specific treat-
ment choices can be tested in vitro to assess their immunomodu-
lation effectiveness. To achieve a single-cell system-level perspec-
tive of SLE immunopathogenesis, O’Gorman et al.[195] performed
phenotypic and functional (cytokines) characterization of pedi-
atric SLE patients and healthy controls blood via mass cytome-
try to understand how cellular and molecular perturbations may
drive SLE disease activity. The analysis revealed a distinct mono-
cyte cytokine signature shared among clinically heterogeneous
pediatric SLE patients. This study demonstrates the application
of the mass cytometry platform for understanding immune dys-
regulation mechanisms in autoimmune disorders. However, this
technique has some limitations[191] including the strict require-
ment for a separate metal isotope per probe (no equivalent of
forward or side scatter) and being destructive (no possibility of
sorted cell recovery). The current configuration of the mass cy-
tometer also has a limited cell transmission rate, thus requiring
a higher input number of cells.

4.5. SomaLogic SOMAscan Assay

SomaLogic SOMAscan (slow off-rate modified aptamer scan)
assay[196,197] is developed for affinity-proteomic analysis which al-
lows simultaneous measurement and quantitation of over 1000
proteins directly in serum, other body fluids and cell lysates.
This technique is based on aptamer binding. SomaLogic[198] has
developed slow off-rate modified aptamers called SOMAmers
which are protein recognition reagents with high binding affini-
ties, stable chemical structures, easy production and an estab-
lished selection processes. The selected target aptamers with 3D
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structure are modified into a “SOMAmer” that can bind proteins
with high specificity and affinity.[199] Protein targeted SOMAmer
are collected, labeled, denatured and hybridized to DNA arrays
fabricated by the complementary strand of the SOMAmers. This
assay can accurately and rapidly identify and quantify multi-
ple proteins across approximately eight logs of concentration in
small sample volumes.[196] Christiansson et al.[199] introduced
SomaLogic SOMAscan and other multiplex platforms for pro-
teins (such as IFN-𝛾 , MCP-1, IL-8, IL-6, VEGF) quantification by
running pre- and post-treatment plasma samples from Chronic
myeloid leukemia (CML) patients. Lim et al.[200] used the aptamer
based SomaLogic SOMAscan assay and the multiplex bead-based
assay to identify circulating proteins predictive of response to im-
munotherapy in melanoma patients treated with a combination
of immune checkpoint inhibitors. This study assessed the ex-
pression of four proteins (IL-1RA, IL-1A, TNF-𝛼, and IL-6) and
highlights significant limitations imposed by inconsistent sensi-
tivity and specificity due to differences in the detection antibod-
ies or aptamers utilized in these widespread biomarker discov-
ery approaches. Furthermore, this assay is relatively expensive
which limits its wide application especially in large scale clinical
trials.[196]

5. Conclusions and Future Perspectives

Cytokine quantification is a highly active field of study and can
provide comprehensive insights for disease diagnosis and treat-
ment. The current techniques have successfully demonstrated
their potential to provide highly sensitive and time-efficient detec-
tion with various signal readouts either for in vitro or in vivo ap-
plications. In this review, we summarized various cytokine func-
tions in immune and inflammatory responses and reviewed the
stability of cytokines under different processing and storage con-
ditions which is critical for accurate and reliable cytokine quan-
tification. Furthermore, we discussed recent advances of several
in vitro and in vivo cytokines assays by comparing their advan-
tages and disadvantages. It is challenging to detect cytokines
at desirable detection limits for achieving reliable outcomes, al-
though significant efforts have been dedicated to developing cy-
tokine assays with enhanced performance including sensitivity,
biocompatibility and stability. Research in the area of cytokines
quantification is still in its developing stages and we are on the
way to achieve effective solutions for accurate and real-time de-
tection of multiple cytokines in vivo.

The take home message for cytokine quantification in clinical
analyses include: 1) assay reliability: considering the short half-
life of cytokines, proper sample preparation/handling is essential
to make sure that the analysis is accurate and reliable. Under-
standing the actual status of the cytokines and potential interfer-
ences in clinical samples is essential to develop reliable assays, 2)
sensitivity: the recent CRISPR/Cas advancement in analytical sci-
ence has demonstrated great potential for biosensors with super
high sensitivity and specificity.[159,201] Due to the low abundance
of cytokines, it is expected that CRISPR/Cas biosensing technol-
ogy will definitely contribute to cytokine detection in clinical anal-
ysis, 3) PoC testing: PoC tests will play an important role as an
essential component of clinical diagnosis, especially for mon-
itoring responses to treatment. Microfluidic chips, particularly
microfluidic paper based analytical devices have demonstrated

great potential for this purpose,[202,203] we expect to hear more
about their success in cytokine quantification, 4) multiplex de-
tection: cytokines form complex cytokine network and multiplex
cytokines assays provide comprehensive information about the
role of immune activation and inflammation in the pathogene-
sis of multiple disease states simultaneously. Commercially avail-
able cytokine kits with high throughput and short assay times
meet requirements for multiple cytokine measurements, offer-
ing tremendous assay advantages,[204,205] while their performance
requires further improvement in terms of real-time quantifica-
tion capability, cost, and simplicity. Exploration of different signal
readout modalities and development of microfluidic chips will be
helpful to address this challenge, and 5) real-time monitoring:
cytokines are subject to dynamic secretion processes. Thus, real-
time analyses of cytokines are essential for the precise determina-
tion and characterization of immune states for clinical diagnosis
and treatment. Real-time cytokine detection can be realized by
using structure-switching aptamer-based biosensors. The devel-
opment of PoC devices combined with microfluidic techniques is
promising for rapid and real-time cytokine quantification.[113,206]

There are unmet needs to develop a technology which is able to
conduct measurements in real-time with high accuracy and ef-
ficiency, and to recognize and differentiate between various cy-
tokines simultaneously while providing output signals efficiently
and rapidly in a PoC fashion. However, it is not easy to realize a
technology with all these advantages. It is fair to speculate that
there will be great progress regarding cytokine quantifications
with the aid of new tools and discoveries in cross disciplinary
fields such as nanotechnology, biotechnology, and molecular and
device engineering.
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