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Abstract

Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry can provide important 

insight into higher order protein structure. It has been previously shown that neighboring 

hydrophobic residues promote a local increase in DEPC concentration such that serine, threonine, 

and tyrosine residues are more likely to be labeled despite low solvent exposure. In this work, we 

developed a Rosetta algorithm that used knowledge of labeled and unlabeled serine, threonine, and 

tyrosine residues and assessed their local hydrophobic environment to improve protein structure 

prediction. Additionally, DEPC-labeled histidine and lysine residues with higher relative SASA 

values (i.e. more exposed) were scored favorably. Application of our score term led to reductions 

of the root-mean-square deviations (RMSDs) of the lowest scoring models. Additionally, models 

that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and 

required command lines is included. Our work demonstrated the considerable potential of DEPC 

covalent labeling data to be used for accurate higher order structure determination.
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With the aid of various labeling reagents, mass spectrometry (MS) is emerging as an 

attractive technique for investigating protein structure. Techniques such as hydrogen-

deuterium exchange, chemical cross-linking, and covalent labeling have been successfully 

employed to elucidate protein structure and dynamics.1–3 Covalent labeling with MS (CL-

MS), in which labeling reagents irreversibly modify protein residues, can provide insight 

into relative solvent exposure of labeled residues. Hydroxyl radical footprinting, radical 

trifluoromethylation, and carbene footprinting are promising techniques in covalent labeling 

mass spectrometry that rely upon label generation via photolysis or radiolysis.4–6 

Diethylpyrocarbonate (DEPC) is a popular covalent labeling reagent that is commercially 

available; it also does not require additional steps such as radical generation.7–9 One 

advantage of DEPC as a labeling reagent is the single product generation for labeled 

residues. DEPC reacts with six nucleophilic residues (Cys, Lys, His, Ser, Thr, and Tyr) in 

addition to the protein N-terminus.7, 10,11 Labeled residues are identified by a mass increase 

of +72.021 Da.12 Structures of DEPC and DEPC-modified residues are shown in 

Supplementary Figure 1. With careful attention to concentration and exposure times to avoid 

labeling-induced structural perturbation, cysteine scrambling13 or hydrolysis leading to label 

loss14, DEPC is a promising covalent labeling reagent to use for structure elucidation. While 

DEPC labeling yields valuable structural information, labeling data is too sparse to 

unambiguously determine protein structure. Computational methods are necessary in 

combination with the DEPC labeling data in order to illuminate additional structural detail.

MS-guided modeling has previously been successfully executed for protein structure 

investigation.3, 15–23 One tool that has been applied is Rosetta, a powerful molecular 

modeling software suite.24, 25 Amongst its many applications, structure prediction using 

sparse data from a variety of experimental techniques (including mass spectrometry) has 

been implemented.24, 26–34 The Rosetta software features structural modeling applications, 

such as ab initio modeling that relies only on an amino acid sequence for structure building 

and template-guided homology modeling, that can predict protein structure.25, 35 

Additionally, Rosetta is capable of assessing relative solvent exposure, making it an ideal 

tool to predict protein structure from covalent labeling data. Functionality to use covalent 

labeling data to guide protein tertiary structure prediction has successfully been incorporated 
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into the Rosetta software and shown to improve model and distribution quality.26, 27, 29 

Overall, there is a growing need for automated and reliable algorithms that generate protein 

structures based on CL-MS data, so as to move beyond reliance on manual interpretation of 

data in light of crystal structures and homology models.

Despite its ability to dissolve in aqueous solutions up to 40 mM, DEPC is a hydrophobic 

molecule with limited water solubility.12, 36 Recently, it was shown that protein 

microenvironments enriched in neighboring hydrophobic residues led to enhanced labeling 

efficiency of Ser, Thr, and Tyr (STY) residues. It was proposed that nearby hydrophobic 

residues were facilitating an increased local concentration of DEPC, thus making STY 

residues more likely to be labeled.12 Here, we exploited the connection between the 

microenvironmental effect of neighboring hydrophobic residues and labeling of STY 

residues from DEPC-based CL-MS for structural modeling. We developed a score term to 

assess models based on relative solvent accessible surface area (SASA) values and 

hydrophobic neighbor counts for labeled and unlabeled STY residues. Additionally, as more 

exposed residues are more likely to be covalently labeled, our score term rewarded models 

with labeled histidine and lysine residues that exhibited higher relative SASA values. While 

covalent labeling data can be difficult to accurately quantify37, 38, we have implemented a 

score term that relies only upon residue DEPC-label status for structure prediction 

improvement. This is the first implementation of DEPC labeling data-guided structure 

prediction into the Rosetta software suite. When testing our algorithm on a benchmark set of 

six proteins, we found that inclusion of DEPC data led to lower, improved top scoring model 

root-mean-square deviation (RMSD) values and to an improved funnel-like quality of the 

model distributions.

MATERIALS AND METHODS

Benchmark set.

The benchmark set was comprised of six proteins for which we obtained DEPC labeling 

data for His, Lys, Ser, Thr, and Tyr residues. The benchmark set included carbonic 

anhydrase (PDB 1V9E, 259 residues), ubiquitin (PDB 1UBQ, 76 residues), myoglobin 

(PDB 1DWR, 152 residues), β−2-microglobin (PDB 1JNJ, 100 residues), lysozyme (PDB 

2LYZ, 129 residues), and human growth hormone (PDB 1HGU, 191 residues).

The DEPC labeling experiments and associated liquid chromatography-MS measurements 

were conducted as described in previous work.12, 14, 39 For all the DEPC-protein reactions, 

conditions were chosen to achieve modification levels of between 1 and 1.5 labels per 

protein on average to maintain the structural integrity of the protein.7, 40 Each protein was 

dissolved at a defined concentration between 10 and 50 μM in a 10 mM 3-(N-

morpholino)propanesulfonic acid (MOPS) buffer at pH 7.4. Then, a 4- or 5-molar excess of 

DEPC was added and allowed to react for either 1 or 5 min. The reactions were performed at 

37 °C and were quenched by the addition of imidazole. Between three and five replicates of 

the labeling experiments were carried out for each protein.

To enable identification of the DEPC modified residues, the labeled proteins were digested 

using immobilized trypsin or chymotrypsin after buffer exchange into a phosphate buffer at 
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pH 8.0. For proteins with disulfide bonds, reduction and alkylation with a 40-fold excess of 

tris(2-carboxyethyl)phosphine (TCEP) and an 80-fold excess of iodoacetamide, respectively, 

were performed prior to digestion. Further experimental details about the digestions of 

ubiquitin12, β2-microglobulin12, human growth hormone12, carbonic anhydrase39, 

myoglobin39, and lysozyme41 can be found elsewhere.

The peptide fragments after protein digestion were measured by LC/MS on a Thermo 

Scientific (Waltham, MA) Orbitrap Fusion mass spectrometer equipped with a nano-

electrospray ionization source. On-line LC separations were conducted using a Thermo 

Scientific Easy-NanoLC 1000 system with a Thermo Scientific Acclaim PepMap C18 

nanocolumn (15 cm × 75 μm ID, 2 μm, 100 Å). Peptides were eluted using a gradient of 

acetonitrile containing 0.1% formic acid at a flow rate of 0.3 μL/min. The gradient of 

acetonitrile was increased from 0 to 50% for 50 or 60 minutes, depending on the protein 

digest, before ramping up the acetonitrile to 100% for 15 additional minutes. The longer 

acetonitrile gradient was used for the digests of carbonic anhydrase, lysozyme, and 

myoglobin, while the shorter gradient was used for the ubiquitin, β2-microglobin, and 

human growth hormone. Peptides were identified and their DEPC labeling extents were 

determined using a custom software pipeline42 that allows labeling percentages as low as 

0.001% to be determined. Residue level DEPC modification percentages (% labeling) were 

obtained from chromatographic peak areas of the unmodified and modified peptides using 

approaches described previously.39 In the work described here, a residue was considered 

labeled if its labeling percentages exceeded 0.01%.43

Ab initio and homology model generation with Rosetta.

Fragment libraries were generated using the Robetta server for all six benchmark proteins.44 

3mer and 9mer fragments and FASTA sequences of each benchmark proteins were used with 

the Rosetta AbInitioRelax protocol to generate 10,000 models per benchmark protein. The 

root-mean-square deviation (RMSD) was calculated by supplying the respective crystal 

structures during scoring with the Rosetta energy function (abbreviated Ref15). Models were 

then ranked by score. The lowest RMSD model generated was used to determine if 

homology modeling was necessary for the particular protein. Proteins whose lowest RMSD 

model exhibited an RMSD greater than 5 Å were further modeled with homology modeling.

Homology models for carbonic anhydrase, lysozyme, and human growth hormone were 

generated with the Rosetta Comparative Modeling protocol.35 For each protein, seven 

templates (Supplementary Table 1) with varying sequence coverage (60–100%) and identity 

(24–99%) were used during modeling. Each template was used for the generation of 500 

models for a total of 3,500 models built for each protein. Upon generation, models were 

relaxed with Rosetta’s Relax application prior to scoring with the Rosetta Ref15 energy 

function and RMSD calculations.45

Identification of hydrophobic neighbor count and relative SASA parameters.

In order to derive the values used in the score term, we developed a custom Python script to 

identify the hydrophobic neighboring residues of labeled and unlabeled STY residues using 

the benchmark crystal structures. Crystal structures were only used for the initial derivation 
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of score term parameters. Labeling data for STY residues is included in Supplementary 

Table 2. Distance (distij) was calculated between the hydroxyl group oxygen atom in labeled 

and unlabeled Ser, Thr, and Tyr (STY) residues (i) and the beta carbon in the side chain of 

hydrophobic residues (j). Hydrophobic neighboring residues were considered to be residue 

types Phe, Ile, Trp, Leu, Val, Met, Tyr, Ala, and Pro, as used previously.12 The total 

contribution to the neighbor count was calculated as shown in Eq. 1.

hnci =   ∑i ≠ j
# hydrophobic residues 1.0

1 + exp 2 × distij − 8 Å (1)

A midpoint value of 8.0 Å and a steepness value of 2.0 were chosen to give a full neighbor 

contribution up to distances of 6 Å, the molecular dimensions of the DEPC molecule.12 

Relative SASA, the solvent accessible surface area of the residue sidechain normalized by 

the free residue solvent accessible surface area of the side chain, was calculated for the 

crystal structures using Rosetta RelSASA. Relative SASA values ranged from 0% indicating 

complete burial to 100% implying full exposure. A relative SASA range of 5–35% 

demonstrated ~1 residue difference in average neighbor count between 24 labeled and 22 

unlabeled residues. Labeled HK residues are listed in Supplementary Table 3. The relative 

SASA for labeled HK residues was calculated using the Rosetta RelSASA application, and 

crystal structures of benchmark proteins were used as input structures. A relative SASA 

range of 65–100% was pursued as residues within this range are very solvent exposed.

To assess the noisiness of the exposure data, we investigated the number of false negatives in 

our datasets. False negatives were defined as unlabeled residues with high solvent exposure, 

and it has been shown that datasets can accommodate up to 35% false negatives data and 

still meaningfully guide protein structure prediction.26 Unlabeled STY residues with 5–35% 

relative SASA and a high hydrophobic neighbor count were considered false negatives. We 

defined a high hydrophobic neighbor count as greater than 3.91, which is the midpoint 

between the average labeled hydrophobic neighbor count (4.42) and the average unlabeled 

hydrophobic neighbor count (3.39). False negatives within the 65–100% SASA HK residues 

were defined as unlabeled HK residues with greater than 80% SASA, the midpoint between 

the average labeled SASA and the averaged unlabeled SASA of HK residues. False positives 

were also calculated by assessing the number of labeled STY residues with hydrophobic 

neighbor counts less than 3.91 and labeled HK residues with relative SASA values less than 

80% relative SASA. The percentage of false negatives and false positives for each residue 

type set was calculated using a custom Python script.

DEPC-guided scoring and model evaluation.

Based on the observed differences in Ser, Thr, and Tyr labeled and unlabeled hydrophobic 

neighbor counts, a score term was developed to harness these variations for structure 

prediction. The labeled portion of the term, STY_labeled, was calculated using Eq. 2:

STY _labeled =  ∑i
n   1.0

1 + exp 8 × hnci − 4.42 − 1 (2)
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in which n represents the number of labeled Ser, Thr, and Tyr residues, hnci is the 

hydrophobic neighbor count (see equation 1; calculated within the Rosetta score term) of the 

labeled Ser, Thr, or Tyr residue i, 8.0 is the steepness value, and 4.42 is the average 

hydrophobic neighbor count value calculated from the number of hydrophobic neighboring 

residues of labeled Ser, Thr, and Tyr residues according to the initial derivation. The per-

residue depc_ms_STY_labeled value ranged from −1, representing agreement with the 

labeled residue having a hydrophobic environment, to 0, indicating disagreement because 

the labeled residue did not exhibit a hydrophobic environment. The unlabeled portion of the 

term, STY_unlabeled, was calculated as shown in Eq. 3:

STY _unlabeled = ∑i
n −1.0

1 + exp 8 × hnci − 3.39   (3)

in which n is the number of unlabeled Ser, Thr, and Tyr residues, hnci is the hydrophobic 

neighbor count (calculated within Rosetta) of the particular unlabeled Ser, Thr, or Tyr 

residue i, 8.0 is the steepness value, and 3.39 is the average hydrophobic neighbor count 

value of unlabeled Ser, Thr, and Tyr residues in the benchmark protein crystal structures. 

The per-residue values also ranged from −1, indicating the unlabeled residue had fewer 

hydrophobic neighbors, to 0, implying that the unlabeled residue had more hydrophobic 

neighboring residues and disagreed with expected trends.

Labeled His and Lys residues were rewarded based on their relative SASA value, as shown 

in the HK_labeled term in Eq. 4:

HK_labeled = ∑i
n    1.0

1.0 + exp 2.0 × relSASAi − 0.65 − 1 (4)

in which n is the number of labeled His and Lys residues, relSASAi is the relative SASA 

value of the labeled His or Lys residue i, 2.0 is the steepness value, and 0.65 is the midpoint 

value of the score. The midpoint value was set as the lower end of the investigated SASA 

range, 65–100%, which demonstrated a measurable difference in the average relative SASA 

value between labeled and unlabeled residues.

Finally, the labeled and the unlabeled scores for Ser, Thr, and Tyr residues along with the 

portion from labeled His and Lys residues were aggregated to determine depc_ms, as shown 

in Eq. 5.

depc_ms =  STY _labeled +  STY _unlabeled + HK labeled (5)

The depc_ms term was used to score 10,000 ab initio models (for each of the benchmark 

proteins β2-microglobin, ubiquitin, and myoglobin) and 3,500 homology models (for each 

of the benchmark proteins carbonic anhydrase, lysozyme, and human growth hormone). The 

total score was calculated as a weighted superposition of the initial Rosetta score and the 

depc_ms score (as shown in Eq. 6).
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Total score = 9.0 × depc_ms score +  Rosetta Ref15 score (6)

A weight of 9.0 was used, similar to those reported in previous work.27, 29 A tutorial 

describing how to use DEPC data to predict protein structure in Rosetta is included in the 

Supplementary Materials section.

A comparison of Rosetta scoring and scoring with depc_ms was executed using several 

evaluation metrics. The top scoring model RMSD value was compared before and after 

rescoring. Additionally, the funnel-like quality, or the shape of the score versus RMSD 

distributions, was assessed with Pnear. The metric Pnear provided insight into whether the 

score versus RMSD distributions featured distinctive low-energy conformations that were 

similar to the crystal structure. We used a funnel depth of 1.0 as proposed by Bhardwaj et al 

and employed in our previous score term implementations.27, 29, 46 Pnear was calculated 

according to Eq. 7:

Pnear =  
∑m = 1

n exp −
rmsdm2

λ2 exp −
scorem

kBT

∑m = 1
n exp −

scorem
kBT

in which n represents the number of models generated, scorem is the score of the model, and 

rmsdm is the RMSD of the particular model to the crystal structure. The λ value was 

maintained at 2.0 Å to specify which models were considered native-like. kBT, the effect of 

funnel depth, was maintained at a value of 1.0. A Pnear value of 0 indicated no funnel-like 

quality while a value of 1 signified a perfect funnel-like distribution.

RESULTS AND DISCUSSION

Identification of relative SASA ranges to maximize differences in labeled and unlabeled 
residues.

Based on the proposition that DEPC labeling for STY residues is sensitive to neighboring 

hydrophobic residues in the microenvironment,12 we aimed to use Rosetta to elucidate a 

notable difference in hydrophobic neighbor count between labeled and unlabeled STY 

residues.

The six proteins in our benchmark set for which we obtained DEPC-based CL-MS data were 

carbonic anhydrase, ubiquitin, myoglobin, β2-microglobin, lysozyme, and human growth 

hormone. We used the crystal structures of the benchmark proteins during the score 

development in order to identify the number of hydrophobic neighbors in the 

microenvironment and relative solvent exposures of the STY residues.

We identified all STY residues with a relative SASA ranging from 5 to 35%. Within the 

benchmark set, this encompassed 24 labeled STY residues and 22 unlabeled STY residues. 

This SASA range captured low-exposure STY residues, similar to those which were noted to 

be relevant to hydrophobic microenvironmental effects. Subsequently, we assessed the 
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hydrophobic microenvironment for all 46 low-exposure STY residues by measuring the 

hydrophobic neighbor counts.

To maintain the 6 Å distance similar to DEPC molecular dimensions12 while still accounting 

for neighbors likely to have a microenvironmental effect on labeling, we used a gradual 

neighbor count contribution method. We calculated the per-residue neighbor count by 

determining the contribution of neighboring hydrophobic residues based on the distance 

from the STY hydroxyl group. The average labeled STY hydrophobic neighbor count was 

determined to be 4.42, while the average unlabeled STY hydrophobic neighbor count was 

3.39, as shown in Figure 1. The violin plot in Figure 1 shows the relative frequency of 

hydrophobic neighbor count values for labeled and unlabeled STY residues. There were less 

than four hydrophobic neighbors for 46% of labeled STY residues versus 68% of unlabeled 

STY residues while only 25% of labeled residues and 14% of unlabeled residues had a 

hydrophobic neighbor count greater than five. Labeled STY residues exhibited more 

hydrophobic neighbors than unlabeled STY residues, corroborating that STY labeling is 

sensitive to neighboring hydrophobic residues within the microenvironment.

Using the observed trends, we developed a Rosetta score term that rewarded models 

containing labeled STY residues with higher hydrophobic neighbor counts and also 

rewarded models containing unlabeled STY residues with lower hydrophobic neighbor 

counts.

Additionally, since exposed His and Lys residues are more likely to be labeled by DEPC12, 

we developed a score that rewarded labeled His and Lys residues with high exposure 

(independent of their hydrophobic neighbor count). We used a relative SASA range of 65% 

to 100% to reward labeled His and Lys residues with high solvent exposure. The violin plot 

distribution for labeled and unlabeled HK relative SASA values is shown in Supplementary 

Figure 2, which demonstrated the expected trend that labeled HK residues were more likely 

to be strongly solvent exposed. The average relative SASA for labeled residues was 0.09 

higher than those of unlabeled residues. None of the unlabeled HK residues had relative 

SASA values greater than 0.9, while 37.5% of labeled HK residues had relative SASA 

higher than 0.9.

We sought to examine the noise level of DEPC labeling data by investigating false negative 

data points. False negative data points within covalently labeling datasets have been 

previously examined; it has been suggested that 35% of exposed residues can be tolerated as 

false negatives while still being useful for protein structure prediction.26 We defined false 

negatives in this work as unlabeled STY residues with a hydrophobic neighbor count greater 

than 3.91 and unlabeled HK residues with relative SASAs greater than 80%. We found that 

26% of the subset of STY residues with 5–35% SASA were false negatives, and 16% of the 

unlabeled HK residues within 65–100% SASA were false negatives. Both residue subsets 

fell well below the 35% tolerance cutoff, demonstrating that while some noise existed in our 

datasets, it did not impact our ability to predict accurate structures. False positive data points 

were defined as labeled STY residues with a hydrophobic neighbor count less than 3.91 and 

labeled HK residues with relative SASAs less than 80%. We determined that 15% of labeled 

STY residues with 5–35% relative SASA were false positives, and 16% of labeled HK 
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residues with 65–100% relative SASA were false positives. Subsequently, we sought to 

utilize the observed exposure and microenvironment trends for STY and HK residues in 

Rosetta protein structure prediction.

Ab initio models scored with the DEPC-guided score term showed improvement in best 

scoring model RMSDs and funnel-like distributions. Based on differences in hydrophobic 

neighbor counts for labeled and unlabeled STY residues (Figure 1) and differences in SASA 

for labeled and unlabeled HK residues (Supplementary Figure 2), we proceeded to develop a 

score term that rewarded the desired trends. An overview of the score term is shown in 

Figure 2. We mapped the label status of labeled and unlabeled residues onto protein models 

using the DEPC-based CL-MS data. Panel 2a depicts the inputs of the score term, which 

included labeling data as label status (L for labeled, U for unlabeled) and appropriate residue 

number along with ab initio or homology protein models. Additional details can be found 

the tutorials in Supplementary Note 1. We calculated relative SASA for all mapped residues 

and hydrophobic neighbor counts for buried STY residues (Panel 2b). The score term 

included components that rewarded labeled STY residues with high numbers of hydrophobic 

neighbors, rewarded unlabeled STY residues with low numbers of hydrophobic neighbors, 

and rewarded labeled HK residues with high solvent exposure (Panel 2c). While our initial 

analysis of hydrophobic neighbor counts and relative SASA ranges relied on crystal 

structures, no crystal structures were used in model generation or score term evaluation. To 

test DEPC-guided scoring, we generated 10,000 ab initio models for each protein within our 

benchmark set. Upon examination of the ab initio models, we noticed that three of the 

benchmark protein model sets did not contain any models under 5 Å RMSD to the crystal 

structure. The DEPC score was designed to distinguish native-like models (RMSD < 5 Å) 

from incorrect models (RMSD > 10 Å). In order to have higher quality models present in all 

of the benchmark cases, homology models were generated for those three benchmark 

proteins. The results of scoring those homology models will be discussed in the next section.

For the three proteins whose ab initio model distributions included native-like models 

(ubiquitin, myoglobin, and β2-microglobin), we tested our score term, depc_ms, by adding 

the DEPC score to the total Rosetta score. As seen in Figure 3, the best scoring model 

RMSD values improved from Rosetta scoring (Figure 3a) to scoring with Rosetta and 

depc_ms, our DEPC-guided score term (Figure 3b). The RMSD of the best scoring model 

for β2-microglobin improved from an RMSD of 3.14 Å to 2.13 Å while ubiquitin improved 

from an RMSD of 3.16 Å to 1.97 Å. Myoglobin saw notable improvement from an RMSD 

of 7.11 Å to 1.36 Å when scoring with the depc_ms term.

Additionally, the funnel-like quality of the distributions was quantified by the Pnear value, 

with a higher Pnear value (near 1) indicating more funnel-like quality and a lower Pnear value 

(near 0) indicating lack of any funnel-like quality. We noticed that all distributions became 

more funnel-like, i.e. increased in Pnear, with DEPC labeling data included in scoring, 

indicating that we were selecting lower-energy conformations that were more similar to the 

native. For β2-microglobin, Pnear values increased from 0.22 with Rosetta to 0.31 with 

depc_ms; ubiquitin improved from 0.08 to 0.32. Myoglobin exhibited the largest 

improvement in Pnear value, increasing from 0.07 to 0.33 with depc_ms scoring.
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Homology model predictions also improved upon scoring with DEPC data.

For carbonic anhydrase, human growth hormone, and lysozyme, the best model generated 

with ab initio modeling had an RMSD value greater than 5 Å to the crystal structure. We 

thus sought to generate additional models with Rosetta’s comparative modeling protocol. 

The homology modeling templates with their respective sequence identities and similarities 

are shown in Supplementary Table 1. By generating 500 models per template and using 

multiple templates per protein, we were able to generate a distribution of models with 

varying RMSD values. We scored all models with depc_ms and subsequently added the 

score to the Rosetta score. Total score versus RMSD plots along with the best scoring model 

aligned with the crystal structure are shown in Figure 4. While the models identified by 

Rosetta were already significantly better for homology models (as compared to the ab initio 
models in the last section), scoring with DEPC data further improved model selection 

consistently. The human growth hormone best scoring model RMSD improved from 4.31 Å 

with Rosetta without labeling data to 3.85 Å with Rosetta with DEPC labeling data by way 

of depc_ms. The lysozyme best scoring model RMSD (0.78 Å) stayed constant from Rosetta 

to scoring with DEPC data, at already accurate atomic detail. Finally, the carbonic anhydrase 

best scoring model RMSD improved from 1.33 Å to 1.22 Å.

Improvements in the funnel-like quality of the distributions, Pnear, were also noted for both 

human growth hormone and carbonic anhydrase. The Pnear value of lysozyme, for which the 

best scoring model had a sub-angstrom RMSD, stayed at 0.83, an already near-perfect value. 

Human growth hormone Pnear slightly improved from 0.01 to 0.02 while carbonic anhydrase 

Pnear improved from 0.65 to 0.69 with DEPC scoring. Overall, our scoring methodology 

with DEPC labeling data successfully improved best scoring model quality and distribution 

funnel-like quality.

CONCLUSION

To employ DEPC labeling MS data in protein structure prediction, we analyzed the 

difference in hydrophobic neighbor counts between labeled and unlabeled STY residues and 

used labeled HK residues with high solvent exposure. Our benchmark set, consisting of 

DEPC-labeled ubiquitin, β2-microglobin, myoglobin, human growth hormone, carbonic 

anhydrase, and lysozyme, was used to explore the utility of DEPC labeling in protein 

structure elucidation. We developed a novel Rosetta score term which rewarded STY 

residues known to be DEPC labeled if those residues exhibited a hydrophobic 

microenvironment and rewarded unlabeled STY residues that lacked such hydrophobic 

microenvironment. Additionally, the term rewarded labeled HK residues with high solvent 

exposure. In a test of our algorithm, we noted that usage of DEPC data improved best 

scoring model RMSD and the funnel-like quality of the model distribution. For the six 

benchmark proteins, we saw improvement in prediction quality for both ab initio and 

homology models. Notably, we elucidated accurate atomic detail for all six proteins upon 

employment of DEPC labeling data. The advantageous qualities of the DEPC label, such as 

single product generation and ease of commercial availability, along with our DEPC-guided 

Rosetta modeling that is solely based on label status and computationally determined 
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exposure metrics underscore the huge potential of DEPC labeling for protein structure 

determination.

While our work was primarily focused on DEPC labeling, different modeling strategies for 

other types of labels have previously been developed. The nature of the label generally 

dictates the modeling strategies warranted. For instance, hydroxyl radical protein 

footprinting is sufficiently modeled with solvent exposure alone.29 Modeling HDX labeling 

benefits from accounting for both residue exposure and flexibility.47 Other labels with 

microenvironmental effects would benefit from further analysis regarding modeling 

strategies to employ. Future work will continue to pursue covalent labeling data 

implementation into model generation protocols. Additionally, we aim to test this 

methodology on larger (500–1000 residues) proteins. We plan to examine the accuracy of 

our scoring function when utilizing DEPC data as labeling extent. Further studies will also 

emphasize the role of dynamics and microenvironmental effects in covalent labeling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Violin plot demonstrating the relative frequency of different hydrophobic neighbor count 

values for labeled STY (blue, includes 24 residues) and unlabeled STY (orange, includes 22 

residues) residues with relative SASA values of 5–35% from benchmark protein crystal 

structures. Mean and extrema are shown on the plot.
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Figure 2. 
Overview of the DEPC score term (depc_ms) algorithm. The DEPC score term required CL-

MS labeling data (residue numbers and label status) as input, along with input structures, 

which were either generated with homology or ab initio modeling (a). The relative SASA 

was calculated for all residues listed in the input file (b). If the residue was STY, additionally 

the hydrophobic neighbor count was calculated for residues with relative SASA between 5 

and 35% (c). Labeled HK residues with higher relative SASA were rewarded (d). Labeled 

STY residues with more hydrophobic neighbors and unlabeled residues with less 

hydrophobic neighbors were rewarded as well (e).
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Figure 3. 
Score versus RMSD to the crystal structure for 10,000 ab initio models for a, Rosetta 

without DEPC labeling data and b, Rosetta with DEPC labeling data. Best scoring models 

are marked by a black star and shown in color aligned to the crystal structure (grey). Pnear 

values are listed.
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Figure 4. 
Score versus RMSD to the crystal structure for 3,500 homology models for a, Rosetta 

without DEPC labeling data and b, Rosetta with DEPC labeling data. Best scoring models 

are marked by a black star and shown in color aligned to the crystal structure (grey). Pnear 

values are listed.
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