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Abstract

This work proposes a novel framework for brain tumor segmentation prediction in longitudinal 

multi-modal MRI scans, comprising two methods; feature fusion and joint label fusion (JLF). The 

first method fuses stochastic multi-resolution texture features with tumor cell density feature to 

obtain tumor segmentation predictions in follow-up timepoints using data from baseline pre-

operative timepoint. The cell density feature is obtained by solving the 3D reaction-diffusion 

equation for biophysical tumor growth modelling using the Lattice-Boltzmann method. The 

second method utilizes JLF to combine segmentation labels obtained from (i) the stochastic 

texture feature-based and Random Forest (RF)-based tumor segmentation method; and (ii) another 

state-of-the-art tumor growth and segmentation method, known as boosted Glioma Image 

Segmentation and Registration (GLISTRboost, or GB). We quantitatively evaluate both proposed 

methods using the Dice Similarity Coefficient (DSC) in longitudinal scans of 9 patients from the 

public BraTS 2015 multi-institutional dataset. The evaluation results for the feature-based fusion 

method show improved tumor segmentation prediction for the whole tumor(DSCWT = 0.314, p = 

0.1502), tumor core (DSCTC = 0.332, p = 0.0002), and enhancing tumor (DSCET = 0.448, p = 

0.0002) regions. The feature-based fusion shows some improvement on tumor prediction of 

longitudinal brain tumor tracking, whereas the JLF offers statistically significant improvement on 

the actual segmentation of WT and ET (DSCWT = 0.85 ± 0.055, DSCET = 0.837 ± 0.074), and also 

improves the results of GB. The novelty of this work is two-fold: (a) exploit tumor cell density as a 
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feature to predict brain tumor segmentation, using a stochastic multi-resolution RF-based method, 

and (b) improve the performance of another successful tumor segmentation method, GB, by fusing 

with the RF-based segmentation labels.
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1. Introduction

Brain tumors may be classified as benign or malignant based on grade, and primary or 

metastatic based on origin. According to the World Health Organization (WHO) diagnostic 

schema [1], tumors of the central nervous system (CNS) may be graded as I, II, III, and IV, 

based on multiple factors including similarity of tumor cells to normal cells, growth rate, 

presence of definitive tumor margins, and vascularity. Among these classes, grade III tumor 

contains actively reproducing abnormal cells that infiltrate between adjacent cells, and grade 

IV tumors are the most malignant with rapid proliferation and infiltration to surrounding 

tissues [2,3]. In 2016, WHO suggested a new CNS tumor classification schema, based on 

both phenotype and genotype expressions in addition to growth pattern and behaviors [4]. 

Glioblastoma (formerly glioblastoma multiforme, GBM) is the most common and deadly 

among all human primary CNS tumors [5], with extensive heterogeneity radiographically 

reflected by various sub-regions, comprising enhancing (ET) and non-enhancing tumor 

(NET), as well as peritumorally edematous/invaded tissue (ED). GBM originates from glial 

cells and grows by infiltrating surrounding tissues. Even though there have been many 

treatment advancements, the median overall survival period of patients diagnosed with GBM 

still remains 12–16 months [5].

Brain tumor detection, segmentation, and tracking its changes over time (henceforth, tumor 
segmentation prediction) is of particular importance for diagnosis, treatment planning, 

patient management, and monitoring. In practice, manual tumor segmentation by 

radiologists is tedious, time-consuming and prone to human error. Longitudinal brain tumor 

segmentation is a critically challenging task due to the tumor’s unpredictable appearance, 

infiltration to surrounding tissue, intensity heterogeneity, size, shape, and location variation 

[6]. There are many brain tumor segmentation techniques published in the literature. Active 

contour methodologies have been used for both image recognition tasks [7], as well as brain 

tumor segmentation tasks [8,9], to identify in single 2D MRI slices the boundary of the 

whole tumor extent as a single region. However, they cannot be considered directly 

applicable for the task of our study, which attempts to identify multiple tumor sub-regions in 

3D, within the whole tumor extent, while utilizing multiple MRI modalities. Gooya et al. 

introduced a generative approach for registering a probabilistic atlas of a healthy population 

to brain MRI scans with glioma and simultaneously segmenting these scans into tumor and 

healthy tissue labels [10,11]. Cuadra et al. proposed an atlas-based segmentation of 

pathological brain MRI scans using a lesion growth model [12]. Bauer et al. also introduced 

an atlas-based segmentation of brain tumor images using a Markov random field-based 
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tumor growth model and non-rigid registration [13]. However, these atlas-registration based 

techniques may be tedious and error prone, since they require accurate deformable image 

registration of tumor bearing slices with the atlas.

To avoid the issues with image registration, other studies consider the brain tumor 

segmentation as a feature-based classification problem [14,15]. The general idea of feature-

based methods is to extract features and provide them to a classifier, to learn the most 

representative of the class(es) in question, and hence obtain segmentation labels in new 

unseen cases. Islam et al. extracted sophisticated texture features among others and applied 

the AdaBoost algorithm to segment tumors [16]. Reza et al. proposed an improved texture 

feature based multiple abnormal brain tissue classification method using Random Forest 

(RF) [17,18]. SVM has also been used as a classifier for brain tumor segmentation [19]. In 

addition, others have utilized super-pixels to classify tumor tissue. Wang et al. used a graph-

based segmentation technique to over-segment images into homogeneous regions [20,21]. 

Pei et al. applied simple linear iterative clustering (SLIC) to obtain super-pixel [22]. 

Kadkhodaei et al. applied a semi-supervised ‘tumor-cut’ method to over-segment images 

[23]. The super-pixel-based segmentation relies on the quality of the approach used for the 

over-segmentation. Finally, over recent years, various approaches based on CNN have been 

used for brain tumor segmentation [14,24,25]. However, to the best of our knowledge, the 

tumor cell density pattern has not been used as a feature in tumor segmentation prediction by 

others. The cell density feature can be obtained from solving the biophysical tumor growth 

modeling such that to predict potential tumor development in the future.

Longitudinal brain tumor segmentation prediction is not only related to the accurate 

segmentation of the various tumor sub-regions, but also reveals information about the tumor 

development over time. Monitoring longitudinal brain tumor changes is useful for follow-up 

of treatment-related changes, assessment of treatment response and guiding dynamically 

changing treatments, including surgery, radiation therapy and chemotherapy. Fig. 1 shows a 

longitudinal brain tumor example for a patient from BraTS 2015 patient dataset [6]. This 

figure shows that enhancing, necrosis and other surrounding tissues of the tumor for an 

example patient in timepoint 2 are evolving (increasing) during the elapsed time by 

comparing that of timepoint 1.

To model and predict the growth of a tumor, a reaction-diffusion equation is generally 

employed [11,26–30]. Hu et al. simulated one-dimensional tumor growth based on logistic 

models [31]. Sallemi et al. simulated brain tumor growth based on cellular automata and fast 

marching method [32]. However, none of these methods explicitly obtains tumor 

segmentation using growth patterns as features. Clatz et al. proposed a GBM tumor growth 

simulation by solving reaction-diffusion equation using finite element method [33]. Xu et al. 

used phase fields to model cellular growth, and reaction-diffusion equations for the 

dynamics of angiogenic factors and nutrients [34]. We have recently proposed a novel 

feature, which assesses temporal changes of tumor cell density, based on biophysical tumor 

growth modeling, for segmentation prediction [22]. Meier et al. used a fully automatic 

segmentation method for longitudinal brain tumor volumetry [35]. However, Meier’s work 

only focuses on analyzing each timepoint independently, and does not include a setting to 

integrate knowledge from prior timepoints for longitudinal tumor study.
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Here we propose a novel longitudinal brain tumor segmentation prediction, using two 

different fusion approaches: a feature-fusion approach, where unique tumor growth-based 

cell density and texture features are used, and a label-fusion, where segmentation labels 

obtained from two state-of-the-art tumor growth and stochastic texture models are utilized. 

In the feature-fusion-based segmentation prediction method, we build upon a stochastic 

multiresolution texture model [17] to obtain cell density information from tumor growth 

patterns as novel features and then fuse them with texture features. The tumor growth model 

is based on a reaction-diffusion equation that is solved in 3D using a Lattice-Boltzmann 

method (LBM), a class of computational fluid dynamics method for fluid simulation. On the 

other hand, the proposed joint label-fusion (JLF) method fuses segmentation labels obtained 

from a hybrid generative-discriminative brain tumor segmentation method that incorporates 

a biophysical tumor growth model [36,37] and the stochastic tumor segmentation models 

[16–18], to achieve tumor segmentation predictions. For traditional multi-label fusion, 

multiple target images are registered and weighted by comparing a target image to multiple 

atlas images. Further, the reference labels are obtained by considering tissue labels from 

registering the target image to the atlas images. In this study, due to the presence of multiple 

tumors in the provided MRI volumes, we did not use healthy atlases as reference images, but 

instead created consensus average images across all patients for each MRI modality. The 

reference labels are obtained by the RF and the GB segmentation models. The fusion weight 

is obtained proportional to the inverse of intensity difference by target images to reference 

images.

The overall novelty of this work is two-fold: (a) the tumor cell density is used as a novel 

feature to obtain tumor growth segmentation prediction for a prior successful stochastic 

multiresolution RF-based segmentation method, and (b) it obtains improved tumor 

segmentation performance of another successful tumor segmentation tool, GB, by fusing 

labels obtained from with the RF-based tumor segmentation method.

The remaining sections are organized as follows: Section 2 introduces the related 

background, including texture-based tumor segmentation, biophysical tumor growth 

modeling, and JLF. Section 3 discusses proposed methods in the paper, whereas Section 4 

describes the algorithm used in the paper. Finally, Section 5 discusses the experiments and 

results, and conclusions are discussed in Section 6.

2. Background

In this section, we discuss texture-based tumor segmentation, tumor growth modeling, and 

JLF.

2.1. Multi-fractal Brownian Motion (mBm) process and feature extraction

The mBm is a non-stationary zero-mean Gaussian random process that corresponds to the 

generalization of fractional Brownian motion (fBm) [18]. The fBm considers a rough 

heterogeneous appearance of tumor texture in brain MRI. In the fBm process, the local 

degree of Hurst index (H) is a constant. The value of H determines the randomness of the 

fBm process. However, tumor texture in MRI may appear as a multifractal structure that is a 

time (t) and/or space varying process and is represented by mBm. The mBm process is 
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defined as x(at) = aH(t)x(t), where x(t) is the mBm process with a scaling factor, a, and the 

time varying Hurst index H(t). The mBm features effectively model spatially varying 

heterogeneous tumor texture. Its derivation combines the multi-resolution analysis enabling 

one to capture spatially varying random inhomogeneous tumor texture at different scales 

[16]. More details for these multiscale texture features and their efficacy in brain tumor 

segmentation can be found in [16–18].

2.2. Random Forest classification

Random Forest (RF) is an ensemble learning method that can be used for classification, 

regression, and segmentation [38]. Classification based on RF, has been heavily used in the 

medical image analysis domain due to its very fast, and efficient multi-class handling 

capability [17,39].

Consider n samples and feature vectors vi i = 1
n  with outcomes yi, then the data are 

represented as D = {(v1, y1), …, (vn, yn)}. The feature vector (v) of a sample (i) is 

represented by vi = (vi1, …, vid), where d denotes the dimensionality of the feature vector. A 

classification tree is a decision tree in which each node has a binary decision based on 

whether vi is less than a threshold a. At each node, feature vid and threshold a are chosen to 

minimize resulting ‘diversity’ in the children nodes that are measured by the Gini criterion 

[38]. Ensemble of classifiers h = {h1 (v), …, hk(v)}, and we define parameters of the 

decision tree for each classifier hk(x) to be θk = (θk1, θk2, …, θkp). We can write: hk(v) = 

h(v|θk). A Random Forest is a classifier based on a family of classifiers {h(v|θk), k = 1, 2, 

…, K} with parameters θk, which are randomly chosen from a model random vector θ.

In RF classification, given a fixed ensemble h = {h1(v), …, hk(v)}, where v is a random 

vector and K is the number of trees in the forest, the estimated probability for predicting 

class c for a sample set, is defined as:

p(c ∣ v) = 1
K ∑

t = 1

K
pt(c ∣ v), (1)

where pt(c|v) is the estimated density of class labels at the tth tree. The final multi-class 

decision function of the forest is defined as:

C(v) = argmaxp
c ∈ l

(c ∣ v), (2)

The generalization error (GE) has an upper bound in form of:

GE ≤ ρ1 − s2

s2 , (3)

where ρ is the mean correlation between pairs of trees in the forest, and s is the strength of 

the set of classifiers.
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2.3. Biophysical tumor growth model

Tumor growth describes an abnormal growth of tissue, which usually involves cell 

proliferation, invasion, and mass effect to the tumor surrounding tissues. During cell 

invasion, tumor cells migrate as a cohesive and multicellular group with retained cell–cell 

junctions and penetrate to surrounding healthy tissues. Tissues in the brain may deform due 

to mass effect. Biophysical tumor growth modeling simulates the interactive process 

occurring between the abnormal tissue (i.e., tumor) and the surrounding brain tissues, and 

parameterizes the collective changes in the brain, including death, infiltration to surrounding 

tissues, and proliferation. The reaction-diffusion equation has been widely used to model 

brain tumor growth [28–31], using a diffusion and a logistic proliferation term given as:

∂ns
∂t = D∇2ns + ρns 1 − ns , (4)

and

D∇ns ⋅ n ∂Ω = 0, (5)

where ns is the tumor cell density, D is the diffusion coefficient while infiltrating, and ρ is 

the proliferation rate. Eq. (5) enforces Neumann boundary conditions on the brain domain Ω, 

and n  is unit normal vector on the ∂Ω pointing inward to the domain.

2.4. Joint label fusion

Joint label fusion (JLF) has been developed in recent years and used for analysis medical 

images [20,21]. Compared to the single-atlas based method, multi-atlas based label fusion 

reduces errors associated with any single atlas propagation in the process of combination, 

and the weight for each atlas is computed independently. However, different atlases may 

produce similar label errors. To solve this issue, Wang et al. proposed an advanced multi-

atlas label fusion, known as joint label fusion [40]. Multi-atlas label fusion enforces co-

registration with sample images to target image and minimizes independent errors to 

improve the segmentation result [41]. In general, the label map l  is computed by using the 

following equation:

l = argmaxp
l

l ∣ I; I i, ϕi , (6)

where I i is the ith training image, and ϕi is the transfer function during image registration. l 

is the candidate label map of the testing image I. JLF (l ) achieves consensus segmentation 

as,

l = ∑
i = 1

n
ωx(i)p l ∣ x(i), I i , (7)

where ωx(i) is the individual voting weight of ith reference, and p l ∣ x(i), I i  is the 

probability that x votes for label l of the i-th reference. The weight is determined by,
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ωx(i) = Mx(i)
−1 1n

1n
t Mx(i)

−1 1n
, (8)

where 1n = [1 ; 1 ; …, 1] is a vector of size n and Mx(i) is the pairwise dependency matrix 

that estimates the likelihood of two references both producing wrong segmentations on a 

per-voxel basis for the target images.

For the ith reference, the dependency matrix is computed as:

Mx(i)(j, k) ∑
m = 1

LM
AF

m(v(j)) − TF
m(v(x)) ,

AF
m(v(k)) − TF

m(v(x)) ,
(9)

where m indices correspond to all modality channels, and ∣ AF
m(v(j)) − TF

m(v(x))| is the vector 

of absolute intensity difference between a selected reference image and the target image over 

local patches υ centered at voxel j and x, respectively. 〈 · , · 〉 is the dot product. LM is the 

total number of modalities [40].

3. Materials and methods

This study proposes two distinct methods for longitudinal brain tumor segmentation 

prediction: a feature-based and JLF-based. Application of the proposed methods, assumes 

appropriate preprocessing of the provided multimodal MRI brain scans, consisting of noise 

reduction, bias field correction, scale standardization, and histogram matching.

3.1. Data

The brain tumor scans used to quantitatively evaluate the proposed methods in this study 

belong to retrospective longitudinal multi-institutional cohorts of patients diagnosed with 

GBM, from the publicly available Multimodal BRAin Tumor Segmentation (BraTS 2015) 

challenge dataset [6]. Nine patients with longitudinal multimodal MRI (mMRI) scans with 

growing tumors along time were chosen from the BraTS 2015 dataset. The brain scans for 

each patient consist of four MRI modalities, namely native T1-weighted (T1), contrast-

enhanced T1-weighted (T1c), T2-weighted (T2), and T2 Fluid-attenuated inversion recovery 

(T2-FLAIR).

Note that we use the BraTS 2015 dataset instead of the latest BraTS 2018 dataset 

[6,37,42,43], as the latter provides only pre-operative mMRI scans, whereas the BraTS 2015 

data describes paired combinations of pre- and post-surgical mMRI brain scans for each 

patient, with isotropic (1 mm3) resolution images of size 240 × 240 × 155. The manually 

evaluated ground truth labels of these brain scans were also available, allowing for the 

quantitative validation of the proposed methods. These ground truth labels delineate the 

tumor sub-regions of necrotic/fluid-filled core (NC), non-enhancing/solid tumor (NE/ET), 

edema (ED), and everything else grouped together, with labels of 1, 3, 4, 2, and 0, 
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respectively. In this study, we apply the proposed method to the nine longitudinal patient 

data from BraTS 2015.

3.2. Pre-processing

MRI scans are known to be significantly affected by numerous acquisition artifacts, such as 

intensity non-uniformities, which are caused by the inhomogeneity of the scanner’s 

magnetic field during image acquisition (also known as bias field), and Gaussian noise. 

These factors degrade the MRI quality significantly [44], potentially affecting the accuracy 

of automated segmentation of various tissue regions, as well as the image registration 

process. Therefore, preprocessing is an essential step for MRI analysis that includes several 

steps, such as skull-stripping (also known as brain extraction), noise reduction, bias field 

correction, and co-registration across modalities. The BraTS brain scans used in this study 

were already co-registered and skull-stripped. We corrected for the appearing bias field 

using N4ITK [45].

3.3. Feature fusion based method

The method proposed in this study utilizes tumor growth patterns as novel features to 

improve texture-based tumor segmentation in longitudinal MRI. The proposed pipeline is 

shown in Fig. 2.

By using proposed feature-based fusion, the random vector v is defined as:

v = FD, ns, Ipre, Ipost, …, Hist , (10)

and the label of target image is defined as:

l = argmax
c ∈ l

1
K ∑

t = 1

K
pt c ∣ θt, v , (11)

where c is the candidate label of target image. K is the number of the tree applied. v is a 

feature vector. θt is the classifier parameter obtained from training process and pt is the 

classification probability of label c by giving feature v at tth tree, respectively. FD describes 

the mBm feature. ns is the tumor cell density derived by tumor growth model (Eq. (4)). Ipre 

and Ipost are the image intensities before and after intensity normalization (scale 

standardization [46]), respectively. Hist is the intensity histogram of all modality images 

(T1, T1c, T2, and T2-FLAIR).

Two feature types were used in the proposed method, representing local and spatial 

descriptors. Local features comprise the intensity of each modality before and after scaling 

standardization, as well as after histogram matching, their pairwise intensity differences 

among image modalities, and the cerebrospinal fluid (CSF) mask, obtained by the CSF 

expected intensity across modalities. Spatial features include a fractal feature extracted from 

multi-modal MRI, named piecewise-Triangular Prism Surface Area (PTPSA), the mBm 

features that combine both multiresolution-fractal and wavelet analyses for each modality 

after scaling standardization, and 6 Gabor-like Texton features.
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3.4. Joint label fusion based method

Label fusion has been successfully used for tumor segmentation in recent years [40,41]. The 

method proposed here employs JLF for improving tumor segmentation prediction by fusing 

stochastic feature-based tumor labels, with segmentation labels obtained from a hybrid 

generative-discriminative brain tumor segmentation method that incorporates a biophysical 

tumor growth model, namely GLISTRboost [36,37,47]. Our proposed pipeline is shown in 

Fig. 3. Initially, GB is applied on the 2nd timepoint in parallel with independent application 

of the RF-based approach, and their output segmentation labels are then fused together 

leading to the consensus result.

All provided MRI scans were affinely co-registered to an atlas template [48] and skull-

stripped by BraTS. We then scaled all modality intensities for one reference subject to the 

range [0–255] and then matched the histograms of each modality across all subjects. The 

error dependence matrix (Eq. (9)) was then computed between the target and the reference 

image, which describes the consensus average images across all patients. By using the error 

dependency matrix, we calculate the voting weight (Eq. (8)), and finally the agreement label 

(Eq. (7)) is obtained.

In GB, the probabilities of ET and NE are defined as:

f(Y ∣ Φ, ℎ, q) = ∏
x ∈ ΩF

∑
k = 1

K
πk(ℎ(x) ∣ q)fk(y(x) ∣ Φ), (12)

where Y is observation set, Φ is the intensity distribution, h is the reference domain, q is the 

tumor growth model parameters. πk is the k abnormal tissue, and fk· is a multivariate 

Gaussian distribution.

Application of the JLF method requires all four provided MRI volumes (T1, T1c, T2, and 

FLAIR), the label map LGB obtained by GB (Eq. (12)) and the segmentation result LRF 

obtained by Eqs. (1) and (2). Specifically, in order to use the JLF, the voting weights are 

obtained by computing the error dependency matrix from all the available modalities to the 

reference images (Eq. (8)). For calculating the dependency matrix (Eq. (9)). υ(x) is a 5 × 5 

×5 patch centered at location x. Am(m ∈ {1, 2, 3, 4}) describes the volumes T1, T1c, T2, 

and T2-FLAIR of the training images, respectively. Tm is the target image. A is the reference 

image including the GB segmentation (AGB) and RF classification (ARF). The candidate 

labels at location x for either the GB or the RF segmentations are defined as:

p(l ∣ x) = ∑
i = 1

2
ωx(i)p(l ∣ x(i), A(i))

= ωx(1)p l ∣ x(1), AGB + ωx(2)p l ∣ x(2), ARF

= Mx(1)
−1 1N

1N
t Mx(1)

−1 1N
p l ∣ x(1), AGB

+ Mx(2)
−1 1N

1N
t Mx(2)

−1 1N
p l ∣ x(2), ARF ,

(13)
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Let’s define Dirac delta function δ(l|x) as 1, if the predicted label is the same as the 

reference label, otherwise 0, then, Eq. (13) becomes:

p(l ∣ x) = Mx(1)
−1 1N

1N
t Mx(1)

−1 1N
δGB(l ∣ x) + Mx(2)

−1 1N
1N

t Mx(2)
−1 1N

δRF(l ∣ x), (14)

where the dependency matrix of M is computed by using Eq. (9). In the special case of the 

images among references being the same, 
Mx(1)

−1 1N
1N
t Mx(1)

−1 1N
=

Mx(2)
−1 1N

1N
t Mx(2)

−1 1N
= 0.5, then Eq. (14) will 

be simplified as a majority voting: p(l|x) = 0.5 (δGB(l|x) + δRF(l|x)). Therefore, it is 

recommended to choose an odd number of templates.

3.5. Lattice-Boltzmann method for tumor growth modeling

To solve the reaction-diffusion in Eq. (4), different methods such as finite element method 

(FEM) [26] and Lattice-Boltzmann method (LBM) [30] may be used. We use the LBM 

method for its computational efficiency and easy parallelization. The LBM is defined as 

[49]:

fs x + e i, i, t + 1 − fs(x , i, t) = Ωs
NR + Ωs

R, (15)

where fs(x , i, t) is the one particle distribution function of specifies s with velocity e i at 

node x , at time t. ΩS
NR and ΩS

R are non-reactive and active terms, respectively.

Ωs
NR = −

fs(x , i, t) − fs
eq(x , i, t)

τ , (16)

where τ is the relaxation time. fs
eq(x , i, t) is the equilibrium distribution function, which 

depends on X  and t corresponding to a system with zero mean flow given as:

fS
eq = ΛS, inS, (17)

where ns is the cell density and Λs,i weight depending on the lattice system.

Two-dimensional nine-velocity (D2Q9) model is commonly used in 2D cases. The nine 

discrete velocities are as follows (Fig. 4).

Let’s define:

nsx , t = ∑
i

fs(x , i, t) = ∑
i

fs
eq(x , i, t) (18)

Here ns is the cell density as defined in Eq. (1), and Λs,i is defined as:
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Λs, i =

4
9, i = 9.

1
9 , i = 1, 3, 5, 7.

1
36 , i = 2, 4, 6, 8.

(19)

By using LBM, the reaction-diffusion equation (Eq. (4)) can be recovered as:

∂ns
∂t = 1

3 τs − 1
2

∂2ns
∂x2 + ρns 1 − ns , (20)

ΩS
R = ρns 1 − ns , (21)

Setting D = 1
3 τS − 1

2  offers solution for Eq. (4).

The algorithm of the proposed method is listed in Algorithm 1.

3.6. Longitudinal tumor segmentation prediction

By longitudinal tumor segmentation prediction, we refer to the accurate delineation of the 

tumor boundaries in any follow up time-point, given the segmentation of the tumor in the 

first scan. This does not only allow for the segmentation of the tumor but it also reveals 

information about its longitudinal growth and aggressiveness/behavior.

For feature fusion-based method, we build a tumor growth model by solving the reaction-

diffusion equation using LBM. Diffusion coefficient D and proliferation rate ρ are important 

parameters to simulate tumor growth using the model. To predict tissues growth using the 

model, the parameters of the model are suggested within [0.02, 1.5] mm2/day, and [0.002, 

0.2]/day [30]. We empirically set DNC, ρNC as 0.052, 0.01, DED, ρED as 0.06, 0.009, DNE, 

ρNE as 0.03, 0.014, DET, ρET as 0.05, 0.01 for NC, ED, NE, and ET, respectively. For the 

JLF method, we integrate a stochastic texture feature-based segmentation with another state-

of-the-art, named GLISTRboost (GB) to achieve a better segmentation.
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4. Evaluation

4.1. Performance evaluation

In the BraTS dataset, the ground truth is manually annotated by qualified raters, following a 

hierarchical majority voting rule [6,25]. To quantitatively evaluate the proposed brain tumor 

segmentation prediction method, a criteria policy is required. Specifically, three different 

tumor regions are evaluated, as defined by the BraTS challenge [6].

1. Region 1 – Whole tumor (WT)

This region defines the whole tumor (WT), which consists of the union of all 

tumor labels. Although the ED is a peripheral tissue to the tumor core, it is still 

considered as part of the WT since it is not pure edema but also includes invaded 

tumor cells.

2. Region 2 – Tumor core (TC)

This region defines the tumor core (TC), which comprises the combination of 

NC, NE and ET. Note that the TC describes what is typically resected during 

surgery.

3. Region 3 – Enhancing tumor (ET)

The ET region biologically represents regions of contrast leakage through 

disrupted blood-brain barrier.

We evaluate the 3D volume overlap by computing the Dice similarity coefficient 

DSC = 2 ⋅ |A ∩ B|
|A | + |B|  [50], where A and B represent the segmentation labels of a given method 

and the manually annotated (i.e., ground truth) labels. The DSC value ranges in [0, 1], where 

0 represents that the two comparing regions do not have any overlap and 1 means that the 

regions are identical.

5. Experimental results and discussion

5.1. Experiment with feature fusion based method

To solve the biophysical brain tumor growth model using LBM, three parameters need to be 

considered: diffusion coefficient D, proliferation rate ρ, and simulated days t. The diffusion 

coefficient and proliferation rate are variable to the model. Choosing a value for these 

variables is challenging. The value of D is chosen within [0.02, 1.5] mm2/day, ρ ∈ [0.002, 

0.2]/day, after considering the available literature [30]. Fig. 5 shows an example of 

longitudinal tumor growth using the proposed method and as depicted by ground truth labels 

in a single slice for a patient in the BraTS 2015 dataset.

We then apply the tumor growth model to real patient data from the BraTS dataset, where 

each patient’s scan includes information of all sub-regions, i.e., NC, ED, NE, and ET. We 

simulate all these abnormal tissues separately, and then fuse them all into the final label map 

of the patient. Parameters vary among the various tissues [30]. By using the LBM model, we 

obtain the cell density patterns for the NE, ET and the WT tissues, respectively. Note that the 

WT comprises all sub-regions including ED and NC. Following previous work [18], we use 
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a total of 30 features (completed features in Appendix A) including fractal, mBm, intensity 

and intensity difference among MRI modalities. The fractal and mBm are spatial features 

that capture surface variation.

For specification of (Eq. 11), label c ∈ {0, 1, 2, 3, 4} which represents background, NC, ED, 

NE and ET, respectively. K is empirically chosen as 20, and number of random feature is 5, 

which is approximately equal to the square root of total number of features. Addition of cell 

density as a feature, results in 30 features (density of NC, ED, NE, and ET) extracted from 

each MRI slice. Fig. 6 gives an illustrative example of comparing two cases between tissue 

segmentation obtained before and after adding cell density as a feature type for a patient.

We evaluate the performance of the proposed method and compare the DSC to the 

segmentation prediction without cell density features (Fig. 7). We further evaluate the 

statistical significance of the obtained results using paired t-test for all patients. The p-values 

for segmentation prediction obtained with and without inclusion of the cell density feature 

show statistical significance for WT, TC and ET tissues (Table 1). The paired t-test analysis 

shows that fusion of tumor growth pattern with texture and intensity features offers a 

significant improvement in the segmentation prediction of TC and ET tissue regions. 

However, the statistical analysis does not suggest significant improvement for the WT tissue. 

We hypothesize that the reason for this is that the WT label, which represents the abnormal 

T2-FLAIR signal, is well-segmented by the originally applied methods (both GB and RF) 

and hence there is not substantial significant improvement offered by the proposed method.

5.2. Experiment with joint label fusion-based method

We apply the JLF-based brain tumor segmentation prediction to process data from all nine 

patients at timepoint 2 (post-op scans). To evaluate the performance, we use a Leave-One-

Out cross-validation schema to compute the DSC of segmentations at timepoint 2 from the 

proposed method and compare to the ground truth and to segmentations generated by GB 

[36,37] (Fig. 8). An example segmentation prediction result is shown in Fig. 9. From the 

collective summary of comparisons, we note that the proposed method offers better results 

than GB alone. The result DSC for the proposed method is 0.850 ± 0.055 for WT, 0.836 ± 

0.041 for TC, and 0.837 ± 0.0074 for ET.

We also statistically evaluate the segmentation prediction results using ANOVA and the 

resulting p-values are shown in Table 2. The JLF method offers statistically significant 

improvements on tumor segmentation performance for the WT and ET regions, when 

compared to the results of the GB method. The overall performance is better than GB and 

RF across all patients, as shown in Fig. 8.

In addition, we also compare the proposed work with BraTumIA (BTIA) [35], a state-of-art 

tool that has been previously used for brain tumor segmentation in longitudinal scans. We 

applied BraTumIA to the patient data used in our experiments and the obtained results 

shown the superiority of our proposed approach (Table 3). Results for all experiments are 

also given in false positive and false negative rates (Appendix B).
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5.3. Discussion

In this work, we propose two methods for longitudinal brain tumor segmentation prediction, 

in longitudinal mMRI. Feature fusion using RF and tumor cell density offers improved 

performance for predicting longitudinal tumor growth. Specifically, this method shows 

significant prediction improvement of TC and ET abnormal tissues, while these is no 

significant improvement for WT tissue. On the other hand, the JLF using RF and GB labels 

shows improvement on WT and ET abnormal tissues over that of the GB labels alone. Note 

that due to availability of limited number of longitudinal tumor growth patient cases used in 

this study, the segmentation prediction performance is not optimal for all possible types of 

abnormal tissue.

6. Conclusion and future work

This work proposes two novel methods for longitudinal brain tumor segmentation 

prediction: feature fusion-based and joint label fusion-based. The feature fusion-based 

method offers improved texture-based brain tumor segmentation in longitudinal mMRI by 

fusing tumor cell density patterns obtained from biophysical tumor growth modeling with 

the stochastic texture features in a RF-based segmentation method. Statistical analysis shows 

significant performance improvement for the proposed feature fusion method for the areas of 

TC and ET. The JLF-based method fuses results obtained from RF with that of GB and helps 

to improve GB, a state-of-the-art method on longitudinal brain tumor segmentation.

In order to make the proposed framework more useful, we plan to extend the models for 

segmentation of other abnormal tissues such as cyst and necrosis associated with brain 

tumor. A more robust label fusion may help for the second method to obtain improved 

longitudinal tumor segmentation prediction. We further plan to improve the underlying 

feature extraction, tumor growth and segmentation models. A more comprehensive tumor 

growth model development that also considers the treatment modalities may be interesting.
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Appendix A.

All 30 features used in our proposed method [17].

1 2 3 4 5 6

Intensity of T1 
(pre) PTPSA of T1 mBm of T1 Intensity of T2 

(pre) PTPSA of T2 mBm of T2

7 8 9 10 11 12

Intensity of FL 
(pre) PTPSA of FL mBm of FL Intensity of T1c 

(pre) PTPSA of T1c mBm of T1c

13 14 15 16 17 18

Texton of T2 (No. 
37)

Texton of T2 
(No. 38)

Texton of FL 
(No. 4)

Texton of FL (No. 
37)

Texton of FL 
(No. 38)

Texton of T1c 
(No. 37)
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19 20 21 22 23 24

Intensity of T1 
(post)

Intensity of T2 
(post)

Intensity of FL 
(post)

Intensity of T1c 
(post) D21 D21C

25 26 27 28 29 30

D2f Hist. T1 Hist. T2 Hist. FL Hist. T1c CSF mask

Note: Note: In the Table, “pre” means before normalization, “post” is after normalization. “FL” represents FLAIR 
modality, “D21” is the intensity difference between T2 and T1. “D21C” is intensity difference between T2 and TIC, and 
“D2f” is for intensity difference between T2 and FLAIR. “Hist.” means histogram matched.

Appendix B.

Average false negative rate (FNR) and false positive rate (FPR) comparison between result 

of the proposed method and BraTumIA (BTIA)

Tumor type WT TC EN

JLF BTIA JLF BTIA JLF BTIA

FNR 0.227 0.3426 0.2489 0.3833 0.1159 0.2698

FPR 0.000889 0.000956 0.000344 0.0006 0.0009 0.000778
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Fig. 1. 
A longitudinal brain tumor example. Top from left to right: T1 overlaid with GT, T1c, T2 

overlaid with GT, T2-FLAIR overlaid with GT at timepoint 1. Bottom shows the 

corresponding images overlaid with GT at timepoint 2 (282 days after timepoint 1).
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Fig. 2. 
Pipeline of the proposed method. At the 1st scan date, we extract texture (e.g., fractal, and 

mBm) and intensity features, and obtain the ground truth label map for different brain 

tissues from baseline pre-operative (i.e., first timepoint) mMRI scans. The ground truth at 

this first timepoint is used to obtain the tumor growth modeling and enable to predict cell 

density for the next timepoint. Finally, considering the cell density pattern as a new feature, 

we fuse it with other features using a RF classifier to generate the label of the second 

timepoint.
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Fig. 3. 
Pipeline for joint label fusion based tumor segmentation prediction.
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Fig. 4. 
Illustration of a lattice with D2Q9 model.
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Fig. 5. 
An example of longitudinal tumor growth by using the proposed method for one slice of 

patient 439. Top row (from left to right): NC simulation with D = 0.052, ρ = 0.01, ED 

simulation with D = 0.06, ρ = 0.009, and NE simulation with D = 0.03, ρ = 0.014. Bottom 

row (left to right): ET simulation with D = 0.05, ρ = 0.01, fusion of all simulations, and 

corresponding GT.
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Fig. 6. 
Examples of tumor segmentation prediction by using the proposed method. Left column: 

Segmentation without cell density feature. Middle column: Segmentation with cell density, 

and right column: Corresponding ground truth of each patient at second time scan.
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Fig. 7. 
Comparison of tumor growth prediction segmentation using the proposed method. Vertical 

line and + sign indicate the median and the mean, respectively.
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Fig. 8. 
DSC comparison results among GB, RF, and proposed method (JLF). Vertical line and + 

sign indicate the median and the mean, respectively.
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Fig. 9. 
An example of label fusion-based application. The first (top) row denotes the input brain 

scans. Rows 2–4 illustrate shows the axial, sagittal, and coronal views, respectively, of the 

T1c input scan overlaid with GB, RF, JLF and GT labels.
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Table 1

Paired t-test for comparison of volume between w/o and with cell density by using RF to predict the tumor 

segmentation labels in timepoint 2, using data from timepoint 1.

DSCWT DSCTC DSCET

Result w/o cell density 0.251 ±0.08 0.229 ±0.08 0.311 ± 0.101

Result with cell density 0.314 ±0.16 0.332 ± 0.065 0.448 ±0.076

p-Value 0.150 0.0002 0.0002
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Table 2

Performance of 3D brain tumor growth prediction segmentation.

WT TC ET

Ave. DSC by GB 0.810 ±0.095 0.829 ±0.062 0.796 ±0.104

Ave. DSC by RF 0.852 ±0.063 0.812 ±0.074 0.851 ± 0.093

Ave. DSC by JLF 0.850 ±0.055 0.836 ±0.041 0.837 ±0.007

Median DSC by GB 0.8177 0.8266 0.7557

Median DSC by RF 0.8369 0.8430 0.8743

Median DSC by JLF 0.8544 0.8372 0.8100

p-Value (GB,JLF) 0.047 0.579 0.023
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Table 3

Longitudinal tumor segmentation comparison of average DSC between BraTumIA [35] and JLF.

DSCWT DSCTC DSCET

BraTumlA [35] 0.761 ±0.104 0.703 ±0.186 0.732 ±0.140

JLF 0.850 ±0.055 0.836 ±0.041 0.837 ±0.075
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