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BACKGROUND: Air pollution may be associated with elevated dementia risk. Prior research has limitations that may affect reliability, and no studies
have evaluated this question in a population-based cohort of men and women in the United States.

OBJECTIVES: We evaluated the association between time-varying, 10-y average fine particulate matter (PM;s) exposure and hazard of all-cause de-
mentia. An additional goal was to understand how to adequately control for age and calendar-time-related confounding through choice of the time
axis and covariate adjustment.

METHODS: Using the Adult Changes in Thought (ACT) population-based prospective cohort study in Seattle, we linked spatiotemporal model-based
PM; 5 exposures to participant addresses from 1978 to 2018. Dementia diagnoses were made using high-quality, standardized, consensus-based proto-
cols at biennial follow-ups. We conducted multivariable Cox proportional hazards regression to evaluate the association between time-varying, 10-y
average PM, 5 exposure and time to event in a model with age as the time axis, stratified by apolipoprotein E (APOE) genotype, and adjusted for sex,
education, race, neighborhood median household income, and calendar time. Alternative models used calendar time as the time axis.

ResuLTs: We report 1,136 cases of incident dementia among 4,166 individuals with nonmissing APOE status. Mean [mean =+ standard deviation
(SD)] 10-y average PM, s was 10.1 (+2.9) ug/m>. Each 1-ug/m? increase in the moving average of 10-y PM, 5 was associated with a 16% greater
hazard of all-cause dementia [1.16 (95% confidence interval: 1.03, 1.31)]. Results using calendar time as the time axis were similar.

DiscussIoNn: In this prospective cohort study with extensive exposure data and consensus-based outcome ascertainment, elevated long-term exposure
to PM, s was associated with increased hazard of all-cause dementia. We found that optimal control of age and time confounding could be achieved
through use of either age or calendar time as the time axis in our study. Our results strengthen evidence on the neurodegenerative effects of PM; .

https://doi.org/10.1289/EHP9018

Introduction

Neurodegenerative diseases, including Alzheimer’s disease (AD)
and related dementias (ADRD), pose a growing burden on our
rapidly aging society (Livingston et al. 2020). In 2016, dementia
was the fifth leading cause of death around the world (Nichols
et al. 2019). Because no medication successfully alters the course
of ADRD, there has been an increasing focus on prevention by
addressing potentially modifiable risk factors.

Several prior observational epidemiological studies have eval-
uated links between fine particulate matter with aerodynamic di-
ameter <2.5 um (PM;5) and ADRD. This research suggests that
elevated exposure to PM, 5 is associated with an increased hazard
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of ADRD, though studies have estimated a range of effects
(Cacciottolo et al. 2017; Carey et al. 2018; Chen et al. 2017;
Grande et al. 2020; Jung et al. 2015; Oudin et al. 2018;
Smargiassi et al. 2020; Yuchi et al. 2020). Limitations in this cur-
rent body of literature indicate the need for further study. Most
previous studies evaluated only exposure periods of 5 y or less,
which may not capture the etiologically relevant exposure win-
dow, given the extended timeframe likely required for the devel-
opment of dementia (Jack et al. 2010). Additionally, many
studies used administrative data to ascertain dementia status; mis-
classification is a concern when using this approach (Wilkinson
et al. 2018). Finally, all but three prior analyses used calendar
time as the time axis in the survival model, which may provide
only incomplete adjustment for the confounding effects of age in
comparison with using age as the primary time axis (Cologne
et al. 2012; Korn et al. 1997; Thiébaut and Bénichou 2004).
Questions remain regarding the appropriate time axis to use, par-
ticularly for exposures exhibiting strong temporal trends, like air
pollution, and for outcomes strongly linked to age, such as
ADRD.

To address these limitations and existing questions, we used a
population-based prospective cohort study in the greater Seattle
area of the Puget Sound region with high-quality, standardized,
consensus-based outcome assessments to evaluate the association
between time-varying, long-term average exposure to PM; s and
incidence of all-cause dementia and AD. We hypothesized that
elevated long-term PM, 5 exposure would be associated with a
greater hazard of dementia. Given the ubiquity of air pollution, a
better understanding of the potential impact of PM; s on ADRD
could inform policies to reduce exposures across the population.
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Methods

Study Design

The Adult Changes in Thought (ACT) study is a population-
based prospective cohort study in the Puget Sound region of
Washington State (Kukull et al. 2002). This cohort comprises an
urban and suburban elderly (>65y) population from a well-
established health maintenance organization (HMO) (originally
Group Health, now Kaiser Permanente Washington). All HMO
members >65 y without recorded dementia diagnosis and not liv-
ing in a nursing home were eligible to be selected at random.
After the initial invitation letter, individuals received a phone call
for clinic or at-home cognitive assessment screening. After the
screening visit, persons without dementia [defined as CASI
(Cognitive Abilities Screening Instrument) score of >86 or con-
sensus diagnosis of “not demented” even after CASI <86] were
invited to join the cohort. Enrollment began in 1994-96 (original
cohort, n=2,581), with additional enrollments in 2000-2003
(expansion cohort, n=811) and 2005-2018 (continuous enroll-
ment, to maintain 2,000 at-risk person-years per calendar year).

Follow-up visits (in person, either at home or at the clinic, with
flexible scheduling to accommodate participants) occur every 2 y;
possible changes in address are detected from HMO administrative
records and quarterly newsletter mailings. Mortality is ascertained
through death records search, obituary tracking, quarterly mailing
contact, and medical records. All procedures—including recruit-
ment, enrollment, and follow-up—have remained consistent across
all phases of the study. As of September 2018, a total of 5,546 par-
ticipants have been enrolled in this ongoing cohort.

Individuals are censored on death or if they are lost to follow-
up despite multiple attempts to reestablish contact; if individuals
leave the HMO or move out of the study region, they remain in
the ACT study. Individuals with no informative follow-up after
baseline (n=795) and no available PM, 5 data for any averaging
period (n=7) were dropped. From a remaining cohort of 4,744
individuals, our final analytical sample included 4,166 individu-
als with nonmissing apolipoprotein E (APOE) status.

ACT participants signed forms indicating their informed con-
sent to enroll in the study. Study procedures were approved by
the University of Washington and Kaiser Permanente institu-
tional review boards.

Exposure Assessment

Annual average PM;,s concentrations linked to residential
addresses [geocoded with ArcMap (version 10.5)] were calcu-
lated based on 2-wk average concentrations obtained from a
newly developed hierarchical spatiotemporal prediction model
that incorporates both land use regression (LUR) and geostatisti-
cal smoothing. This model was based on data from five types of
PM, s monitors covering the years 1978-2019 across the Puget
Sound region: 35 long-term (>2y) regulatory monitors at 29
sites, 52 from research studies conducted during the period
1999-2001 and 2012, and low-cost sensor measurements from
105 community and ACT participant home sites (collected during
the period 2017-2019) with an additional 5 co-located with regu-
latory monitors. Model types, locations, and time frames covered
are detailed in Table S1 and Figure S1 and discussed briefly in
the following paragraphs.

Standard federal monitoring for PM, s began in 1998 with
fixed-site instruments measuring PM; s on an hourly or daily ba-
sis. These monitors used the federal reference method (FRM) or
the tapered element oscillating microbalance (TEOM), a federal
equivalent method (FEM); both the FRM and TEOM use gravi-
metric methods to measure PM; 5. To obtain data prior to 1998,
we used information collected by nephelometers, which have
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been in place in the Puget Sound since 1968. Nephelometers use
a light-scattering approach to measure PM,s; this method is
well-correlated with more direct PM, 5 measurement approaches
(Liu et al. 2002; Puget Sound Clean Air Agency 2018).
However, due to data gaps, we only included nephelometer data
beginning in 1978 for our model. For all agency monitors, we
used data from locations that covered a minimum of 52 2-wk
periods to estimate the long-term trends in the spatiotemporal
model.

To supplement agency monitors, we used data from three
research monitoring campaigns. Liu et al. monitored PM; 5 using
Harvard Personal Environmental Monitors (HPEM) and nephel-
ometers at 38 homes from 1999 to 2001; this study is referred to
as the “Seattle panel” study (Liu et al. 2003). In 2012, PM, 5 data
were collected using HPEMs at 27 locations (homes, businesses,
and public sites) as part of the Diesel Exhaust Exposure in the
Duwamish Study (DEEDS) (Schulte et al. 2013).

Data from our own study-specific monitoring campaign
(ACT-AP) using low-cost monitors (LCM) at 105 participant and
community resident homes from 2017 to 2019 were also
included. (An additional five ACT-AP monitors were co-located
with agency monitors.) We calibrated the LCM PM, 5 Plantower
PMS 1003/3003 measurements according to the model described
by Zusman et al. (Zusman et al. 2020). We used the same multi-
ple linear regression approach to calibrate the nephelometer
measurements, focusing on nonindustrial sites and following the
same approach of leveraging co-located FRM and FEM measure-
ments as described for the LCM calibration.

Due to the unbalanced nature of our monitoring data, we used
a previously described hierarchical spatiotemporal model (Keller
et al. 2015; Lindstrom et al. 2014; Sampson et al. 2011; Szpiro
et al. 2009) to develop our predictions. Prior to modeling, we
averaged the data to a 2-wk timescale and log-transformed them.
We also modified the spatiotemporal modeling approach by
removing a long-term trend fit by a locally weighted regression
smoother, loess, with span = 0.5 to address the space—time con-
founding of monitor availability. The time trend was added back
prior to obtaining the final exponentiated model predictions. The
second smoothed time trend was allowed to vary over space, as
described below.

The spatiotemporal model can be represented by the follow-
ing formula:

C(s,1) =pu(s,t) + v(s,1),

where C(s,f) is the log-transformed detrended 2-wk average
PM; 5 at location (s) and time (¢), p(s,f) is the spatiotemporal
mean surface, and v(s,?) is the space—time residual. In our final
model, the spatiotemporal mean surface is a linear combination
of spatially varying coefficients and trend functions written as:

w(st) =Bo(s) + Bi(s)fi (1),

where the trend coefficients, y(s) and 8 (s), are modeled using a
universal kriging model with a mean model composed of one par-
tial least squares (PLS) component and the variance model using
an exponential covariance. The temporal trend, fi(¢), was esti-
mated by smoothing the first singular vector of the singular value
decomposition (SVD) of the data from all long-term monitors.
The spatially varying long-term mean and trend were fit using
separate universal kriging models each with a mean that reflects
land use characteristics that was estimated from more than 100
geographic covariates reduced to a single PLS score. Input geo-
graphic covariates included proximity variables (such as meas-
ured distance in meters to major roads, intersections, truck
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routes, railways, railyards, coastlines, airports, and ports) and
buffer variables (such as those based on major road length, truck
route length, land use category percentage, normalized difference
vegetation index (NDVI), and the year 2000 population density).
Kriging was captured using an exponential variogram. Predictions
from the spatiotemporal model were exponentiated after adding
back the long-term trend.

Model fitting was conducted using maximum likelihood esti-
mation in the SpatioTemporal package (version 1.1.9.1) in R
(version 3.6.1; R Development Core Team). We evaluated sev-
eral specifications for model parameters, including the number of
time trends (1 vs. 2), the degrees of freedom for smoothing time
trends per year (4 vs. 8), the number of PLS scores per trend
coefficient (1 vs. 2), and the covariance structure of the trend
coefficients (spatial smoothing vs. no spatial smoothing). Our
final model specifications were informed by Akaike information
criterion (AIC), Bayesian information criterion (BIC), prediction
maps, and cross-validation. The final model included one-time
trend computed from singular value decomposition and smoothed
using 8 degrees of freedom per year, one PLS score per trend
coefficient, and spatial smoothing of the trend coefficients. We
used the final model to predict long-term averages at participant
homes from 1978 to 2018 and create individual-specific time-
varying 10-y average exposures for each calendar year of obser-
vation. The final model had a cross-validated R*> (R>cy) of 0.87
and a root mean square error (RMSE) of 1.29 ug/m? for long-
term averages at regulatory monitoring locations; these figures
were R’cy = 0.78, RMSE=0.89 ug/m’ at low-cost measure-
ment sites (Table S2).

To obtain individual-specific exposure estimates, we used geo-
coded participant address histories. High-quality participant
address history from billing records was available starting in 1989;
prior to that date, address information was available from archived
Group Health/Kaiser Permanente administrative records, ACT
study records, and a Lexis-Nexis search. If participants moved
during the study period, updated addresses were incorporated
when possible. We had exact geocoding matches for 97% of
addresses across all person-years in this cohort. If participants
moved out of the spatiotemporal modeling region, no estimates
were available for that period, and therefore participants did
not contribute person-years to that particular period of the sur-
vival analysis. We imputed missing address history information
for two types of address coverage gaps: gaps prior to 1989
(when the bulk of the administrative address history data
became available) and gaps after the first available address. We
classified individuals with no missing address history informa-
tion and those with a short gap in administrative address data
(up to 2 y) with the same address before and after the gap as
having a “complete” address history. Individuals with “nearly
complete” address history had address gaps less than 2 y and a
change of address during this time; they were assumed to have
moved halfway through the time period. The remaining individ-
uals had a “less complete” address history. When there was
missing address information prior to the first recorded address,
we projected the first address back in time and assigned a clas-
sification of “nearly complete” for the duration up to the time
they were known to live at that address and a classification of
“less complete” for any duration in excess.

Outcome Assessment

Outcome assessment for the ACT study follows best practices for
neuropsychological evaluation. Participants had standardized
cognitive assessments during in-person follow-up visits (either at
home or at the clinic) conducted every 2 y (Kukull et al. 2002);
there is no adjustment for practice effects. Individuals who scored
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86 or higher on the CASI exam were classified as dementia-free.
Individuals who scored lower than 86 or those referred due to
staff and family concerns underwent standardized evaluations for
dementia, including comprehensive neuropsychological tests as
well as physical and neurological examinations. Diagnoses
were made by consensus conference after thorough medical
records review: Dementia diagnosis was based on criteria from
the Diagnostic and Statistical Manual of Mental Disorders
(DSM) IV (Guze 1995), whereas AD diagnosis (possible/prob-
able) was based on McKhann et al. (1984) criteria (McKhann
et al. 1984). To allow for consistency with noncases, we
assigned the visit date that triggered the dementia diagnosis as
the event onset date. For the analyses of AD or non-AD demen-
tia, individuals were censored when they received an alterna-
tive dementia diagnosis.

Statistical Analysis

We used a Cox proportional hazards model to estimate a common
hazard ratio (HR) across age for incident dementia or AD, strati-
fied by APOE genotype (0 vs. >1 copies of €4 allele). Age was
used as the time axis in the Cox model, which allows for non-
parametric specification of the age effect. Additionally, using age
as the time axis automatically adjusts for the confounding effect
of age and therefore may be the preferred approach when evaluat-
ing a process such as dementia that is strongly related to aging
(Cologne et al. 2012; Korn et al. 1997; Lamarca et al. 1998;
Thiébaut and Bénichou 2004). This approach is aligned with
prior survival analyses in the ACT cohort (Gray et al. 2011; Gray
et al. 2015; Li et al. 2004).

Stratification by APOE genotype allows these groups to have
separate baseline hazard functions and eliminates making a pro-
portional hazards assumption for APOE groups. This is relevant
to consider, given that APOE polymorphisms strongly influence
AD pathology and disease risk (Corder et al. 1993; Liu et al.
2013; Verghese et al. 2011). Missingness in the APOE variable
(n=578), due to participant refusal of baseline blood draw or
delay in blood sample processing, was addressed through inverse
probability weighting (IPW). For IPW, we first took the prag-
matic approach of imputing missing values of non-APOE covari-
ates (median household income, degree, smoking status, body
mass index (BMI) category, diabetes, heart disease, cardiovascu-
lar disease (CVD), hypertension) with the mean category or value
of each to prevent individuals from dropping out of the subse-
quent selection model process. (Missingness was less than 2% for
each of these covariates). Next, we modeled the probability of a
nonmissing APOE status, using stepwise selection to obtain a
final selection model using logistic regression. Starting variables
for our stepwise selection (categorized as reflected in Table 1)
included: ACT cohort, birth cohort, age at intake, sex, race,
education/degree, median household income, smoking status,
regular exercise, BMI, diabetes, CVD, heart disease, hyperten-
sion, and dementia status. Finally, we computed stabilized
inverse probability (IP) weights (Cole and Hernan 2008),
using a ratio of probabilities from the logistic regression mod-
els with sex in the numerator and the selected covariates as the
denominator, to represent the IP of nonmissing APOE geno-
type. These values were used as weights in the stratified Cox
proportional hazards model. The stepwise selection process
produced a final selection model with the following covari-
ates: ACT cohort, race, education/degree, sex, CVD, age at
intake, and birth cohort. The mean =+ standard deviation (SD)
of IP weights across the population was 1.15 (+0.56).

Relevant covariates for our survival analyses were identified
based on prior literature and the use of a directed acyclic graph
(DAG). We used a prespecified tiered model approach to
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Table 1. Descriptive statistics on Puget Sound area (ACT) cohort based on baseline information (1994-2018) for individuals with nonmissing APOE; total and
stratified by above/below mean-centered baseline PM, 5.“ Continuous variables reported as mean (+ SD); categorical variables reported as n (%)b.

Mean-centered baseline 10-y average PM; s

Total <Mean >Mean
(n=4,166) (n=1,413) (n=2,753)
Intake age (y) 75 (+6.3) 73 (+6.0) 76 (+6.2)
Sex
Male 1,748 (42 %) 627 (44 %) 1,121 (41 %)
Female 2,418 (58 %) 786 (56 %) 1,632 (59 %)
ACT cohort
Original (1994-1996) 2,135 (51 %) 1(0 %) 2,134 (78 %)
Expansion (2000-2003) 651 (16 %) 48 (3 %) 603 (22 %)
Replacement (2005-2018) 1,380 (33 %) 1,364 (97 %) 16 (1 %)
Birth cohort
1890-< 1910 162 (4 %) 0 (0 %) 162 (6 %)
1910-< 1915 325 (8 %) 6 (0 %) 319 (12 %)
1915-< 1920 627 (15 %) 30 (2 %) 597 (22 %)
1920-< 1925 890 (21 %) 79 (6 %) 811 (29 %)
1925-<1930 790 (19 %) 126 (9 %) 664 (24 %)
1930-< 1935 425 (10 %) 245 (17 %) 180 (7 %)
>1935 947 (23 %) 927 (66 %) 20 (1 %)
>1 APOE &4 allele
Yes 1,103 (26 %) 403 (29 %) 700 (25 %)
No 3,063 (74 %) 1,010 (71 %) 2,053 (75 %)
Race
White 3,760 (90 %) 1,259 (89 %) 2,501 91 %)
Non-White 406 (10 %) 154 (11 %) 252 (9 %)
Year 2000 census tract median household income ($USD)
<35,000 383 (9 %) 111 (8 %) 272 (10 %)
35,000~ < 50,000 1,292 31 %) 387 (27 %) 905 (33 %)
50,000- < 75,000 2,048 (49 %) 730 (52 %) 1,318 (48 %)
>75,000 443 (11 %) 185 (13 %) 258 (9 %)
Degree
None 345 (8 %) 26 (2 %) 319 (12 %)
GED/HS 1,623 (39 %) 314 (22 %) 1,309 (48 %)
Bachelor’s 966 (23 %) 387 (27 %) 579 21 %)
Master’s 614 (15 %) 367 (26 %) 247 (9 %)
Doctorate 244 (6 %) 129 9 %) 115 (4 %)
Other 374 (9 %) 190 (13 %) 184 (7 %)
Smoking status
Never 2,019 (48 %) 712 (50 %) 1,307 (47 %)
Past 1,947 (47 %) 667 (47 %) 1,280 (46 %)
Current 200 (5 %) 34 (2 %) 166 (6 %)
Regular exercise”
Yes 3,021 (73 %) 1,040 (74 %) 1,981 (72 %)
No 1,145 27 %) 373 (26 %) 772 (28 %)
BMI
Underweight 35 (1 %) 8 (1 %) 27 (1 %)
Normal 1,304 31 %) 427 (30 %) 877 (32 %)
Overweight 1,764 (42 %) 601 (43 %) 1,163 (42 %)
Obese 1,063 (26 %) 377 (27 %) 686 (25 %)
Diabetes
Yes 436 (10 %) 167 (12 %) 269 (10 %)
No 3,730 (90 %) 1,246 (88 %) 2,484 (90 %)
Heart disease
Yes 690 (17 %) 147 (10 %) 543 (20 %)
No 3,476 (83 %) 1,266 (90 %) 2,210 (80 %)
CVD
Yes 360 (9 %) 89 (6 %) 271 (10 %)
No 3,806 91 %) 1,324 (94 %) 2,482 (90 %)
Hypertension
Yes 1,680 (40 %) 622 (44 %) 1,058 (38 %)
No 2,486 (60 %) 791 (56 %) 1,695 (62 %)
CASI IRT (Crane et al. 2008) score 0.35 (+0.70) 0.54 (+£0.64) 0.26 (+0.70)
Moved during ACT follow-up
Yes 2,350 (56 %) 422 (30 %) 1,928 (70 %)
No 1,806 (43 %) 988 (70 %) 818 (30 %)
Missing 10 (0.2%) 3(0.2%) 7 (0.3%)
Dementia diagnosis?
Yes 1,138 (27 %) 175 (12 %) 963 (35 %)
No 3,028 (73 %) 1,238 (88 %) 1,790 (65 %)
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Table 1. (Continued.)

Mean-centered baseline 10-y average PM; s

Total <Mean >Mean
(n=4,166) (n=1,413) (n=2,753)
Alzheimer’s disease diagnosis”
Yes 921 (22 %) 144 (10 %) 777 (28 %)
No 3,245 (78 %) 1,269 (90 %) 1,976 (72 %)

Note: ACT, Adult Changes in Thought; AD, Alzheimer’s disease; APOE, apolipoprotein E; BMI, body mass index; CASI IRT, Cognitive Assessment Screening Instrument Item
Response Theory; CVD, cardiovascular disease; GED, general equivalency diploma; HS, high school; USD, U.S. dollars.

“Stratification by year-specific mean-centered exposure averages removes the influence of the strong temporal variation and focuses on within-year population comparisons. To calcu-
late the mean-centered values, we subtracted the year-specific [(i.e., time-varying, based on baseline (entry) year] mean across 10-y average PM, s exposures from each 10-y average

PM, 5 exposure.

PMissingness reported for “Never moved during ACT follow-up.” Other variables had missingness of less than <2 % in the original data set. As described in the text, we imputed miss-
ing values of non-APOE covariates (median household income, degree, smoking status, BMI category, diabetes, heart disease, CVD, hypertension) with the mean category or value of
each to prevent individuals from dropping out of the subsequent inverse probability weighting selection model process.

‘Regular exercise refers to self-reported exercise for at least 15 minutes three times per week.

“Dementia and AD-subtype dementia case numbers reflect diagnoses across the entire study population. Case numbers may vary in specific analyses based on inclusion criteria; e.g.,
the primary analysis based on 10-y average exposure has two fewer dementia cases due to missing 10-y average exposure data.

understand the importance of potential confounding in our infer-
ential analyses by considering the data collected at or based on
in-person baseline study visits (unless otherwise noted) with
occasional missingness (<2%) filled in as described for variables
other than APOE genotype in IPW modeling above: model 1
(M1): APOE status (obtained via genotyping from blood sample)
stratification only; model 2 (M2) (a priori): M1+sex (self-report),
educational degree category (self-report: none; general equiva-
lency diploma (GED)/high school; bachelor’s; master’s; doctor-
ate; other) year 2000 neighborhood median household income in
U.S. Dollars (from census tract data: <$35,000; $35,000—$50,000;
$50,000-$75,000; >$75,000), race (self-report: White; non-
White; collapsed from following original categories due to low
numbers among non-White categories: White, Black, Asian,
American Indian/Native Alaskan, Native Hawaiian or Pacific
Islander, other/mixed), time-varying calendar year categories
(2-y categories, except for a 3-y category covering the most recent
years 2016-2018); model 3 (M3): M2+smoking status (self-
report: current/former/never; threshold for former smoking=
100 cigarettes), regular physical activity (self-report: includes
walking, hiking, bicycling, aerobics or calisthenics, swimming,
water aerobics, weight training or stretching, or other exercise
at least 15 min three times per week); model 4 (M4):
M3+vascular health indicators (hypertension, diabetes, CVD,
heart disease from HMO medical records) and BMI category
(calculated from measured height and weight at study visit:
underweight; normal; overweight; obese). The rationale for
using baseline values of covariates is that our primary goal with
covariate adjustment is to unconfound the exposure—outcome
relationship; later values of time-varying covariates may have
been affected by the exposure. Neighborhood median house-
hold income was obtained from the year 2000, based on the
assumption that neighborhood rank has remained consistent
over time. We selected M2 as the a priori model based on
prior literature, the DAG, and expert consultation to identify
the most relevant confounders for this analysis.

The time-varying exposure at each age is defined as the av-
erage PM, s level over the 10 calendar years prior to an event
onset date for everyone in the risk set at that time. We allowed
these exposures to change once per year on the 1st of January;
each participant has a corresponding continuous age on this
date. For example, a 10-y average PM, 5 estimate linked to an
event age in the year 2010 would be calculated from PM; s
during the years 2000-2009. If fewer than 10 years of data
were available, the exposure average was calculated for the
time period available and assigned as the 10-y average.
Exposures outside the modeling region were not included in
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the averages. Based on which exposure data were available,
individuals were able to be included in some exposure averag-
ing periods but not others. The partial likelihood used for in-
ference on regression coefficients in the Cox models
considered was based on risk sets adjusting for delayed entry
(left truncation).

Our primary analysis focused on the association between
10-y average PM; s and incidence of all-cause dementia. In sec-
ondary analyses, we evaluated the association between 10-y av-
erage PM,s and incidence of AD, as well as alternative
exposure averaging periods (1-y; 5-y; 20-y; 10-y with 5-y lag;
10-y with 10-y lag) for both all-cause dementia and AD to
understand different windows of susceptibility. In sensitivity
analyses, we used an alternate approach to adjust for calendar
time [5-y calendar time categories or 5- to 20-y birth cohort cat-
egories developed to create balance across categories (1800—
1909, 1910-1914, 1915-1919, 1920-1924, 1925-1929, 1930-
1934, and 1935-1954)] when using age as the time axis; an al-
ternative approach for classifying onset date (as midpoint
between the last two visits for cases, the standard ACT study
onset date classification); dropped the APOE IP weights from
the model; restricted to individuals with a complete address his-
tory (as described above); dropped individuals employed at
baseline, evaluated non-AD dementia as the outcome; and used
calendar time as the time axis (instead of age) with either intake
age or birth cohort adjustment.

We also conducted exploratory analyses to consider potential
effect modification by APOE genotype, sex, binary BMI category
(underweight/normal vs. overweight/obese), binary education cate-
gory (none/GED/high school/other vs. bachelor’s/master’s/doctor-
ate degrees), and binary age at enrollment category (<73 y vs.
>73 y) by incorporating a single product interaction term for each
of these variables, separately, with PM; s in the Cox model and
evaluating whether this parameter was significant. As noted above,
APOE strongly influences AD pathology and disease (Corder et al.
1993; Liu et al. 2013; Verghese et al. 2011), and some prior studies
of air pollution and cognitive decline have identified effect modifi-
cation by genotype (Cacciottolo et al. 2017; Schikowski et al.
2015). APOE influences antioxidant capacity and inflammatory
response. If PM; s contributes to dementia through the pathways
of oxidative stress and inflammation (Dose et al. 2016; Jofre-
Monseny et al. 2008), then individuals with one or more copies of
the risk allele may be more susceptible to the neurodegenerative
effects of these exposures. Similarly, differences in inflammation
by sex (Hanamsagar and Bilbo 2016), age (Godbout and Johnson
2009), and BMI (Miller and Spencer 2014) may affect suscepti-
bility to PM;;s-induced neurodegeneration and cerebrovascular
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injury. Education was evaluated given hypotheses regarding cogni-
tive reserve and dementia risk (Meng and D’Arcy 2012; Stern
2012).

All analyses were conducted using R (version 3.6.3; R
Development Core Team).

Results

Exposure and Participant Characteristics

Figures S2-S5 describe exposure coverage and address history
quality for all participants. Although there were some gaps in ex-
posure coverage due to participants living outside the spatiotem-
poral modeling region, mean coverage across all weeks of the
study period was 99.8% (Figure S2). Some address history impu-
tation was needed prior to the year 2000; after that time, the aver-
age number of weeks requiring address imputation was nearly
zero (Figure S3). Correspondingly, address history quality based
on the criteria provided in the “Methods” section above was rated
as “complete” for nearly all participants starting in the year 2000.
The proportion of time with exact geocoding quality fluctuated
above 75% prior to 2005 but was nearly 100% after that time. We
had nearly complete coverage of 10-y average PM, s, the expo-
sure period for our primary analysis, at the person-level: Across
all individuals and years, we were missing only 0.097% person-
years of exposure data. (Ten-year average PM, s data were miss-
ing for 40 individuals; these individuals were not included in
analyses for this averaging period but could still be included in
secondary analyses exploring other exposure averaging periods.)

Mean + SD 10-y average PM; s exposure across all follow-
up years among those with nonmissing APOE status was
10.1 (+2.9) pg/m?. This simple summary statistic masks impor-
tant temporal trends: the 1994 mean +SD was 16.0 (£0.8),
whereas it was 6.2 (+0.3) in 2018. Figure 1 depicts 10-y average
PM,; 5 exposure by age and calendar time with one observation per
person year, illustrating the strong influence of calendar year in ex-
posure to PM, 5 within age groups. Year-specific summary statis-
tics are provided in Table S3. Figure 2 depicts 10-y average
exposure predictions for 2000-2009—a middle range of the study
period—and jittered participant residences across the Puget Sound
study region; this figure highlights the refined exposure contrasts
obtained through the newly developed spatiotemporal model.
Overall, in our data, between-year variation of PM, 5 (SD: 3.0) was
much higher than average within-year variation (SD: 0.5).

10-yr avg PM2.5 (ug/m3)

(75,80] (80,85]

(70.75]

(65,70]

Baseline population characteristics stratified by mean-centered
10-y average PM,s exposure at entry are shown in Table 1.
Stratification by mean-centered exposure averages removes the
influence of the strong temporal variation that we see in this popu-
lation and allows us to focus on within-year population compari-
sons. To calculate the mean-centered values, we subtracted the
year-specific mean of 10-y average PM; s exposures from each
10-y average PM, 5 exposure.

Mean =+ SD follow-up time was 9.9 (£5.5) y (minimum: 1 y;
maximum: 25 y; median: 9 y). Our analytical cohort included
4,166 individuals with nonmissing APOE genotype. Mean age at
entry across the entire cohort was 75 y. Most individuals in the
cohort were female (58%), White (90%), and had no APOE &4 al-
leles (74%). Population characteristics were generally similar
across categories of mean-centered baseline PM; s; however, a
higher percentage of individuals with elevated mean-centered
baseline PM; 5 had only a GED/high school education and were
more likely to be born in earlier birth cohort years. Table S4 con-
tains descriptive statistics for the total cohort (n=4,744; includ-
ing those with missing APOE genotype) and those dropped from
the population due to lack of informative follow-up after baseline
(n="795).

Analytical Results

Our primary analysis of all-cause dementia was based on
1,136 events over 41,329 person years from individuals with
nonmissing APOE status. When comparing participants with a
1 pg/m? difference in exposure, adjusting for the a priori (M2)
covariates listed above, a higher 10-y average PM, 5 was asso-
ciated with a 16% greater [1.16 (1.03, 1.31)] hazard of all-
cause dementia onset. In our secondary analysis of AD demen-
tia, we estimated that each 1 pg/m? increment in 10-y average
PM, s was associated with an 11% greater [1.11 (0.97, 1.27)]
hazard of AD diagnosis, after adjusting for the same covariates
(Table S5).

Table S6 illustrates that results for all-cause dementia in a
secondary analysis using a 20-y exposure period were slightly
attenuated in comparison with the primary analysis. Shorter term
exposures (1-y, 5-y) as well as the 10-y exposure with a 10-y lag
suggested elevated HRs but had confidence intervals consistent
with a range of results. Similar patterns are observed for AD de-
mentia (Table S7).

Calendar Year

3 1994-1995
3 1996-1997
£3 1998-1999
B8 2000-2001
B 2002-2003
B3 2004-2005
E3 2006-2007
E3 2008-2009
B8 2010-2011
B 2012-2013
3 2014-2015
3 2016-2018

(85,90] (90,95] (95,110]

Age at Start of Exposure Period

Figure 1. Ten-year average PM; s by age at start of exposure period and calendar year. X-axis indicates age by 5-y age groups. Color coding indicates calendar
year category of PM, s exposure. In each box plot, the middle line represents the median value; the edges of the box represent the 25th and 75th percentiles,
and the whiskers extended up to 1.5 times the interquartile range (IQR). Points represent outlier observations outside this range.
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Figure 2. Ten-year average PM; s exposure predictions based on 2000-2009
data, and jittered Adult Changes in Thought participant residences (as indicated
with shaded circles). The map is for example visualization purposes only and
therefore shows smoothened predictions. The exposure predictions used in this
analysis are at point locations with greater variability (see Table S3).

We observed sensitivity to insufficient adjustment for calen-
dar time when using age as the time axis in the Cox model. More
specifically, using crude categories to adjust for calendar time
(birth cohort categories or 5-y calendar year categories) attenu-
ated the results and indicated an inverse association between
PM, 5 and dementia onset [age axis, birth cohort adjustment: 0.90
(0.84, 0.97); age axis, 5-y calendar year adjustment: 0.94 (0.86,
1.02)] (Figure 3; Table S5). Results were also attenuated for AD
(age axis, birth cohort adjustment: 0.89 (0.83, 0.97); age axis, 5-y
calendar year adjustment: 0.90 (0.82, 0.99) (Figure 3; Table S5).
Use of the alternative time axis of calendar time provided esti-
mates that were similar to the primary model for AD [time axis,
birth cohort adjustment: 1.10 (0.94, 1.28); time axis, 5-y intake
age adjustment: 1.11 (0.95, 1.29)] but slightly attenuated, with
the confidence intervals just overlapping the null, for dementia
[time axis, birth cohort adjustment: 1.13 (0.99, 1.30); time axis,
5-y intake age adjustment: 1.14 (1.00, 1.30)] Additional sensitiv-
ity analyses, including analyses without the use of IPW, were
aligned with primary results (Table S5), with the exception that
we observed sensitivity (i.e., substantial changes in the effect esti-
mates) to insufficient adjustment for covariates in the crude
(unadjusted) model (Tables S6 and S7). Results were strength-
ened for both non-AD dementia [1.35 (1.04, 1.75)] and after
dropping individuals employed at baseline for dementia: [1.24
(1.09, 1.41)] and AD [1.19 (1.03, 1.37)] (Table S5).

In exploratory interaction analyses, we identified effect modi-
fication by sex [male: 1.23 (1.08, 1.39); female: 1.13 (1.00, 1.28);
p-value=0.007] but not APOE [APOE+: 1.20 (1.06, 1.36);
APOE—: 1.14 (1.01, 1.29); p=0.10)], BMI [underweight/
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normal: 1.17 (1.04, 1.32); overweight/obese: 1.14 (1.00, 1.29);
p=0.27], education [none/GED/high school/other: 1.17 (1.03,
1.33); bachelor’s/master’s/doctorate: 1.16 (1.03, 1.31); p=0.86],
or age at intake [<73 y: 1.15 (1.02, 1.30); >73 y: 1.16 (1.03,
1.31); p=0.78] in our analysis of all-cause dementia (Table S8).
We did not observe effect modification by sex, APOE, BMI, edu-
cation, or age at intake for AD (Table S8).

Discussion

In our population-based prospective cohort study with four deca-
des of exposure data and high-quality, standardized, consensus-
based outcome ascertainment, we report that each 1 ug/m? incre-
ment in the moving 10-y average PM,s was associated with a
16% greater hazard of all-cause dementia diagnosis [1.16 (1.03,
1.31)]. The association with AD dementia indicated an 11%
greater hazard [1.11 (0.97, 1.27)]. We observed effect modifica-
tion by sex in the analysis of all-cause dementia, with a larger
estimated HR for males compared with females. We did not
observe effect modification by APOE status.

Several prior studies have evaluated the association between
PM, 5 and incident ADRD (Excel Table S1). Here, we review
these results with HRs rescaled to a 1 pg/ m? PM, s increment to
facilitate comparison with our work. Using a primary care prac-
tice database for older adults in London (n= ~131,000) with
mean (+SD) PMy s of 15.7 (+0.8) pg/m?, a 1-pg/m? increase
in annual average PM, s was associated with a 1.03 (0.96, 1.12)
increase in the hazard of dementia and a 1.11 (1.02, 1.20)
increase in the hazard of AD (Carey et al. 2018). In a study of
administrative data for Ontario, Canada (n= ~ 2.1 million),
where mean (+SD) PMys was 10.4 (+ 3.6) ug/m*—similar to
the average exposure over time in our cohort—a 1-pug/m?3
increase in a 2-y lagged 5-y moving average of PM, s was associ-
ated with a 1.008 (1.006, 1.010) increase in the hazard of demen-
tia (Chen et al. 2017). Using a female-only research cohort
in the United States (n=3,637) with a mean (+SD) of
12.5 (+2.7) pg/m3, Cacciottolo et al. estimated that a 1-pug/m?
increase in 3-y average PM,s was associated with 1.07 (1.03,
1.12) increase in the hazard of all-cause dementia (Cacciottolo
et al. 2017). Recent studies in Canada using administrative data-
bases based in Vancouver (n= ~678,000; mean (+SD) for
non-AD dementia cases=4.12 (+1.64) pg/m®) and Quebec
(n= ~1.8million; mean (+SD)=7.6(=+2.4) pg/m?) reported
that 1-ug/m? increases in PM,5 over the 4-y exposure period
for 1-y average exposures were associated with a 1.01 (0.99,
1.03) increase and 1.004 (1.00, 1.007) increase in the hazard of
dementia, respectively (Smargiassi et al. 2020; Yuchi et al.
2020). Our hazard ratios are higher than those from the studies
above, perhaps due to our high-quality exposure and outcome
ascertainment or the older age distribution of the cohort, further
discussed below. Two studies have reported higher hazard
ratios than ours for at least one time period evaluated (Grande
et al. 2020; Jung et al. 2015), yet concerns about possible biases
with regard to their methodological choices suggest caution
with interpretation and comparison. (Ilango and Shaffer 2020;
Power et al. 2016). For example, our interpretation of the Jung
et al. study is that follow-up time differed by disease status (Jung
et al. 2015), which could lead to bias given the expected secular
trends in exposure. In the recent Grande et al. study, use of disper-
sion modeling may result in exposure misclassification compared
to our use of spatiotemporal models informed by ground monitor-
ing data. Additionally, hazard ratios reported for different exposure
time periods are conflicting and neither was designated as the a pri-
ori focus for the analysis, which provides challenges for interpreta-
tion because it is unclear which period is most appropriate for
inference [5 y preceding event: 1.63 (1.38, 1.92); 6-11 y preceding
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Figure 3. Hazard ratios (95% CI) for a 1 ug/m? increase in 10-y PM, 5 and all-cause dementia or AD. All models use APOE stratification and adjustment for a
priori covariates: sex, educational degree, race, and neighborhood median household income. Choice of time scale and adjustment for calendar time, intake age
or birth cohort are indicated in the figure. Corresponding numeric data can be found in Table S5. Note: AD, Alzheimer disease; APOE, apolipoprotein E; CI,

confidence interval.

event: 0.81 (0.68, 1.01)]. Dementia diagnosis may also have been
problematic: outcome assessment occurred only every 3 or 6 vy,
depending on participant age; those who died also had dementia
diagnosis included based on medical records. Ultimately the lim-
ited methodological details leave many unanswered questions.

Some of these studies also investigated potential effect modi-
fication by sex and APOE, with overall inconsistent results across
the existing limited evidence base. No effect modification by sex
was identified in a studies of administrative cohorts in Ontario or
Vancouver (Chen et al. 2017; Yuchi et al. 2020), but stratification
by sex suggested a higher risk among men in a research cohort in
Sweden (Oudin et al. 2018). Women in a research cohort in the
United States carrying the APOE risk allele exhibited higher risk
(Cacciottolo et al. 2017), but in a research cohort of both men
and women in Sweden, there were no meaningful differences
when stratifying by the presence of the APOE risk allele
(Grande et al. 2020). Our exploratory interaction analyses sug-
gest effect modification by sex for all-cause dementia [male:
1.23 (1.08, 1.39); female: 1.13 (1.00, 1.28); p-value =0.007],
but other interaction term p-values were not significant for
other subgroup analyses. Although, in general, subgroup analy-
ses should be interpreted with caution (Weiss 2008), we en-
courage future work in this area, given the plausible biological
rationale for differential susceptibility (Dose et al. 2016;
Hanamsagar and Bilbo 2016; Jofre-Monseny et al. 2008).

An important difference between our study and many prior
studies is that we used age as the time axis for our primary sur-
vival analysis. Some authors have argued that using calendar
time as the time axis may lead to bias when age is an important
confounder (Cologne et al. 2012; Thiébaut and Bénichou 2004).
Because of the strong effect of age on risk of dementia, we ini-
tially believed that using age as the time axis would be the most
appropriate approach for these analyses; this also allows for
straightforward interpretation of the hazard function as the age-
specific incidence function (Thiébaut and Bénichou 2004). Yet, it
should be noted that using age as the time axis creates a situation
where comparisons are made between individuals of the same
age, regardless of the calendar time when exposure occurred.

Our exposure of interest—time-varying PM, s—demonstrates
clear and very strong secular trends (Figure 1), and therefore our
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Cox model compares individuals of the same age but who lived
at different times and experienced different PM, 5 exposures. To
adjust for these important secular trends, we determined that it
was necessary to include a rich adjustment for calendar time in
the risk model. Although we initially planned to adjust for birth
cohort categories with age as the time axis, we realized that this
categorization was too coarse: To account for small group num-
bers, some of our categories spanned 20 y, which did not provide
adequate control of the strong temporal confounding present in
this dataset. We saw similar results with crude adjustment for 5-y
categories of calendar time using age as the time axis (Figure 3;
Table S5). Thus, our primary analysis uses adjustment for more
refined 2-y calendar year categories. Given the very strong
decreasing trends in air pollution over time (Figure 1), and the
25+ year duration of the ACT cohort, we believe this approach
provides the best control of substantial temporal confounding
when using age as the time axis in our Cox model. Yet, our deci-
sion to finely control for temporal confounding and focus on
within-year variation comes at the expense of removing much of
the exposure contrast in the inferential analysis: As described
above, between year variance was much higher than within-year
variance.

Although prior studies have taken varying approaches to
adjusting for calendar time when using age as the time scale
(Chen et al. 2017; Grande et al. 2020; Smargiassi et al. 2020), the
longest follow-up period in previous research (~13y) was
approximately half the time our study (~ 25 y). Thus, strong sec-
ular trends in exposure were less likely, leading to fewer potential
concerns with temporal confounding when using age as the time
axis. By contrast, as noted above, our extended follow-up period
and strong secular trends made it essential to ensure tight control
of temporal confounding in our analysis.

Reassuringly, our results using this model are aligned with
sensitivity results using calendar time as the time axis, where
control for temporal confounding is inherent in the choice of time
axis (Figure 3; Table S5). Our experience suggests that models
with differing time axes—either age or calendar time—will pro-
vide consistent results when there is adequate control of con-
founding; our disparate results using the age axis with an
adjustment for crude categories of either birth cohort or calendar
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year suggest that coarse groupings of these covariates do not
properly control for the strong temporal confounding present in
our data set. Future survival analyses of air pollution and demen-
tia should carefully consider the strong trends in both the expo-
sure and outcome when selecting the time axis and covariates
(including their functional form) for the Cox model.

A central strength of this study is that it draws on 25 y of high
quality, consistently implemented, biennial evaluations of cogni-
tive status and ADRD in the ACT study (Kukull et al. 2002). For
prior studies of PM, s and ADRD that have used administrative
data for outcome ascertainment (Excel Table S1), misclassifica-
tion is a key concern (Wilkinson et al. 2018).

Using a newly developed spatiotemporal exposure prediction
model specifically for the Puget Sound region, we were able to
estimate residence-based PM; 5 for 40 y (1978-2018). Prior to our
study, the longest exposure model, which was developed based on
dispersion modeling, covered 22 y (Grande et al. 2020). We com-
plemented these exposure data with address histories available
through Group Health/Kaiser Permanente of Washington records,
with nearly complete histories since 1989 for the entire cohort and
reasonably good coverage prior to 1989. Overall, we were able to
estimate 10-y average PM, 5 exposures using known address his-
tory for 91% of the person-years.

Evaluating a long exposure averaging period is crucial for
this research question, given the extended period of disease de-
velopment in ADRD (Jack et al. 2010). In fact, in our data set,
hazard ratios from shorter term averaging periods (1-y, 5-y) were
attenuated, suggesting that these exposure windows may be inad-
equate to capture the true effects of PM,s. Most prior studies
have focused on exposure averaging periods of 5 y or less for the
Cox model (Excel Table S1). Thus, our study is unique in the
ability to estimate 10-y exposures with high coverage and quality
across the cohort and over time.

A challenge for our extended exposure coverage over time is
that there were limited monitoring sites across the region in the
early years; as such, we cannot rule out the possibility of higher
exposure measurement error in early time periods. However,
many of the features that predict spatial contrasts in exposure,
such as heavy industry, shipping, and the road network, have
been in place for the entire time period, suggesting that it is
appropriate to leverage more recent spatial information to predict
historical spatial contrasts. Prior work on patterns of woodsmoke
in the Seattle area provides evidence to support this assumption
of consistent spatial contrasts over time in this region (Su et al.
2008).

We were only able to include estimates of PM; 5 in our mod-
els because spatiotemporal models for other pollutants were not
available for such extended follow-up periods. Other common
air pollutants, such as ozone, nitrogen oxides, and ultrafine par-
ticles, may also play a role in ADRD and related neurodegener-
ation (Peters et al. 2019). Focusing on the single pollutant
effect does not fully capture the impact of real-world, multipol-
lutant exposures.

A common challenge in cohort studies—particularly those of
elderly populations—is selection bias, which occurs with differ-
ential enrollment or attrition of study participants. However, the
ACT study has an exceptional Completeness of Follow-up Index
(CFI) (Clark et al. 2002), which reflects the proportion of planned
visits for which data are available; the ACT CFI of 95.6% mini-
mizes our concern with bias from selective attrition. Still, differ-
ential enrollment is a potential concern: Individuals had to have
health insurance, survive, and be free of dementia to enter the
cohort. Yet, eligibility began at age 65 y, which reduces our con-
cern with selection bias due to insurance coverage because
of Medicare eligibility. Membership in Group Health/Kaiser
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Permanente for individuals >65 years of age is representative of
the analogous Medicare population in the regional catchment
area, and the ACT cohort draws a random sample from the
Group Health/KP system (Kukull et al. 2002).

Because of the population-based sampling approach, mean
age of entry in our cohort was 75 y, with a range of 65-101. Our
cohort is older than most cohorts in prior analogous studies,
which may contribute to differences in effect estimates. For
example, it is possible that older individuals are more susceptible
to the adverse effects of PM, s, contributing to the higher HRs
observed in our study compared to most prior studies. On the
other hand, older enrollees had to survive free of dementia for a
longer period, and characteristics that contributed to their healthy
survival might create bias in the other direction. In the case of
smoking and AD, it has been hypothesized that selection bias
may account for the apparent “protective” effect of smoking: due
to premature mortality and/or early ADRD diagnosis, smokers
are eliminated from the eligible population (Hernan et al. 2008).
It is possible that a similar situation could arise with PM, 5 expo-
sure, given the well-established link to premature mortality (Liu
et al. 2019) and the growing link to ADRD. In this scenario, our
effect estimate would likely be biased to the null. This may also
explain our null estimates regarding effect modification for most
selected variables. There is also possible bias in our effect esti-
mates because the traditional Cox model approach does not
account for competing risk of death. Finally, it should also be
noted that our cohort was fairly healthy at baseline, with rela-
tively low rates of comorbidities such as CVD and diabetes. Our
results might not be generalizable to a population with higher
rates of comorbidities.

Overall, there is biological plausibility for the effects
observed in our study. The central nervous system (CNS) effects
of PM,s may be mediated through direct and/or indirect path-
ways leading to oxidative stress and inflammation (Block and
Calderén-Garcidueiias 2009; Heusinkveld et al. 2016; Jayaraj
et al. 2017). The direct pathway involves the translocation of par-
ticulate matter and associated toxic constituents to the brain,
where they may trigger local inflammatory and oxidative stress
reactions (Block and Calderén-Garcidueiias 2009; Jayaraj et al.
2017). Plausible routes through which this particle transfer could
occur include transport through the olfactory, trigeminal, or vagal
nerves, or passage from the peripheral circulation through the
blood brain barrier (Lucchini et al. 2012). In contrast, in the indi-
rect pathway scenario, PM components do not physically enter
the brain but instead trigger systemic oxidative stress and inflam-
matory reactions that may spill over into the CNS (Jayaraj et al.
2017). There are well-established linkages between air pollu-
tion and vascular disease (Brook et al. 2010) as well as a grow-
ing understanding of the vascular contributions to dementia
(Gorelick et al. 2011). The fact that our results were attenuated
when focusing on AD-subtype dementia may suggest the impor-
tance of vascular injury—and the indirect, peripheral pathway—
in mediating the association between air pollution and dementia
(Ilango et al. 2020).

Conclusion

In this population-based prospective cohort study with region-
specific exposure data covering four decades and high quality,
standardized, consensus-based outcome ascertainment, we report
that a 1-ug/m? increase in 10-yr average PM, s was associated
with a higher hazard of all-cause dementia [1.16 (1.03, 1.31)].
These results add to a growing body of both epidemiological and
toxicological evidence on the neurodegenerative effects of air
pollution and suggest that reducing exposures across the popula-
tion could contribute to reducing the burden of dementia
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(Livingston et al. 2020). Additionally, our findings suggest that
when conducting a survival analysis with an outcome that is age-
related and an exposure that has strong temporal trends, use of ei-
ther age or calendar time as the time axis in the Cox model can
be appropriate, as long as there is adequate control of the alter-
nate confounding factor; these observations can help inform and
strengthen future related epidemiological research.
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