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Abstract

Background and Purpose: The purpose of this study was to replicate the top loci associated 

with white matter hyperintensity (WMH) phenotypes identified by large genome-wide association 

studies and the loci identified from the previous candidate gene studies.

Methods: A total of 946 Geisinger MyCode acute ischemic stroke (AIS) patients with validated 

European ancestry and MRI data were included in this study. Log transformed WMH volume 

(WMHv), as a quantitative trait, was calculated by a fully automated quantification process. The 

GWAS was carried out by a linear mixed regression model (GEMMA). A candidate-SNP analysis 

by including known SNPs, reported from a meta-analysis and several large GWAS for WMH, was 

conducted in all cases and binary converted extreme cases.

Results: No genome-wide significantly associated variants were identified. In a candidate-SNP 

study, rs9515201 (COL4A2) and rs3744028 (TRIM65), two known genetic loci, showed nominal 

or trend of association with the WMHv (β=0.13 and p=0.001 for rs9515201; β=0.094 and p=0.094 

for rs3744028), and replicated in a subset of extreme cases versus controls (OR= 1.78, p = 

7.74×10−4 for rs9515201; OR=1.53, p=0.047 for rs3744028, respectively). MTHFR677 cytosine/

thymine (rs1801133) also showed an association with the binary WMH with OR=1.47 for T allele 

(p=0.019).

Conclusion: Replication of COL4A1/2 associated with WMH reassures that the genetic risk 

factors for monogenic and polygenic ischemic stroke are shared at gene level.
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Introduction

The genetic basis of WMH has been investigated since the early linkage studies1, 2 as well as 

several large-scale genome-wide association studies (GWAS)3–8. Due to its high heritability, 

WMH burden becomes the most commonly used intermediate phenotype to access the 

heritability for cerebral small vessel disease (CSVD). WMH volume (WMHv) is the 

frequently used quantitative trait, calculated manually or automatically by machine-learning 

algorithms, semi-quantitative visual rating scales, and can be binarily converted to represent 

a subset of so-called ‘exteme’ cases with high or low WMH burden. The discrepancy in 

heritability for WMH estimated by twin/family studies and by GWAS can be at least 

partially explained by the contribution of rare variants with larger effect size and high 

penetrance in familial monogenic CSVD versus the contribution of common variants with 

smaller effect size and the polygenic nature in sporadic CSVD. Nevertheless, the causal 

mechanisms such as COL4A1/2, NOTCH3 for WMH in monogenic and sporadic CSVD can 

be shared at gene and pathway level.9 A recent Phase II GWAS on periventricular or deep 

WMH not only confirms these known genetic loci/genes specific to the anatomically 

stratified endophenotypes of WMH, but also identifies novel loci/genes10.

The purpose of this study was to identify common variants associated with WMH burden 

among patients with acutely ischemic stroke (AIS) and to replicate the genetic loci 

associated with WMH phenotypes through a candidate-SNP approach.

Methods

The summary statistics of this Geisinger cohort may be shared with third party upon 

execution of data sharing agreement. Such request should be addressed to the corresponding 

author.

The study cohort was made up of participants of the Geisinger’s MyCode® Community 

Health Initiative consisting of 946 AIS patients with validated European ancestry and MRI 

data. The informed consent was obtained for all MyCode® patients. This study was 

approved by the Geisinger Institutional Review Board. Patient Characteristics, Clinical 

Variables, and Outcome Measures were based on the neurological examination and 

corresponding neuroimaging11. Quantification of WMHv using a fully automated pipeline 

was conducted on clinical brain MRIs obtained at the time of the stroke. This pipeline 

integrated automated brain extraction, intensity normalization, and WMH segmentation12. 

The exponentially distributed WMHv (Supplementary Figure I) was converted into nearly 

normal distribution after a natural log transformation (ln[WMHv + 1]). Genotyping, 

imputation and quality control was described in Supplementary material at http://

stroke.ahajournals.org. GEMMA(version 0.98.1), a linear mixed model, was adopted to test 

genetic associations with WMH volumes while accounting for covariates such as index age, 
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sex, and five major principal components, and cryptic relatedness between individuals with 

allelic dose (0, 1, or 2 copies of the reference allele) as the independent variable. We 

conducted a candidate-SNP analysis to validate known genetic variants based on a meta-

analysis of previous candidate gene studies1314 and top 20 genetic loci identified by the 

large-scale GWAS3–8 which were reviewed by others 9, 14, 15. We selected patients 

distributed at the top (232 from 331) and bottom quantile (246 from 331) of WMHv (946 

with genomic data from 1324) and subsequently convert into binary trait to represent 

subgroups of patients with high or low WMHv. A logistic regression model adjusted for 

covariates (WMHvbinary ∼ Age + Sex + PC(1–5) + Genotype), was considered. The p value 

and Odds Ratio (OR) of the SNPs in this subset of patients were also determined.

Results

Demographics and clinical characteristics of the cohort were listed in Figure 1A.

Baseline Ln_WMHv showed significant positive associations with some comorbidities such 

as hypertension (OR=1.07; p=0.001), diabetes (OR=1.25; p=0.007), and COPD (OR=1.31; 

p=0.028) (Figure 1B). It also predicted poor outcome at 90days such as mRS 3–5 (OR=1.42; 

p<0.001) and mRS 3–6 (OR=1.35; p=0.001), suggesting this WMHv could be considered as 

a surrogate biomarker for outcome prediction of IS.

No genome-wide significant variants were identified (Supplementary Figure II at http://

stroke.ahajournals.org) suggesting the complexity of the trait and our GWAS was 

underpowered. We therefore conducted a candidate-SNP analysis by including several 

known SNPs, gathered from a meta-analysis for WMH14. We conducted a subgroup analysis 

by simulating ‘extreme’ cases and evaluated the association and the effect size of the SNPs 

with the binary WMHv. The frequency of MTHFR677 cytosine/thymine (rs1801133) 

showed difference between lower and upper quantile groups with OR=1.47 for T allele 

(p=0.019) (Table 1), the direction of which was consistent with previous studies.14 Due to 

the nominal p value and the small effect size for T allele reported by others14, we considered 

our cohort replicated this association.

Although only 15 SNPs out of 20 top GWAS loci having genetic data available in our 

dataset, rs9515201 (COL4A1/2) and rs3744028 (TRIM65) were replicated in this subset 

(OR=1.78, p=7.74×10−4; OR=1.53, p=0.047, respectively, Table 2) and showed nominal or 

trend of association with the quantitative Ln_WMHv in the entire cohort (MAF=0.318, 

β=0.13 and pwald=0.001 for rs9515201; MAF=0.178, β=0.094 and pwald=0.065 for 

rs3744028) (Supplementary Table I at http://stroke.ahajournals.org). The significance for the 

association of rs9515201 from COL4A1/2 with the quantitative or binary WMHv survived 

the Bonferroni correction.

Discussion

Common variants (rs9521732, rs9521733, and rs9515199) from COL4A1/A2 may 

contribute to the risk for sporadic CSVD and intracerebral hemorrhage (ICH) in a subtype of 

stroke patients and controls with European ancestry.16 They have a moderate significance in 

association with lacunar stroke and WMH in symptomatic IS patients.16 A multi-ethnic, 
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genome-wide meta-analyses of dementia- and stroke-free subjects also has revealed that a 

COL4A2 SNP, rs9515201, is associated with WMH in community populations as well as 

stroke patients3. This SNP is in strong LD with three SNPs previously identified.16 We also 

interrogated deep or periventricular WMH-specific loci, recently identified by a Phase II 

GWAS10 including COL4A2(rs11838776) demonstrating a nominal association with 

WMHv(p=0.0046) and a trend towards an association with TRIM47(rs3744020; p=0.150) 

and TRIM65(rs35392904; p=0.189). A further analysis of the effect size and the association 

in an anatomically stratified subgroup would be interesting. rs1801133, also known as 

C677T, Ala222Val, or A222V, is the most commonly investigated common variant in the 

MTHFR gene. Individuals with this MTHFR mutation have elevated homocysteine levels 

and the replication of this association reconfirms that total homocysteine is associated with 

WMHv. Unlike baseline WMHv, these replicated variants cannot be solely considered as a 

proxy for WMHv and used as a surrogated biomarker to predict outcome (data not shown).

As more health care systems adopt this infrastructure by leveraging the EHR data, extensive 

sequencing/genotyping, in combination with automated WMH phenotyping as illustrated in 

Supplementary Figure III, we believe more genome-wide, replicable findings will be 

identified through meta-analyses. Secondary pheWAS would help to determine their 

pleiotropy as well as serving as clinical actionable biomarkers.

Conclusion

Replication of COL4A1/2 associated with WMH reassures that monogenic and polygenic 

cerebral vascular disease are shared at the genetic level.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

WMH white matter hyperintensity

LN_WMH nature log transformed WMH

NIHSS National Institute of Health Stroke Scale

NIHSS_7above NIHSS ≥ 7

NIHSS_10above NIHSS ≥ 10

NIHSS_16above NIHSS ≥ 16

mRS02 modified Rankin Score from 0 to 2
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mRS35 modified Rankin Score from 3 to 5

mRS36 modified Rankin Score from 3 to 6

mRS6 modified Rankin Score at 6

Thrombectomy Mechanical thrombectomy

iv_tPA intravenous tissue plasminogen activator

DAPT Dual antiplatelet therapy

TAPT Triple antiplatelet therapy

Anticoagulant anticoagulant therapy

Procoagulant History of procoagulant disorder
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Figure 1. 
Associations of WMHv with clinical variables of the Geisinger cohort. 1A. Demographics 

and clinical characteristics of the Geisinger cohort. 1B. The forest plots demonstrated the 

summary statistics of the associations between log transformed WMHv and demographic/

clinical variables. A logistic regression model for the natural log transformed WMHv, 

adjusted for covariates (subphenotype ∼ Age + Sex + PC(1–5) + Ln_WMHv), was 

considered.
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