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An indispensable feature of episodic memory is our ability to temporally piece together different elements of an experience
into a coherent memory. Hippocampal time cells—neurons that represent temporal information—may play a critical role in
this process. Although these cells have been repeatedly found in rodents, it is still unclear to what extent similar temporal se-
lectivity exists in the human hippocampus. Here, we show that temporal context modulates the firing activity of human hip-
pocampal neurons during structured temporal experiences. We recorded neuronal activity in the human brain while patients
of either sex learned predictable sequences of pictures. We report that human time cells fire at successive moments in this
task. Furthermore, time cells also signaled inherently changing temporal contexts during empty 10 s gap periods between tri-
als while participants waited for the task to resume. Finally, population activity allowed for decoding temporal epoch identity,
both during sequence learning and during the gap periods. These findings suggest that human hippocampal neurons could
play an essential role in temporally organizing distinct moments of an experience in episodic memory.
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Significance Statement

Episodic memory refers to our ability to remember the what, where, and when of a past experience. Representing time is an
important component of this form of memory. Here, we show that neurons in the human hippocampus represent temporal
information. This temporal signature was observed both when participants were actively engaged in a memory task, as well as
during 10-s-long gaps when they were asked to wait before performing the task. Furthermore, the activity of the population
of hippocampal cells allowed for decoding one temporal epoch from another. These results suggest a robust representation of
time in the human hippocampus.

Introduction
Creating episodic memories requires linking distinct events of an
experience with temporal fidelity. The brain must represent the
temporal flow and order of events, and glue them together in the
correct sequential order. Time cells in the hippocampus and ad-
jacent structures might play an essential role in this temporal or-
ganization of memory (Hasselmo, 2009; Eichenbaum, 2014;
Howard et al., 2014). In rodents, time cells signal changing tem-
poral contexts in a variety of paradigms (Manns et al., 2007;
Pastalkova et al., 2008; MacDonald et al., 2011, 2013; Kraus et al.,
2013, 2015). They fire at successive moments of time during a
fixed interval, and the activity of the population of time cells cov-
ers the entire time interval (Pastalkova et al., 2008). More
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recently, another class of ramping cells in the lateral entorhinal
cortex has been discovered. Ramping cells show slowly rising or
decaying activity with time, over a range of time scales.
Temporal epoch identity could be decoded from the firing activ-
ity of the population of cells (Tsao et al., 2018).

Temporal coding has also been observed in neuronal activity
patterns in the human hippocampus. For instance, neuronal ac-
tivity in the human medial temporal lobe shows gradual changes
over time in memory tasks (Howard et al., 2012; Folkerts et al.,
2018). The recall of a particular item is accompanied by the rein-
statement of its initial temporal representation (Gelbard-Sagiv et
al., 2008; Howard et al., 2012; Folkerts et al., 2018). More
recently, single neurons have also been shown to be modulated
by time, akin to time cells in rodents, during encoding and re-
trieval in a free recall memory task (Umbach et al., 2020).

In the current study, we asked if human hippocampal neurons
represent temporal information during sequential order learning.
A large body of work in animals and humans has shown that the
hippocampus is essential for remembering the temporal order of
sequential events (Eichenbaum, 2013). For example, in humans,
the hippocampus is activated when subjects recall the order of
objects, and conversely, patients with hippocampal damage have
trouble in temporal order judgements (Spiers et al., 2001; Ekstrom
and Bookheimer, 2007). In animals, rats with hippocampal dam-
age are impaired at remembering the sequential order of odors
(Fortin et al., 2002). Given the importance of the hippocampus in
sequence order learning and temporal order judgements, we tested
whether human hippocampal neurons represented temporal in-
formation while participants learned the order of a sequence of
items. We tested for temporal modulation of hippocampal activity
in two experiments (1) during sequence learning (SL: Fig. 1A) and
(2) during empty gap periods inserted in the task during which
participants passively waited for the sequence to resume (Fig. 1B).
Note that in these gap periods, any potential temporal information
is not driven by external stimuli or events but rather represents in-
herent changes in the patients’ moment-to-moment experience.
We report that human hippocampal neurons fire at successive
moments during these structured time periods, both while sub-
jects actively monitor a sequence as well as during empty temporal
gaps between events.

Materials and Methods
In this study, human epileptic patients performed
two sequence learning tasks while single neuron ac-
tivity was recorded from microelectrodes implanted
in the hippocampus (Fig. 2). We quantified the
influence of time on the firing activity of individual
neurons using a stepwise general linear model
(GLM), as has previously been used in the rodent
literature (MacDonald et al., 2011; Tsao et al.,
2018). In this GLM, a predictor variable is included
in the model only if it is found to significantly
improve the prediction of the response variable (see
below).

Patients
Nine patients of either sex participated in the first
experiment, and six patients of either sex partici-
pated in the second experiment. The patients were
diagnosed with pharmacologically intractable epi-
lepsy and were undergoing epileptological evalua-
tion at the Amsterdam University Medical Center.
Patients were implanted with chronic depth electro-
des for 7–10d to localize the seizure focus for possi-
ble surgical resection (Fried et al., 1997; Engel et al.,
2005). All surgeries were performed by Johannes C.
Baayen and Sander Idema. The Medical Ethics

Committee at the medical center approved the studies. The electrode
locations were based entirely on clinical criteria and were evaluated
based on the presurgical planned trajectories on the basis of structural
MRI scans. For each electrode the planned trajectory was adjusted to
ensure that the tip of the macroelectrode was at least 3 mm within the
body of the hippocampus. The clinical team aimed for microwires that
extended;2–3 mm from the tip of the macroelectrode. The accuracy of
the implantation was always checked using a computerized tomography
scan coregistered to the MRI. We only included electrodes that were
within a 3 mm deviation from the target (based on visual confirmation).
Each electrode contained eight microwires (Behnke-Fried electrodes,
Ad-Tech Medical) from which we recorded multiunit activity, and a
ninth microwire that served as a local reference. The signal from the
microwires was recorded using a 64-channel Neuralynx system, filtered
between 1 and 9000Hz, sampled at 32KHz. On average, each patient
was implanted with 34 6 11.8 microwires [range = (16, 48)].
Participants sat in their hospital room at the Epilepsy Monitoring Unit
and performed the experimental sessions on a laptop computer.

Spike detection and sorting
Spike detection and sorting were performed with Wave_clus (Quiroga et
al., 2004). Briefly, the data were bandpass filtered between 300 and 3000
Hz, and spikes were detected with an automatic amplitude threshold
(Reddy et al., 2015). Spike sorting was performed with a wavelet trans-
form that extracted the relevant features of the spike waveform.
Clustering was performed using a superparamagnetic clustering algo-
rithm. Clusters were visually reviewed by Leila Reddy for (1) the mean
spike shape and its variance, (2) the ratio between the spike peak value
and the noise level, (3) the inter spike interval distribution of each clus-
ter, (4) the presence of a refractory period, and (5) the similarity of each
cluster to other clusters from the same microwire. Based on manual
inspection of these criteria, clusters were retained, merged, or discarded.

Experimental design and statistical analyses
Behavioral Task. In experiment 1, sequence learning, the patients per-
formed a total of 31 SL sessions (Fig. 1A). In each SL session, participants
were presented with a sequence of 5–7 images (image number deter-
mined as a function of the difficulty level and the availability of the
patient). The images were always presented in a predetermined order so
that a given image, A, predicted the identity of the next image, B, and so
on. Subjects were asked to remember the order of the images in the
sequence. Each image was presented for 1.5 s (image period) followed by
an interstimulus interval (ISI) period of 0.5 s. The sequence was repeated

A

B

Figure 1. Experimental design. A, In the sequence learning experiments, participants saw a sequence of images in
a fixed order, and were asked to learn the sequence order. The stimulus sequence consisted of five to seven image
periods (image number fixed per session and determined by the availability of the patient) separated by ISI periods.
Each image was presented for 1.5 s followed by an ISI of 0.5 s. The sequence was repeated for 60 loops. 20% of the
time, a probe event occurred (black squares) during which participants had to decide which of two choice images was
the correct one at the current position in the sequence. The probe events occurred at random positions of the
sequence. After the probe event, the sequence resumed. In our main analysis, we consider time periods that occurred
between two consecutive probe events as the trials of interest. As shown, each postprobe trial consisted of several
image and ISI periods (gray squares). B, The design of experiment 2 was similar to that of experiment 1 except for the
insertion of 10-s-long gap periods (black rectangle) during sequence learning. These gap periods occurred periodically
(see below, Materials and Methods). During the gap periods, the sequence stopped, and patients were presented with
a blank screen. They were asked to simply wait until the sequence resumed.
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continually 60 times, resulting in experimental
sessions of 10min for five-image sequences
and 14min for seven-image sequences, not
including time spent by the subject to respond
on probe events. On a random 20% of image
periods, the sequence stopped, and partici-
pants were presented with probe events. In
these probe events, instead of being presented
with the next image of the sequence, subjects
were shown two images side by side and asked
to decide (by pressing one of two keys on the
keyboard) which of the two was the next
image in the sequence. After the subjects
responded, the sequence resumed.

From the point of view of the subject, the
probe events were salient moments of an oth-
erwise repetitive experiment because the
probes stopped the sequence and tested sub-
jects on their learning of the sequence order.
Thus, we considered sequence segments
between two consecutive probe events as our
trials of interest, that is, structured, temporal
experiences between two salient markers. We
asked whether hippocampal neurons tracked
time in this interval. In control analyses
described below, we verified these results
with respect to other time periods in the
experiment.

In experiment 2, sequence learning with
temporal gaps (Fig. 1B), six new patients per-
formed eight sessions of a second SL experi-
ment. This second experiment followed the
design of the first SL experiment described
above, except for the following modifications:
After a fixed number of repeats of the
sequence, a 10-s-long empty gap interval was
presented. During these gap intervals, partici-
pants were presented with a black screen,
without any stimulus input, and were asked to
simply wait until the sequence started again.
For three participants these gap intervals occurred after every five
repeats of the sequence (resulting in six gap intervals in the experi-
ment), whereas for the remaining three participants, these gap intervals
occurred after every two repeats of the sequence (resulting in 15 gap inter-
vals in the experiment). The sequence was repeated only 30 times instead of
60 times.

In the nine patients who performed the first experiment, we recorded
from 429 neurons in the hippocampus, and in the six patients who per-
formed the second experiment, we recorded 96 hippocampal units.

Time cell identification with a general linear model (experiment 1)
Time cell identification was performed with a GLM as in previous stud-
ies (MacDonald et al., 2011; Tsao et al., 2018). The firing activity of each
neuron was modeled as a function of time, image identity, and whether
the temporal period corresponded to an image or ISI period.

For the purposes of the GLM, as described above (Fig. 1A), we
defined trials as segments of the sequence between two consecutive
probe events (number of sequence segments or trials between two con-
secutive probe events across sessions: mean 6 SEM = 73.6 6 2.4). We
made this choice because (1) as explained previously, these probe events
were the most salient events of the experiment, and (2) if we simply con-
sider time = 0 as the start of each five to seven image sequence, time in
the sequence is directly confounded by image identity because the
sequence order is fixed. By redefining time = 0 as the time at which the
sequence restarted after the probe events, we avoided this confound
because time is not confounded with image identity with respect to
probe events (the sequence segment after the probe is random since the
probe events occurred at random moments). In control analyses we also
considered different temporal intervals for determining time cells.

Each of the postprobe trials consisted of several image and ISI peri-
ods that regularly followed each other (Fig. 1A). The median number of
image and ISI periods in a trial was seven, corresponding to a median
trial length of 6.5 s. For all subsequent analyses, only the first 6.5 s of
each trial were included in the GLM (i.e., trials shorter than this duration
were excluded from the GLM). Thus, each trial between probe events
was a well-structured temporal interval during which the sequence pro-
gressed according to its fixed order. The average number of trials
included in the GLM was 49.76 0.8 [mean6 SD, range = (25, 64)].

In the GLM, the firing activity vector (Y) on each trial contained the
average firing rates for each period of the trial, with no smoothing or
additional preprocessing. Y was modeled as a function of three variables:
image identity in each period, time of the period [i.e., time of the mid-
point of the period with respect to trial onset/probe offset; time varied
between 0s and 6.5s], and whether the period corresponded to an image
or an ISI event. A linear factor for time assumes that time cells either
show a ramping up or a ramping down of firing activity during the trial.
To also include the possibility of cells having a preferred time not just at
the beginning and end of trials but also at intermediate points, we
included a quadratic time term (i.e., t2, a parabola-shaped function; for
this purpose, time was recentered to the middle of the trial and thus varied
between�3.25 and 3.25 s). The firing activity (Y) was modeled as follows:

Y ¼ b0 1 b1ImageOrISI1
X

i
b iImageIDi 1 b jTime1 b kTime2:

(1)

The GLM analysis was performed using the MATLAB stepwiselm
function, including the variables image/ISI, imageID, Time, and Time2,
in a linear model, with a constant term as the baseline model, the sum of
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Figure 2. A, Electrode locations shown on a sagittal slice of the average MRI of patients registered to the Montreal
Neurological Institute brain template. B, Bandpass-filtered (300–3000 Hz) signal from five different channels (left), mean
waveforms recorded on these channels (middle), and the corresponding distributions of interspike intervals (right). The black
vertical tick marks on the left plots indicate a scale of 30 uV.
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squared error (SSE) criterion (PEnter = 0.05), and other default parame-
ters. The variables image/ISI and imageID were entered as categorical
variables, and the time variables were continuous variables. Stepwise
regression systematically tests the variance explained by adding and
removing variables from a linear model based on their statistical signifi-
cance in explaining the response variable. Note that the order in which
regressors are entered into the stepwise linear model does not affect its
outcome. Time cells were defined as cells for which the time terms (i.e.,
Time and/or Time2) were added by the stepwiselm function (PEnter ,
0.05).

Statistical testing was performed for each time cell with permutation
testing in which the firing rates were shuffled with respect to the task
design, and the stepwise regression repeated. This procedure was
repeated 1000 times per cell. For each cell, pactual was the p value
returned by the regression analysis for the real data. pactual was compared
with the distribution of p values returned from the shuffling procedure.
For cells where both the time and time2 terms were significant the p
value corresponded to the smaller of the corresponding p values. We
defined pshuffle as the proportion of shuffles that produced a smaller p
value than pactual. Only cells with pshuffle , 0.05 were ultimately consid-
ered time cells in this analysis (Umbach et al., 2020).

As a separate test to confirm our classification of time cells, different
from the stepwise regression test, we performed a likelihood ratio test to
compare the log likelihood values of a restricted linear model that
included all terms except the time terms, and a full model which also
included the two time terms.

Time cell identification with a general linear model (experiment 2)
The 10 s gap intervals of experiment 2 were epoched into 500ms nono-
verlapping windows, and, as above, a stepwise regression analysis was
performed. The firing activity (Y) in each epoch was modeled as a func-
tion of time in the epoch (Time and a quadratic time term Time2). All
other parameters in this analysis were identical to those described for
experiment 1. The firing activity (Y) was modeled as follows

Y ¼ b 0 1 b 1Time1 b 2Time2:

Control analyses for defining trial periods and time cells
In the main analysis of experiment 1, a trial was defined with respect to
the probe events (i.e., the sequence segment that occurred between two
consecutive probe events). We performed several additional analyses for
identifying time cells; in each case permutation testing was performed
for each time cell as described above. The results of the control analyses
are summarized in Table 1.

First, time cells were identified when the first period after the probe
event was excluded from the GLM. Second, time cells were identified
when the GLM analysis was performed on only the ISI periods. In this
control, the Y vector contained the firing rates in the ISI periods, and the
regressor matrix X consisted of the time factors and an image identity
factor (i.e., the identity of the image following the ISI period, to account
for image-specific anticipatory responses that can be observed in the ISI
periods during sequence learning (Reddy et al., 2015)). Third, trials were
redefined as sequence segments with respect to the onset of each repeti-
tion of the sequence. Note that in this case, time selectivity can be con-
founded by image selectivity (as the same stimulus sequence repeats
identically in every loop); however, the MATLAB stepwiselm function

that we used for determining time selectivity could disentangle the
potential contributions of the time and image ID variables because it sys-
tematically tests for the addition and removal of each variable in signifi-
cantly explaining the response variable. Nonetheless, to avoid any
ambiguity in interpretation, we elected to present time selectivity with
respect to probe events as our main analysis, as it precludes this potential
confound. Fourth, time cells were also identified in a control analysis
that used an N-way ANOVA to test for an interaction between firing
rates and time, as in Umbach et al., 2020. For each trial we computed the
firing rate within each ISI and image period. We tested for temporal
modulation of firing activity with predictors time bin, image identity,
and image/ISI. As in Umbach et al., 2020, cells with a significant main
effect of time (i.e., pactual , 0.05) from this procedure were passed on for
statistical testing. Statistical testing was performed with permutation
testing in which the firing rates were shuffled with respect to the task
design, and the ANOVA was repeated on the shuffled data. As explained
previously, only potential time cells with pshuffle , 0.05 were ultimately
considered time cells in this analysis. Finally, to identify ramping cells
(Tsao et al., 2018), we repeated the stepwise GLM approach as in the
main analysis but with the exclusion of the quadratic time term. A sum-
mary of the control analyses is shown in Table 1.

Statistical test for the number of time cells
Statistical significance for the number of time cells identified by the
GLM analysis was evaluated using a permutation test. For the permuta-
tion test, in experiment 1, surrogate data were created by randomly shuf-
fling the image and ISI periods on each trial. For experiment 2 surrogate
data were created by randomly shuffling epoch time. The stepwise
regression was then performed on this surrogate data on 106 iterations.
The proportion of surrogates that had a higher number of time cells was
p, 10�6 in all analyses (in other words, none of the surrogates ever had
a higher number of time cells).

Heat maps cross-validation and statistical test
The original heat maps (Fig. 3B; see Fig. 5B) were constructed by sorting
the time cells according to the latency of peak firing and using this sorted
order to plot the firing rate of each cell over the time interval. However,
a heat map generated from random data, sorted and plotted according
to the maximum value of each entry, will also show a similar well-organ-
ized pattern. Thus, to ensure the reliability of these maps, we performed
a cross-validation analysis on the real heat maps to verify their
reproducibility.

For the cross-validated heat maps, the order in which the cells were
plotted was determined from the latencies on a random half of the data,
and the firing rates were plotted for the remaining half of the data. If the
cells had no true temporal preference, the peak latency on the second
half should be unrelated to the latency measured on the first half, and no
meaningful ordering of cells should appear. This cross-validation proce-
dure was repeated 1000 times, and the resulting heat maps were averaged
across cross-validations to generate cross-validated maps. We quantified
the reliability of the heat maps by performing a nonparametric permuta-
tion test. We first computed the Spearman correlation pointwise
between the average cross-validated heat map and the original heat map,
resulting in the correlation measure corrorig,cv. To simulate the null
hypothesis that the cells do not have a reliable time preference, on
each cross-validation iteration we generated 105 surrogate heat
maps by randomizing the cell order obtained from the first half of

Table 1. The number of time cells identified in the control analyses and the overlap between time cells identified in the main analysis and the control analyses

Control Analysis
Number of time cells identified (% of overlap
with time cells from the main analysis) Concern

Likelihood ratio test 138 (84.7%) Identification of time cells is method dependent
Stepwise GLM on ISI periods only 106 (76.4%) Identification of time cells is dependent on image information
Stepwise GLM excluding first ISI 65 (81.5%) Identification of time cells is dependent on the probe events
Stepwise GLM with trials defined with respect to sequence onset 69 (30.4%) Identification of time cells is dependent on the temporal interval
N-way ANOVA 101(88.1%) Identification of time cells is method dependent
Stepwise GLM excluding the quadratic time term 114 (88.7%) Identification of ramping cells
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the data (instead of determining their order based
on peak firing time over the first half), and gener-
ating a heat map with this random order for the
second half of the data. Each of these 105 surrogate
heat maps was correlated with the original heat
map (corrorig,surr). After averaging across the 1000
cross-validations, none of the 105 surrogates
yielded a correlation value corrorig,surr higher than
the real correlation corrorig,cv, that is, p, 10�5

.

Population pattern analysis
For this analysis, the population size was 429 neurons
for experiment 1 and 96 neurons for Experiment 2.

In experiment 1, sequence learning, the popula-
tion pattern analysis was performed on the image
periods. The population pattern analysis was based
on a pairwise comparison of image periods, thus,
chance performance for all analyses described below
is 50%.

As mentioned above, each trial (i.e., the sequence
segment between two consecutive probe events) con-
sisted of a varying number of image periods (Fig. 1A).
In the population pattern analysis, our goal was to
discriminate temporal period identity (e.g., image pe-
riod 1 versus image period 2). Pairwise discrimination
performance was evaluated for different numbers of
temporal periods from the start of the trial (ranging
from two to five; i.e., discriminating between the first
two image periods after the probe event, the first three
image periods, and so on). To ensure that perform-
ance was not driven by an unequal representation of
the different images in the different periods, we cre-
ated a balanced dataset for the population pattern
analysis. In this balanced dataset we included the sub-
set of trials per cell that ensured that each image was
equally present in each period (see Fig. 6A). The bal-
anced dataset only included cells for which a mini-
mum number of trials had been recorded. The
minimum number of trials was the smallest number
so that at least 300 cells were included in the analysis.

For the two-way discrimination (period 1 vs pe-
riod 2), the balanced dataset required 42 trials, and
397 cells were included; for a three-way discrimina-
tion (period 1 vs period 2 vs period 3) it required 30
trials and included 303 cells; for a four-way discrimi-
nation it required 12 trials and included 320 cells; and
for a five-way discrimination, it required 6 trials and
included 367 cells. Discrimination of temporal period
identity in this balanced dataset was thus not influ-
enced by an imbalance in the number of presenta-
tions of each image across temporal periods. Note
that the balanced dataset did not include the first ISI
period after the probe, and decoding was thus not
influenced by the offset of the probe events. As men-
tioned below, trial selection for creating the balanced
dataset was repeated on 50 iterations, and the population pattern analy-
sis was performed on each iteration.

The population pattern analysis was performed using a split-half
approach (Haxby et al., 2011; Pereira et al., 2018) on the firing rates of
the balanced dataset (see Fig. 6B–D). The trials in the balanced dataset
were randomly split into two halves, and in each half the firing ac-
tivity of the population of neurons was arranged into vectors per pe-
riod and per trial (see Fig. 6B). These vectors were averaged across
trials, yielding a population pattern vector for each period (period
vectors) in each half of the dataset (see Fig. 6C). To quantify decod-
ing or discrimination performance, we pairwise correlated the pe-
riod vectors in one-half of the dataset with the period vectors in the
other half, and used the pairwise correlation values to measure the
percentage of correct classification (see Fig. 6D). To be more

precise, for each period we computed the correlation for this period
across the two halves of the dataset (within comparison, rwithin), and
compared it to the correlation with a different period in the other
half of the dataset (between comparison, rbetween). Decoding was
correct if the within comparison was larger than the between com-
parison (see Fig. 6G; Haxby et al., 2001). This procedure was
repeated for all pairs of periods, and pairwise decoding accuracy was
the proportion of correct comparisons. Because this procedure was
based on pairwise comparisons, chance performance was 50% for all
analyses. Feature normalization was performed on the dataset for
this analysis by performing a z score on the data for each cell along
the periods dimension. Feature normalization was performed on the
whole dataset based on the mean and SD measured in the training
half of the dataset (to avoid leakage of information from the training
half to the test half during the split-half cross-validation).

A

B

Figure 3. Time cells fire at specific moments during sequence learning. A, Raster plots (top) and poststimulus
time histograms (bottom) are shown for eight example time cells. The x-axis corresponds to time of the median trial
length (6.5 s; see above, Materials and Methods). The black line is the average firing activity, and the shaded area
corresponds to the SE of the mean across trials. The gray lines show the model fit (solid gray line for cells that were
classified as time cells according to the inclusion of the linear and quadratic terms, dashed gray line for cells classi-
fied based on the linear term alone, and stippled gray line for cells classified based on the quadratic term alone).
Insets, The waveforms and the R2 of the model for each cell. B, Firing activity of the population of time cells (N =
128) identified as being significantly modulated by time (i.e., time and/or time2) in the sequence learning experi-
ment. Each row shows the firing activity for an individual time cell, averaged across trials. The x-axis corresponds to
time of the median trial length. The neurons are sorted by the latency of the maximum firing rate.
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Note that in the split-half approach the training data (one half of the
data) and testing data (the other half of the data) are independent by
construction.

To increase reliability, the population pattern analysis was performed
over several iterations: (1) trial selection for the balanced dataset was
repeated 50 times; (2) on each of these 50 iterations, the dataset was ran-
domly split into two halves 200 times. The reported mean decoding ac-
curacy was the average decoding performance across the 50 iterations
for creating the balanced dataset. The SD was computed across the 50
balanced datasets of the mean decoding accuracy across the 200 split
halves. Statistical significance was computed with a t test against chance (0.5)
across the 50 iterations for creating the balanced dataset (all p, 10�3).

To compare decoding performance for time cells and nontime cells
(other cells), and to determine how population size affects decoding ac-
curacy, we performed the pairwise pattern analysis separately for time
cells and other cells, and for different population sizes. Size-matched
populations were generated by randomly subsampling the population of
cells. For each population size, the same procedure described above was
repeated on 20 balanced datasets and 50 split halves.

In experiment 2, sequence learning with temporal gaps, for the popu-
lation pattern analysis of the gap intervals, each gap interval was split
into 4, 5, or 10 discrete periods, and discrimination of temporal period
identity was performed using a split-half approach (50 iterations). The
procedure was the same as the one described above for experiment 1
(see Fig. 6); and as above, chance performance was 50% because the
method was based on pairwise comparisons. Feature normalization was
performed on the dataset by performing a z score on the data. Statistical
significance was tested using a t test against chance performance (0.5)
across the 50 split-half iterations. As some subjects had 6 gap periods,
and others had 15 gap periods, on each of the 50 iterations for splitting
the data a random set of 6 gap periods was chosen from the datasets that
contained 15 gap periods.

Results
Behavioral task and number of units
To determine whether human hippocampal neurons are modu-
lated by the temporal context, we recorded from hippocampal
neurons in human patients who performed a sequence learning
task (Fig. 1A,B). We performed two independent sequence-
learning experiments in two groups of patients implanted with
intracranial microelectrodes. In experiment 1, we recorded the
activity of 429 hippocampal neurons in 9 patients, and in experi-
ment 2 we recorded from 96 hippocampal neurons in a new
group of 6 patients.

In both experiments, the patients were presented with a fixed
number of images (five to seven, depending on the patients’
availability) in a predefined order (Fig. 1A,B) and were asked to
learn the sequence order (Reddy et al., 2015). The sequence was
repeated continually 60 times. Experiment 2 was similar to
experiment 1 except for the periodic insertion of 10-s-long gap
periods during the experiment. During these gap periods, the
sequence stopped, and the patients had to wait until the sequence
resumed (Fig. 1B).

The duration of each image period in the sequence was 1.5 s,
and each image period was followed by an ISI of 0.5 s. On a ran-
dom 20% of image periods, subjects were probed on their learning
of the image order. During these probe events, the sequence mo-
mentarily stopped, and subjects were presented with two images
from the sequence. Their task was to report which of the two
images was the correct one at the current sequence position. The
sequence then resumed until the next probe event. Participants
rapidly learned the sequence order and achieved .90% perform-
ance on probe trials within the first six sequence presentations
(Reddy et al., 2015). From the point of view of the subjects, the

probe events were salient moments of the experiment because
they stopped the ongoing sequence and tested learning.

Human hippocampal neurons are modulated by time during
sequence learning
Time cells have been characterized as neurons whose activity is
modulated by temporal context within a well-defined time win-
dow. Our experiment design lent itself to identifying time cells
because the task consisted of a structured image sequence that
occurred in a fixed and predictable time interval. In the time do-
main, our experiment involved three distinct time lines: (1)
experiment time running from the beginning to the end of the
experiment, (2) sequence time with respect to the start of each
iteration of the sequence, and (3) probe time running between
consecutive probe events. We first focus on probe time because,
as described above, the probe events were salient moments from
the point of view of the participants. Furthermore, focusing on
probe time allowed us to decouple time from image identity as
the postprobe trials consisted of varying segments of image and
ISI periods.

We defined trials as segments of the experiment that occurred
between two consecutive probe events in experiment 1 (Fig. 1A).
These trials were of a relatively fixed duration (median trial
length = 6.5 s), and consisted of a sequence of image and ISI peri-
ods. To identify time cells, we examined whether the firing activ-
ity of hippocampal neurons was modulated by time. Previous
studies have identified time cells using a variety of frameworks
such as fitting a Gaussian function to firing activity (Park et al.,
2014; Salz et al., 2016), a one-way ANOVA of time and firing
rate (Umbach et al., 2020), or a GLM factoring in the influence
of time and other experimental factors on firing activity
(MacDonald et al., 2011; Tsao et al., 2018). In the current study
we elected to use the stepwise GLM method established by Tsao
et al. (2018) because it allows us to identify time cells while also
measuring the influence of the other experimental parameters on
hippocampal responses.

In the stepwise GLM framework used here, a predictor vari-
able is included in the model only if it is found to significantly
improve the prediction of the response variable (firing rate). For
each neuron, we modeled the firing rate in each image/ISI period
of the trial sequence with different potential predictors: image
identity, period type (i.e., image or ISI period), and two time
terms (a linear and a quadratic time term). A linear combination
of the linear and quadratic terms allowed for detecting maximal/
minimal firing at all points in the time window of interest. Time
cells were identified as those in which one or both of the time
terms was selected for inclusion in the stepwise linear model. To
determine how likely it is that the temporal modulation of firing
rates exhibited by each time cell arose because of chance, we per-
formed a shuffling procedure. Separately, statistical significance
for the number of time cells was evaluated using a permutation
test in which the image and ISI periods on each trial were ran-
domly shuffled on 106 iterations, and the stepwise GLM was per-
formed on each iteration (see above, Materials and Methods).

We identified a significant number of hippocampal neurons
(30%) that were modulated by time during sequence learning
(128 of 429 neurons passed the shuffling test, and this number
was more than expected by chance based on a permutation test,
p , 10�6; 106 of these neurons were located in the anterior hip-
pocampus and 22 in the posterior hippocampus). Individual
examples of time cells are shown in Figure 3A. The reliability of
time cells was evaluated by comparing the regressor values for
the time variables on odd/even trials, or the first/second half of
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trials (Fig. 4A,B). One hundred and seven time cells were modu-
lated by the linear time term, 62 by the quadratic time term, and
41 by both time terms. Of the linearly modulated cells, 32.7%
decreased their firing rates and 67.3% increased their firing rates
(Fig. 4F). To test for the presence of ramping cells (Tsao et al.,
2018), we reran the analysis with a model that excluded the
quadratic time term. In this analysis, 27% of hippocampal neu-
rons (114/429) were significantly modulated by the linear time
term, with a 94% overlap with the linearly modulated cells identi-
fied by the full model. This proportion of ramping cells is similar
to a previous study that reported 34.5% of ramping cells in the
human hippocampus (Umbach et al., 2020).

In a separate analysis to confirm our classification of neurons
as time cells, we performed a likelihood ratio test to compare the
log likelihood values of a restricted linear model that included all
terms except the time terms, and a full model that also included
the time terms. Time cells were identified as cells that had a sig-
nificantly higher log likelihood value according to the likelihood
ratio test (p , 0.05; 138 cells identified). Eighty-five percent of
cells based on this method overlapped with the population iden-
tified by the stepwise regression method (Table 1).

We conducted a number of control analyses to verify that the
temporal modulation of firing rates was observed under different
analysis parameters (Table 1; Fig. 4D). Time cells were identified
when the GLM was performed on the firing rates of only the ISI
periods (106 cells, permutation test, p , 10�6) and when exclud-
ing the first ISI period after the probe (65 cells, permutation test,
p, 10�6). Time cells were also detected when trials were redefined
as sequence segments with respect to the onset of each repetition of
the sequence (i.e., instead of with respect to the onset of the probe
events as in the main analysis). In this analysis, we identified 69 neu-
rons that were significantly modulated by the time variables (per-
mutation test, p , 10�6). Finally, time cells were also detected
based on an ANOVA (101 cells) as in (Umbach et al., 2020).

Thus, human hippocampal neurons represent a changing
temporal context while participants are actively engaged in
memorizing the order of a sequence of events. Previous studies
have shown that when considered at the population level, the fir-
ing activity of time cells covers the duration of a given temporal
epoch (Pastalkova et al., 2008; MacDonald et al., 2011). Likewise,
across all participants we observed neuronal peak firing at suc-
cessive moments in time, and when each cell was ordered by its
preferred moment of firing, population activity spanned the tem-
poral window (Fig. 3B). For consistency with previous studies,
we illustrate these data as a population-level heat map. Although
population-level heat maps are primarily used for display pur-
poses, it can be informative to test the reliability of these as ran-
dom data sorted by peak value could also generate well-
organized heat maps. To test the reliability of our heat maps we
performed a cross-validation analysis in which the preferred
time of firing for each cell was determined in one-half of the
data, and the consistency of time preference was measured in the
second half of the data. Statistical significance of the cross-vali-
dated heat maps was evaluated using a permutation method (see
above, Materials and Methods) in which cross-validated and sur-
rogate (randomly permuted) heat maps were correlated with the
original heat map. The proportion of surrogates that had a
higher correlation than the cross-validated data was p , 10�5,
supporting the notion that temporal preference was reliable in
our neuronal population.

An advantage of the GLM-based approach used in the present
study is that it allowed us to tease apart the influence of different
experimental factors on the firing activity of hippocampal

neurons (Fig. 4C–E,G,H). The GLM analysis quantified the influ-
ence of stimulus presence (i.e., image periods vs ISI periods),
image identity, and time in the trial. A considerable number of
neurons was modulated exclusively by time (111 cells) or image
identity (50 cells), but we also found neurons selective for a com-
bination of these factors (17 neurons for time and another factor;
17 neurons for image identity and another factor).

Internally generated time selectivity in human hippocampal
neurons
The results from experiment 1 demonstrate that human hippo-
campal neurons are modulated by the temporal context of an
explicit task. Do human hippocampal neurons also represent the
temporal structure of an experience in the absence of external
inputs or an overt task?

We performed a second experiment in six new patients, who
performed a different version of the sequence-learning task
(Fig. 1B). In this new task, participants learned the sequence order
as before, but every so often the sequence stopped for 10 s, and par-
ticipants waited until the sequence resumed. The participants had
no stimulus input during these 10 s gap periods—they were pre-
sented with a blank screen. We isolated 96 hippocampal neurons in
this second experiment and used a GLM approach to determine
whether human hippocampal neurons represent temporal informa-
tion during the gap periods. As before, significance testing was
based on a permutation test in which we repeated the GLM 106

times after shuffling the data (see above, Materials andMethods).
During the gap periods, 26 hippocampal neurons (27% of

cells; Fig. 5A) were significantly modulated by time (more than
expected by chance based on a permutation test, p , 10�6),
whereas while the patients were engaged in sequence learning, 13
neurons were time selective. Only three neurons encoded tempo-
ral information during both the task period and the gap period,
suggesting that the recruitment of temporally sensitive cells can
change with task demands or behavior (Pastalkova et al., 2008;
MacDonald et al., 2011; Tsao et al., 2018; Umbach et al., 2020).
During the gap periods, the time of peak firing in the population
occurred at successive moments, and population activity
spanned the entire 10 s interval (Fig. 5B). As in experiment 1, the
reliability of the heat map was statistically verified with a cross-
validation procedure (permutation test p , 10�5; see above,
Materials and Methods). As reported in rodents, there was a
stronger representation of earlier time points (Salz et al., 2016).
To summarize, even in the absence of visual input or an overt
task, the firing activity of hippocampal neurons is inherently
modulated by a changing temporal context.

Hippocampal population activity encodes temporal
information
In the rodent brain, time information is signaled explicitly in
individual neurons and can also be gleaned from population-
level dynamics of time-selective and non-time-selective cells
(Tsao et al., 2018). Is time information also reflected in the popu-
lation activity of human hippocampal neurons? To address this
question, we performed a population pattern analysis of image
period identity in the sequence-learning sessions (Fig. 6).

In experiment 1, each trial of the experiment consisted of a
sequence of image periods between two consecutive probes,
and the goal of the population pattern analysis was to deter-
mine whether hippocampal population dynamics reflected
the temporal identity of each image period (e.g., discriminate
image period 1 vs image period 2). To ensure that decoding
or discrimination performance was not driven by an unequal
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representation of the different images in the different image
periods, we created a balanced dataset in which accurate
decoding of the temporal identity of each image period can-
not arise from merely decoding spurious image information

(Fig. 6A). Decoding performance was based on a pairwise
comparison method (Fig. 6B–D) as in Haxby et al. (2001)
and Pereira et al. (2018); hence, chance performance was
50% for all comparisons.
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were classified as time cells based on the linear term).
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Discrimination performance was evaluated
for different numbers of image periods from the
start of the trial (ranging from two to five, i.e.,
discriminating between the first two image peri-
ods after the probe event, the first three image
periods and so on). High decoding accuracy for
temporal period identity was observed for dis-
criminating all image periods (Fig. 6E; mean 6
SD of decoding accuracy for discrimination of
the first two periods, 88.4 6 8%, t(49) = 34.8, p ,
0.001; of the first three periods, 72.76 8%, t(49) =
20.1, p , 0.001; of the first four periods, 63.5 6
6%, t(49) = 14.9, p , 0.001; and of the first five
periods, 57.3 6 9%, t(49) = 5.6, p , 0.001).
Decoding errors occurred primarily for neigh-
boring periods (Fig. 6F). Decoding accuracy
could not be biased by the offset of the probe
events because the first ISI period after the probe
event was excluded in the population pattern
analysis. Thus, hippocampus population dynam-
ics uniquely represented each temporal period.

To compare how temporal information is
represented for time cells versus nontime cells
(other cells), and to determine how population
size affects decoding accuracy, we performed
the pairwise pattern analysis separately for
time cells and other cells and for size-matched
cell populations. As expected, decoding per-
formance was consistently higher for time cells,
but nontime cells also showed significant
decoding, suggesting that these cells encode
temporal information but possibly in a form
that is not detected when modeled with a com-
bination of linear and quadratic time terms or
when only present in the population code (Fig.
6H).

Temporal epoch information was also present
in population-level dynamics during the gap
periods. The gap periods were split into 4, 5 or 10
discrete epochs and a discrimination of temporal
epoch identity was performed. A population
pattern analysis during these gap periods
revealed a significant representation of time
information at the level of the overall popula-
tion, and decoding errors mainly occurred for
neighboring epochs (Fig. 6I,J). High decoding
accuracy for temporal epoch identity was
observed for different temporal epoch sizes
(mean accuracy 6 SD for four-way decoding,
76.0 6 4.7%, t(49) = 38.9, p , 0.001; for five-way
decoding, 69.66 4.6%, t(49) = 29.9, p, 0.001; and
for 10-way decoding = 65.46 3.1%, t(49) = 36.3, p
, 0.001). Decoding accuracy during the gap peri-
ods could not have been driven by external visual input or overt
behavior; rather the high decoding accuracy reflects an internally
generated temporal context signal represented in the population
of neurons.

Discussion
In this study we report that human hippocampal neurons repre-
sent temporal information as subjects progress through a
sequence of events and during empty gap periods in the sequence.

Time cells responded successively at different moments of the
task, and together, the activity of these neurons covered the entire
task period. Population-level activity allowed for successful decod-
ing of temporal epoch identity.

Temporal information is represented at different time scales
in the hippocampus and neighboring brain regions. In rodents,
hippocampal time cells typically show sharp tuning for particular
moments of a fixed interval (Pastalkova et al., 2008; MacDonald
et al., 2011), whereas in the lateral entorhinal cortex, temporally
sensitive neurons show a more gradual ramping of firing activity
(Tsao et al., 2018). In humans, population activity gradually
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Figure 6. Population pattern analysis. In experiment 1, the population pattern analysis was performed on image periods (e.g., discriminating image period 1 vs image period 2). In experi-
ment 2, the population pattern analysis was performed on the 10 s gap interval. Because this decoding method was based on pairwise comparisons, chance performance is always 50%. A, For
experiment 1, a balanced dataset was created by selecting a subset of trials so that each image was equally present in each period across trials (see above, Materials and Methods). B,
Population pattern analysis procedure. The trials of the balanced dataset (experiment 1), or the gap intervals (experiment 2) were split into two halves (repeated on 200 iterations; see above,
Materials and Methods). In each half of the dataset, and for each period, the firing activity of the population of cells was arranged into a pattern vector for each trial. C, An average pattern vec-
tor of population firing activity was obtained for each image period by averaging across trials (period vectors). D, Pairwise discrimination was performed on the period vectors across the two
halves of the dataset. For all pairs of periods, the Pearson’s correlation was computed across the two halves, and the same-period comparisons (within comparisons) were compared with the
different-period (between) comparisons. Pairwise accuracy was the proportion of within comparison correlations (rwithin) that were higher than the between comparison correlations (rbetween)
(Haxby et al., 2001; Pereira et al., 2018). E, Population pattern analysis accuracies. Pairwise accuracy for temporal period identity during the sequence learning experiment using the split-half
procedure described in A–D (population size = 429 neurons). The x-axis shows the number of image periods that the classifier was tested on (i.e., discrimination between the first two image
periods, the first three image periods, and so on from the start of the trial). Pairwise accuracy (mean 6 SE) for discriminating the first two periods = 88.46 8%, the first three periods =
72.76 8%, the first four periods = 63.56 6%, the first five periods = 57.36 9%. The black dots correspond to the mean accuracy across the 50 iterations for creating the balanced dataset,
and the gray dots show the distribution of accuracies obtained across iterations. Asterisks denote significance based on a t test against chance, (p, 10�3). As the analysis is based on pairwise
comparisons, chance performance is always 50%. F, Decoding errors mainly occurred for predicting neighboring temporal periods. Confusion matrices during sequence learning when discrimi-
nating the first two temporal periods, the first three temporal periods, and so on. G, Distributions of the difference of (rwithin) and (rbetween) for decoding of the first two image periods, the first
three image periods, and so on. The solid gray line corresponds to the mean of the distribution. H, Pairwise accuracy for size-matched populations of time cells (in red) and other (nontime)
cells (in blue), for decoding of the first two image periods, the first three image periods, and so on. The dashed lines correspond to a linear fit through the data. The horizontal gray line corre-
sponds to chance performance (50%). I, Population pattern analysis performance during the temporal gap experiment (population size = 96 neurons). The 10 s gap periods were split into 4,
5, or 10 discrete periods, and discrimination of temporal period identity was computed using the procedure shown in B–D. Pairwise accuracy was significantly above chance for all comparisons
[t test against chance (0.5), p, 10�3]. Pairwise accuracy, mean6 SD = 76.06 4.7% for four-way decoding, 69.66 4.6% for five-way decoding, and 65.76 3.1% for 10-way decoding.
The black dots correspond to the mean accuracy across the 50 iterations for creating the balanced dataset, and the gray dots show the distribution of accuracies obtained across iterations.
Asterisks denote significance based on a t test against chance (p, 10�3). Because the analysis is based on pairwise comparisons, chance performance is always 50%. J, Confusion matrix for
the gap experiment for different epoch lengths.
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drifts over a period of minutes (Folkerts et al., 2018), but single
neurons can also show punctuated time-cell-like firing patterns
as we show here and as previously reported (Umbach et al.,
2020). The relationship between a gradually changing temporal
context versus a more precise representation of time in the
human hippocampus remains an open question for future work.
Task demands such as free recall versus precise temporal order
judgments and the resolution at which temporal information is
relevant at the behavioral level may influence the temporal preci-
sion of human time cells.

Rodent time cells display flexibility in temporal coding. For
instance, they exhibit scalar coding of time so that cells that
are active later in a time window fire for longer periods.
Further, just like place cells remap, time cells have been observed
to retime: cells can change temporal preferences within the same
recording session when the temporal structure of the experience is
changed (MacDonald et al., 2011). For our patients, the image
sequence was generally fixed across sessions, and patients typically
performed only one experimental session per day. We were thus
unable to test whether temporal preferences change when the
image order of the sequence changes or when the same sequence
is repeated after a short interval. Observations of retiming in
rodent time cells raise intriguing possibilities for future investiga-
tions of temporal coding in the human hippocampus.

Perhaps most relevant to the current study are recent findings
of Umbach et al. (2020). That study reported time cell activity in
the human medial temporal lobe during a free recall memory
task. Hippocampal neurons encoded temporal information dur-
ing the task, and entorhinal cortex neurons showed ramping ac-
tivity. Unlike our task design, which consisted of a structured
and predictable sequence of items that repeated continually for
10–15min, the free recall task in Umbach et al. consisted of two
distinct phases, one in which words were presented in a struc-
tured list, and another that consisted of a period of free recall.
Both studies report a significant number of time cells, although
we report a higher proportion (30%) compared with Umbach et
al.’s study (15%). This difference cannot solely be because of the
different methodology used in the two studies for detecting time
cells (stepwise regression versus a one-way ANOVA) because we
identified ;24% of time cells when using an ANOVA as our
model. Instead, it seems likely that the different proportions of
time cells could arise from differences in task structure or behav-
ioral requirements. For instance, the hippocampus is essential
for remembering the temporal order of sequential events
(Eichenbaum, 2013), and it is possible that temporal order learn-
ing engages a larger population of cells for representing time in-
formation. The study by Umbach et al. also showed that time cell
activity was relevant to subsequent performance on a memory
test. Our study did not directly test for the relationship between
time cell firing and behavioral performance as the task was
expressly designed to be easy for patients to perform. Thus, we
did not have enough error trials to correlate time cell activity
with performance on the sequence memory task. Nevertheless,
despite these differences in task design and methodology, both
the study by Umbach et al. and our study report a significant
proportion of hippocampal neurons that are modulated by time,
suggesting that a temporal code may be a general property of the
human hippocampus network.

The temporal modulation of time cells in our study was also
observed during empty 10 s gap periods in which patients were
not presented with any visual input or required to perform an
explicit task. Time cells were observed to fire at successive

moments in these blank periods. Temporal modulation during
these gap periods could not have been driven by external events;
rather, they appear to represent an evolving temporal signal as a
result of changes in the patients’ experience during this time of
waiting. Related to this point, temporal coding in the hippocam-
pus and the lateral entorhinal cortex has been shown to change
with behavior and task demands (MacDonald et al., 2013; Tsao
et al., 2018). The design of experiment 2 allowed us to directly
examine whether cells that were modulated by time during
sequence learning were also recruited during the gap periods
when the patients did not overtly perform a task. We found that
different subsets of cells were active during these two task peri-
ods, with a small overlap of cells that were active in both periods.
These results suggest a context-dependent recruitment of cells
for the representation of temporal information and raise interest-
ing questions for future research of how the encoding of tempo-
ral information in single cells and at the population level is
affected when switching between tasks or experiences.

We found evidence for time modulation in various control
analyses that considered the trial structure (i.e., sequence time vs
probe time), or trial contents (e.g., with or without image infor-
mation). Interestingly, we found that excluding the first ISI pe-
riod of each trial from the analysis resulted in an important
difference in the number of time cells identified (Table 1). This
finding, along with the heat maps shown in Figures 3B and 5B,
suggests that a large number of cells show firing rate changes
shortly after the probe, similar to reports in rodents and humans
of a stronger representation of temporal information early in the
trial (Salz et al., 2016; Umbach et al., 2020). Importantly, how-
ever, this early representation of temporal information did not
compromise population-level representations of elapsed time as
our decoding analyses, performed on image periods only,
showed robust temporal information at the population level.

In rodents, time cells and place cells do not uniquely repre-
sent temporal and spatial information respectively. Rather,
medial temporal lobe neurons can be influenced by various ex-
perimental factors, including the stimulus-related, spatial and
temporal facets of an experience (Komorowski et al., 2009; Tsao
et al., 2018). For example, in rodents it has been reported that
place cells can code for distance, time, or visual cues (Ravassard
et al., 2013; Eichenbaum, 2014; Acharya et al., 2016), and time
cells can encode spatial or stimulus information (Eichenbaum,
2014; Tsao et al., 2018). Similarly, we found that human time
cells also encoded sensory information about the presence or ab-
sence of a stimulus and the identity of the stimulus. Such multidi-
mensional representations could play a critical role in episodic
memory mechanisms in which the what, where, and when elements
of an experience are bound together into a coherent memory.

The phenomenon of subjective mental time travel is a corner-
stone of episodic memory (Tulving, 2002). Central to our experi-
ence of reliving the past is our ability to vividly recall specific
events that occurred at a specific place and in a specific temporal
order. Time cells in rodents and humans, and other temporally
sensitive populations of neurons, support theoretical frameworks
that suggest that temporal context information plays an important
role in memory mechanisms in the hippocampus (Howard et al.,
2014, 2015). Our results provide further evidence that human hip-
pocampal neurons represent the flow of time in an experience.
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