
Tucker Tensor Regression and Neuroimaging Analysis

Xiaoshan Li*, Da Xu‡, Hua Zhou†, Lexin Li‡

*Wells Fargo & Company,

†University of California, Los Angeles,

‡University of California, Berkeley

Abstract

Neuroimaging data often take the form of high dimensional arrays, also known as tensors. 

Addressing scientific questions arising from such data demands new regression models that take 

multidimensional arrays as covariates. Simply turning an image array into a vector would both 

cause extremely high dimensionality and destroy the inherent spatial structure of the array. In a 

recent work, Zhou et al. (2013) proposed a family of generalized linear tensor regression models 

based upon the CP (CANDECOMP/PARAFAC) decomposition of regression coefficient array. 

Low rank approximation brings the ultrahigh dimensionality to a manageable level and leads to 

efficient estimation. In this article, we propose a tensor regression model based on the more 

flexible Tucker decomposition. Compared to the CP model, Tucker regression model allows 

different number of factors along each mode. Such flexibility leads to several advantages that are 

particularly suited to neuroimaging analysis, including further reduction of the number of free 

parameters, accommodation of images with skewed dimensions, explicit modeling of interactions, 

and a principled way of image downsizing. We also compare the Tucker model with CP 

numerically on both simulated data and a real magnetic resonance imaging data, and demonstrate 

its effectiveness in finite sample performance.
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1 Introduction

Medical imaging routinely produces data in the form of multidimensional array, also known 

as tensor. Examples include electroencephalography (EEG, 2D matrix), anatomical 

magnetic resonance images (MRI, 3D array), and functional magnetic resonance images 

(fMRI, 4D array). It is of common scientific interest to identify associations between brain 

regions and clinical outcomes, to diagnose neurodegenerative disorders, and to predict onset 

of neuropsychiatric diseases. These problems can be collectively formulated as regression 

with the clinical outcome as the response, and the image, or tensor, as the predictor. 
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However, the sheer size and complex structure of the image covariate pose unusual 

challenges. Most classical regression models take a vector as the predictor. Naively turning 

an image array into a vector is evidently unsatisfactory. For instance, a typical MRI image of 

size 128 × 128 × 128 requires 1283 = 2,097,152 regression parameters, which severely 

compromises the computability and theoretical guarantee of the classical regression models. 

More seriously, vectorizing an array destroys the inherent spatial structure of the image array 

that usually possesses rich information.

One class of solutions build a regression model one-voxel-at-a-time (Friston et al., 2007), 

which totally ignores all spatial correlations among the voxels (Yue et al., 2010; Li et al., 

2011). Another class of typical solutions in the literature first extract a vector of features 

from images, either through subject knowledge such as predefined regions of interest, or 

data driven approach such as principal components analysis (PCA, Caffo et al., 2010). Then 

the extracted feature vector is fed into a classical regression model. Although such solutions 

are intuitive, there is no consensus on what choice best summarizes a brain image, whereas 

unsupervised dimension reduction like principal components could result in potential 

information loss. More recently, there have been a sequence of developments aiming at 

regression with a tensor predictor, sometimes also referred as scalar-on-image regression 
(Reiss and Ogden, 2010; Goldsmith et al., 2014; Wang et al., 2014; Zhou and Li, 2014; Li et 

al., 2015, among others), which enjoy varying degrees of success and reflect the increasing 

importance of this family of problems.

In particular, Zhou et al. (2013) proposed a class of generalized linear tensor regression 

models. For a response variable Y, a vector predictor Z ∈ ℝp0 and a D dimensional tensor 

predictor X ∈ ℝp1 × … × pD, the response is assumed to belong to an exponential family 

where the linear systematic part is of the form,

g(μ) = γ⊤Z + B, X . (1)

Here g(·) is a strictly increasing link function, μ = E(Y |X,Z), γ ∈ ℝp0 is the regular 

regression coefficient vector, B ∈ ℝp1 × ⋯ × pD is the coefficient array that captures the 

effects of tensor covariate X, and the inner product between two arrays is defined as 

B, X = vecB, vecX = ∑i1, …, iDβi1…iDxi1…iD. This model, if with no further 

simplification, is prohibitive given its gigantic dimensionality: p0 + ∏d = 1
D pd. Zhou et al. 

(2013) introduced a low rank structure on the coefficient B, in that B is assumed to follow a 

rank-R CANDECOMP/PARAFAC (CP) decomposition (Kolda and Bader, 2009),

B = ∑
r = 1

R
β1

(r) ○ ⋯ ○ βD
(r), (2)

where βd
(r) ∈ ℝpd are all column vectors, d = 1, … , D, r = 1, … , R, and ◦ denotes outer 

product such that b1 ◦ b2 ◦…◦ bD of D vectors bd ∈ ℝpd forms the p1 × … × pD array with 

entries b1 ○ b2 ○ ⋯ ○ bD i1⋯iD = ∏d = 1
D bdid. For convenience, this CP decomposition is 
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often represented by a shorthand B = ⟦B1, … , BD⟧, where 

Bd = βd
(1), …, βd

(R) ∈ ℝpd × R, d = 1, …, D. Combining (2) with (1) reduces the ultrahigh 

dimensionality of the model to a more manageable scale of p0 + R × ∑d = 1
D pd, which in turn 

results in efficient estimation and prediction. For instance, for regression with a 128-by-128-

by128 MRI image and 5 usual covariates, the dimensionality is reduced from the order of 

2,097,157 = 5+1283 to 389 = 5+128×3 for a rank-1 model, and to 1,157 = 5+3×128×3 for a 

rank-3 model. Zhou et al. (2013) showed that this low rank tensor model could provide a 

sound recovery of even high rank signals.

In the tensor literature, there has been an important development parallel to CP 

decomposition, which is termed Tucker decomposition, or higher-order singular value 

decomposition (HOSVD, Kolda and Bader, 2009). In this article, we propose a class of 

Tucker tensor regression models. To differentiate, we call the models of Zhou et al. (2013) 

CP tensor regression models. Specifically, we continue to adopt the model (1), but assume 

that the coefficient array B follows a Tucker decomposition,

B = ∑
r1 = 1

R1
⋯ ∑

rD = 1

RD
gr1, …, rDβ1

r1 ○ ⋯ ○ βD
rD , (3)

where βd
rd ∈ ℝpd are all column vectors, d = 1,… , D, rd = 1,… , Rd, and gr1, …, rD are 

constants. It is often abbreviated as B = ⟦G;B1, … , BD⟧, where G ∈ ℝR1 × ⋯ × RD is the D 

dimensional core tensor with entries (G)r1…rD = gr1, …, rD, and Bd ∈ ℝpd × Rd are the factor 

matrices. Bd’s are usually orthogonal and can be thought of as the principal components in 

each dimension, and thus the name, HOSVD. The number of parameters of a Tucker tensor 

model is in the order of p0 + ∑d = 1
D Rd × pd + ∏d = 1

D Rd. Comparing the two decompositions 

(2) and (3), the key difference is that CP fixes the number of basis vectors R along each 

dimension of B so that all Bd’s have the same number of columns (ranks). In contrast, 

Tucker allows the number Rd to differ along different dimensions and Bd’s could have 

different ranks.

This difference between the two decompositions seems minor; however, in the context of 

tensor regression modeling and neuroimging analysis, it has profound implications, which 

essentially motivates this article. On one hand, the Tucker tensor regression model shares the 

advantages of the CP model, in that it exploits the special structure of the tensor data, 

reduces the dimensionality to enable efficient model estimation, and provides a sound low 

rank approximation to a potentially high rank signal. On the other hand, Tucker tensor 

regression offers a much more flexible modeling framework than CP regression, by allowing 

a distinct order along each dimension. It includes CP model as a special case, where the core 

tensor G is super-diagonal. This flexibility leads to several improvements that are 

particularly useful for neuroimaging analysis. First, a Tucker model could be more 

parsimonious than a CP model thanks to the flexibility of different orders. For instance, 

suppose a 3D signal B ∈ ℝ16 × 16 × 16 admits a Tucker decomposition (3) with R1 = R2 = 2 

and R3 = 5. It can only be recovered by a CP decomposition with R = 5, costing 230 
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parameters. In contrast, the Tucker model is more parsimonious with only 131 parameters. 

This reduction of free parameters is valuable for medical imaging studies, as the sample size 

is often limited. Second, the freedom in the choice of different orders is useful when the 

tensor data is skewed in dimensions, which is not uncommon in neuroimaging data. For 

instance, in EEG, the temporal dimension often far exceeds the spatial dimension. Third, 

even when all tensor modes have comparable sizes, the Tucker formulation explicitly models 

the interactions between the factor matrices Bd’s, and as such allows a finer grid search 

within a larger model space, which in turn may explain more trait variance. Finally, as we 

show in Section 2.3, there exists a duality regarding the Tucker tensor model. Thanks to this 

duality, a Tucker tensor decomposition naturally lends itself to a principled way of imaging 

data downsizing, which again can be practically very useful.

For these reasons, we feel it important to develop a complete methodology of Tucker tensor 

regression and its associated theory. The resulting Tucker tensor model performs dimension 

reduction through low rank tensor decomposition but in a supervised fashion, and thus 

reduces potential information loss in regression. It works for general array-valued image 

modalities and/or any combination of them, and for various types of responses, including 

continuous, binary, and count data. Besides, a highly scalable algorithm is developed for the 

associated maximum likelihood estimation, where scalability is crucial considering the 

massive size of imaging data. In addition, regularization is studied in conjunction with the 

proposed model, yielding a collection of regularized Tucker tensor models. Particularly, the 

one with a lasso penalty encourages sparsity of the core tensor, improves interpretability of 

the model, and is of vital scientific interest.

The rest of the article is organized as follows. Section 2 presents the Tucker tensor 

regression model, and Section 3 develops the maximum likelihood and regularized 

estimation. Section 4 derives the theoretical properties including consistency and asymptotic 

normality. Section 5 presents the numerical results, and Section 6 concludes with a 

discussion. All technical proofs are delegated to the Appendix.

2 Model

2.1 Notation

We begin with a brief review of some key array notations and operations. An extensive 

reference can be found in the survey paper (Kolda and Bader, 2009). A tensor is a 

multidimensional array. Fiber of a tensor is defined by fixing every index but one, and is the 

higher order analogue of matrix row and column. The vec operator stacks the entries of a D 

dimensional tensor B ∈ ℝp1 × ⋯ × pD into a column vector, such that an entry bi1…iD maps to 

the j-th entry of vec B where j = 1 + ∑d = 1
D id − 1 ∏d′ = 1

d − 1 pd′. The mode-d matricization, 

B(d), maps a tensor B into a pd × ∏d′ ≠ dpd′ matrix, such that the (i1, … , iD) element of the 

array B maps to the (id, j) element of the matrix B(d), where 

j = 1 + ∑d′ ≠ d id′ − 1 ∏d″ < d′, d″ ≠ dpd″. When D = 1, we observe that vec B is the same as 

vectorizing the mode-1 matricization B(1). The mode-(d,d′) matricization 

B dd′ ∈ ℝpdpd′ × ∏d″ ≠ d, d′pd″ is defined in a similar fashion. The mode-d multiplication of 
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the tensor B with a matrix U ∈ ℝpd × q, denoted by B ×d U ∈ ℝp1 × ⋯ × q × ⋯ × pD, is the 

multiplication of the mode-d fibers of B by U. In other words, the mode-d matricization of B 
×d U is UB(d). For a tensor B that admits Tucker decomposition (3), its mode-d matricization 

can be expresses as

B(d) = BdG(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1
⊤,

where ⊗ denotes the Kronecker product of matrices, and

vecB = vecB(1) = vec B1G(1) BD ⊗ ⋯ ⊗ B2 ⊤ = BD ⊗ ⋯ ⊗ B1 vecG .

2.2 Tucker Regression Model

We elaborate on the Tucker tensor regression model introduced in Section 1. We assume that 

Y belongs to an exponential family with probability mass function or density (McCullagh 

and Nelder, 1983),

p yi ∣ θi, ϕ = exp
yiθi − b θi

a(ϕ) + c yi, ϕ

with the first two moments E(Yi) = μi = b′(θi) and Var Y i = σi2 = b″ θi ai(ϕ). θ and ϕ > 0 are, 

respectively, the natural and dispersion parameters. We assume the systematic part of GLM 

is of the form,

g(μ) = η = γ⊤Z + ∑
r1 = 1

R1
⋯ ∑

rD = 1

RD
gr1, …, rDβ1

r1 ○ ⋯ ○ βD
rD , X . (4)

That is, we impose a Tucker structure on the array coefficient B. We make a few remarks. 

First, in this article, we consider the problem of estimating the core tensor G and the factor 

matrices Bd simultaneously given the response Y and covariates X and Z. This is a 

supervised version of the classical unsupervised Tucker decomposition (Tucker, 1966). It 

can also be viewed as a supervised version of principal components analysis for higher-order 

multidimensional array. Unlike a two-stage solution that first performs principal components 

analysis and then fits a regression model, the basis (principal components) Bd in our models 

are estimated under the guidance (supervision) of the response variable. Second, the CP 

model of Zhou et al. (2013) corresponds to a special case of the Tucker model (4) with 

gr1, …, rD = 1 r1 = ⋯ = rD  and R1 = … = RD = R. In other words, the CP model is a special 

Tucker model with a super-diagonal core tensor G. The CP model has a rank at most R, 

while the general Tucker model can have a rank as high as RD.

2.3 Duality and Tensor Basis Pursuit

The next result concerns the inner product between a general tensor and a tensor that admits 

a Tucker decomposition.
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Lemma 1 (Duality).—Suppose a tensor B ∈ ℝp1 × ⋯ × pD admits Tucker decomposition B 

= ⟦G;B1, … , BD⟧. Then, for any tensor X ∈ ℝp1 × ⋯ × pD, B, X = G, X , where X admits 

a Tucker decomposition X = 〚 X; B1
⊤, …, BD

⊤ 〛.

This duality gives some important insights to the Tucker tensor regression model. First, if we 

consider Bd ∈ ℝpd × Rd as fixed and known basis matrices, then Lemma 1 says fitting the 

Tucker tensor regression model (4) is equivalent to fitting a tensor regression model in G 

with the transformed data X = 〚 X; B1
⊤, …, BD

⊤ 〛 ∈ ℝR1 × ⋯ × RD. When Rd ≪ pd, the 

transformed data X effectively downsize the original data. We further illustrate this 

downsizing feature in the real data analysis in Section 5.4. Second, in applications where the 

numbers of basis vectors Rd are unknown, we can utilize possibly over-complete basis 

matrices Bd such that Rd ≥ pd, and then estimate G with sparsity regularization. This leads to 

a tensor version of the classical basis pursuit problem (Chen et al., 2001). Take fMRI data as 

an example. We can adopt the wavelet basis for the three image dimensions and the Fourier 

basis for the time dimension. Regularization on G can be achieved by either imposing a low 

rank decomposition (CP or Tucker) on G (hard thresholding) or penalized regression (soft 

thresholding). We investigate Tucker regression regularization in details in Section 3.3.

2.4 Model Size: Tucker vs CP

In this section we study the size of the Tucker tensor model. Comparison with the size of the 

CP model helps gain a better understanding of both models. In addition, it provides a basis 

for data adaptive selection of appropriate orders in a Tucker model.

First we quickly review the number of free parameters pC for a CP model B = ⟦B1 … , Bd⟧, 

with Bd ∈ ℝpd × R. For D = 2, pC = R(p1 + p2) − R2, and for D > 2, pC = R ∑d = 1
D pd − D + 1

For D = 2, the term −R2 adjusts for the nonsingular transformation indeterminacy for model 

identifiability; for D > 2, the term R(−D + 1) adjusts for the scaling indeterminacy in the CP 

decomposition. See Zhou et al. (2013) for more details. Following similar arguments, we 

obtain that the number of free parameters pT in a Tucker model B = ⟦G;B1 … , Bd⟧, with 

G ∈ ℝR1 × ⋯ × Rd and Bd ∈ ℝpd × Rd, is

pT = ∑
d = 1

D
pdRd + ∏

d = 1

D
Rd − ∑

d = 1

D
Rd

2,

for any D. Here the term −∑d = 1
D Rd

2 adjusts for the non-singular transformation 

indeterminancy in the Tucker decomposition. We summarize these results in Table 1.

Next we compare the two model sizes (degrees of freedom) under an additional assumption 

that R1 = … = Rd = R. Now the difference becomes:
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pT − pC =

0  when D = 2,
R(R − 1)(R − 2)  when D = 3,

R R3 − 4R + 3  when D = 4,

R RD − 1 − DR + D − 1  when D > 4,

When D = 2, the Tucker model is essentially the same as the CP model. When D = 3, Tucker 

has the same number of parameters as CP for R = 1 or R = 2, but costs R(R − 1)(R − 2) more 

parameters for R > 2. When D > 3, Tucker and CP are the same for R = 1, but Tucker costs 

substantially more parameters than CP for R > 2. However, this comparison assumes R1 = 

… = Rd = R. In reality, Tucker could require fewer free parameters than CP, as shown in the 

illustrative example given in Section 1, since Tucker is more flexible and allows a different 

order Rd along each dimension.

Figure 1 shows an example with a D = 3 dimensional array covariate. Half of the true signal 

(brain activity map) B is displayed in the left panel, which is by no means a low rank signal. 

Suppose 3D images Xi are taken on n = 1,000 subjects. We simulate image traits Xi from an 

independent standard normal distribution and quantitative traits Yi from an independent 

normal with the mean 〈Xi,B〉 and the unit variance. Given the limited sample size, the hope 

is to infer a reasonable low rank approximation to the activity map from the 3D image 

covariate. The right panel displays the model deviance versus the degrees of freedom of a 

series of CP and Tucker model estimates. The CP model is estimated at ranks R = 1, … , 5, 

respectively. The Tucker model is fitted at orders (R1, R2, R3) = (1, 1, 1), (2, 2, 2), (3, 3, 3), 

(4, 4, 3), (4, 4, 4), (5, 4, 4), (5, 5, 4), and (5, 5, 5). We see from the plot that, under the same 

number of free parameters, the Tucker model could generally achieve a better model fit with 

a smaller deviance. Note that the deviance is in the log scale, so a small discrepancy between 

the two lines translates to a large value of difference in deviance.

3. Estimation and Regularization

3.1 Maximum likelihood estimation

We pursue the maximum likelihood estimation (MLE) for the Tucker tensor regression 

model and develop a scalable estimation algorithm in this section. Finding the MLE is 

difficult due to non-concavity. However, we make a key observation that, although the 

systematic part (4) is not linear in G and Bd jointly, it is linear in them separately. This 

naturally suggests a block ascent algorithm, which updates each factor matrix Bd and the 

core tensor G alternately.

The algorithm consists of two core steps. First, when updating Bd ∈ ℝpd × Rd with the rest of 

Bd′’s and G fixed, we rewrite the array inner product in (4) as

B, X = B(d), X(d)
= BdG(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1

⊤, X(d)
= Bd, X(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 G(d)

⊤ .
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Then the problem turns into a GLM regression with Bd as the “parameter” and the term 

X(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 G(d)
⊤  as the “predictor”. It is a low dimensional 

GLM with only pdRd parameters and thus is easy to solve. Second, when updating 

G ∈ ℝR1 × ⋯ × RD with all Bd’s fixed,

B, X = vecB, vecX
= BD ⊗ ⋯ ⊗ B1 vecG, vecX
= vecG, BD ⊗ ⋯ ⊗ B1 ⊤vecX .

This implies a GLM regression with vecG as the “parameter” and the term (BD ⊗ … ⊗ 
B1)⊤vecX as the “predictor”. Again this is a low dimensional regression problem with ∏dRd
parameters. For completeness, we summarize the above alternating estimation procedure in 

Algorithm 1. The orthogonality between the columns of the factor matrices Bd is not 

enforced as in unsupervised HOSVD, because our primary goal is approximating tensor 

signal instead of finding the principal components along each mode.

As the block ascent algorithm monotonically increases the objective value, the stopping 

criterion is well-defined and the convergence properties of iterates follow from the standard 

theory for monotone algorithms (de Leeuw, 1994; Lange, 2010). The proof of the next result 

is given in the Appendix.

Proposition 1.—Assume (i) ℓ is coercive, i.e., the set {θ : ℓ(θ) ≥ ℓ(θ(0))} is compact, and 

bounded above, (ii) the stationary points (modulo nonsingular transformation indeterminacy) 

of ℓ are isolated, (iii) the algorithmic mapping is continuous, (iv) θ is a fixed point of the 

algorithm if and only if it is a stationarity point of ℓ, and (v) ℓ(θ(t+1)) ≥ ℓ(θ(t)) with equality if 

and only if θ(t) is a fixed point of the algorithm. We have the following results.

1. (Global Convergence) The sequence θ(t) = γ(t), G(t), B1
(t), …, BD

(t)  generated by 

Algorithm 1 converges to a stationary point of ℓ(γ,G,B1, … , BD).

2. (Local Convergence) Let θ(∞) = γ(∞), G(∞), B1
(∞), …, BD

(∞)  be a strict local 

maximum of ℓ. The iterates generated by Algorithm 1 are locally attracted to 

θ(∞) for θ(0) sufficiently close to θ(∞).

3.2 Tucker order selection

For our Tucker model, one needs to select the order Rd along each direction. One solution is 

to view this as a model selection problem. Accordingly, we suggest to use Bayesian 

information criterion (BIC), −2log ℓ + log(n)pe. Here ℓ is the log-likelihood, and pe = pT is 

the effective number of parameters of the Tucker model as given in Table 1. We illustrate 
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this BIC criterion in the simulation Section 5.1. Alternatively, one may employ the spectral 

regularization to adaptively select the order of the Tucker decomposition, following a similar 

idea as (Zhou and Li, 2014).

Practically, we have found the following rule useful when selecting the Tucker orders. 

Specifically, at each step of GLM model fit, we ensure that the ratio between the sample size 

n and the number of parameters under estimation in that step, pd × Rd, satisfies a heuristic 

rule of greater than two in normal models and greater than five in logistic models. Moreover, 

we also ensure the ratio between n and the number of parameters in the core tensor 

estimation ∏dRd satisfies this rule. Our numerical experiments seem to suggest this is a 

useful practical guideline, especially when the data is noisy.

3.3 Regularized estimation

Regularization plays a crucial role in neuroimaging analysis for several reasons. First, even 

after substantial dimension reduction by imposing a Tucker structure, the number of 

parameters pT can still exceed the number of observations n. Second, even when n > pT, 

regularization could potentially be useful for stabilizing the estimates and improving the risk 

property. Finally, regularization is an effective way to incorporate prior scientific knowledge 

about brain structures. For instance, the smoothness property of the brain spatial structure 

may be incorporated via a fused type regularization.

In our context of Tucker regularized regression, there are multiple types of regularizations. 

In this section, we illustrate the regularization on the core tensor G only. It helps achieve 

sparsity in the number of outer products in Tucker decomposition (3) and shrinkage, and is 

useful for tensor basis pursuit as discussed in Section 2.3. One can also impose the sparsity 

regularization on both G and Bd simultaneously, which can help select brain subregions that 

are highly relevant to the disease outcome. Moreover, one may introduce the spectral 

regularization to select Tucker orders in a soft-thresholding way (Zhou and Li, 2014). For 

the sake of space, we leave those alternative regularizations for future research.

Specifically, in this article, we propose to maximize the regularized log-likelihood

ℓ γ, G, B1, …, BD − ∑
r1, …, rD

Pη gr1, …, rD , λ ,

where Pη(|x|,λ) is a scalar penalty function, λ is the penalty tuning parameter, and η is an 

index for the penalty family. Note that the penalty term above only involves elements of the 

core tensor, and thus regularization on G only. This formulation includes a large class of 

penalty functions, including the power family (Frank and Friedman, 1993), where Pη(|x|,λ) 

= λ|x|η, η ∈ (0,2], such as lasso (Tibshirani, 1996) (η = 1) and ridge (η = 2); elastic net (Zou 

and Hastie, 2005), where Pη(|x|,λ) = λ[(η−1)x2/2+(2−η)|x|], η ∈ [1,2]; SCAD (Fan and Li, 

2001), where ∂/∂|x|Pη(|x|,λ) = λ{1{|x|≤λ} + (ηλ − |x|)+/(η − 1)λ1{|x|>λ}}, η > 2; among 

many others.
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Two aspects of the proposed regularized Tucker regression, parameter estimation and tuning, 

deserve some discussion. For regularized estimation, it incurs only slight changes in 

Algorithm 1, i.e., when updating G, we fit a penalized GLM regression problem,

G(t + 1) = argmaxGℓ γ(t), B1
(t + 1), …, BD

(t + 1), G − ∑
r1, …, rD

Pη gr1, …, rD , λ ,

for which many software packages exist. Other steps of Algorithm 1 remain unchanged. For 

the regularization to remain legitimate, we constrain the column norms of Bd to be one when 

updating factor matrices Bd. Moreover one can employ general cross validation or Bayesian 

information criterion to tune the penalty parameter λ.

4 Theory

We study the usual large n asymptotics of the proposed Tucker tensor regression. Although 

the usually limited sample size of neuroimging studies makes the large n asymptotics seem 

irrelevant, we feel it is still useful for several reasons. First, when the sample size n is 

considerably larger than the effective number of parameters pT, the asymptotic study tells us 

that the model is consistently estimating the best Tucker structure approximation to the full 

array model in the sense of Kullback-Liebler distance. Second, the explicit formula for the 

score and information are not only useful for asymptotic theory but also for computation, 

while the identifiability issue has to be properly dealt with. Finally, the regular asymptotics 

can be of practical relevance, for instance, can be useful in a likelihood ratio type test in a 

replication study.

4.1 Score and Information

We derive the score and information for the tensor regression model, which are essential for 

statistical estimation and inference. For simplicity, we drop the classical covariate Z in this 

section, but all the results can be straightforwardly extended to include Z. The following 

standard calculus notations are used. For a scalar function f, ∇f is the (column) gradient 

vector, df = [∇f]⊤ is the differential, and d2f is the Hessian matrix. For a multivariate 

function g:ℝp ℝq, Dg ∈ ℝp × q denotes the Jacobian matrix holding partial derivatives 
∂gj
∂xi

. 

We start from the Jacobian and Hessian of the systematic part η ≡ g(μ) in (4).

Lemma 2.

1.
The gradient ∇η B1, …, BD ∈ ℝ∏dRd + ∑d = 1

D pdRd is

∇η G, B1, …, BD = BD ⊗ ⋯ ⊗ B1 J1 J2 ⋯ JD ⊤(vecX),

where Jd ∈ ℝ∏d = 1
D pd × pdRd is the Jacobian

Jd = DB Bd = ∏d BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 G(d)
⊤ ⊗ Ipd (5)
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and Πd is the ∏d = 1
D pd − by − ∏d = 1

D pd  permutation matrix that reorders 

vecB(d) to obtain vecB, i.e., vecB = Πd vecB(d).

2. Let the Hessian d2η G, B1, …, BD ∈ ℝ ∏dRd + ∑d pdRd × ∏dRd + ∑d pdRd  be 

partitioned into four blocks HG, G ∈ ℝ∏dRd × ∏dRd, 

HG, B = HB, G
⊤ ∈ ℝ∏dRd × ∑d pdRd and HB, B ∈ ℝ∑d pdRd × ∑d pdRd. Then HG,G = 

0, HG,B has entries

ℎ r1, …, rD , id, sd = 1 rd = sd ∑
jd = id

xj1, …, jD ∏
d′ ≠ d

βjd′
rd′ ,

and HB,B has entries

ℎ id, rd , id′, rd′
= 1 d ≠ d′ ∑

jd = id, jd′ = id′
xj1, …, jD ∑

sd = rd, sd′ = rd′
gs1, …, sD ∏

d″ ≠ d, d′
βjd″

sd″ .

Furthermore, HB,B can be partitioned in D2 sub-blocks as

0 * * *
H21 0 * *

⋮ ⋮ ⋱ *
HD1 HD2 ⋯ 0

.

The elements of sub-block Hdd′ ∈ ℝpdRd × pd′Rd′ can be retrieved from the 

matrix

X dd′ BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ Bd′ + 1 ⊗ Bd′ − 1 ⊗ ⋯ ⊗ B1 G dd′
⊤ .

HG,B can be partitioned into D sub-blocks as (H1, … , HD). The sub-block 

Hd ∈ ℝ∏dRd × pdRd has at most pd∏dRd nonzero entries which can be retrieved 

from the matrix

X(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 .

Let ℓ(B1, … , BD|y, x) = ln p(y|x,B1, … , BD) be the log-density of GLM. Next result derives 

the score function, Hessian, and Fisher information of the Tucker tensor regression model.

Proposition 2.—Consider the tensor regression model defined by (4) and (4).

1. The score function (or score vector) is
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∇ℓ G, B1, …, BD = (y − μ)μ′(η)
σ2 ∇η G, B1, …, BD (6)

with ∇η(G,B1, … , BD) given in Lemma 2.

2. The Hessian of the log-density ℓ is

H G, B1, …, BD

= − μ′(η) 2

σ2 − (y − μ)θ″(η)
σ2 ∇η G, B1, …, BD dη G, B1, …, BD

+ (y − μ)θ′(η)
σ2 d2η G, B1, …, BD ,

(7)

with d2η defined in Lemma 2.

3. The Fisher information matrix is

I G, B1, …, BD
= E −H G, B1, …, BD
= Var ∇ℓ G, B1, …, BD dℓ G, B1, …, BD

= μ′(η) 2

σ2 BD ⊗ ⋯ ⊗ B1J1…JD
⊤(vecX) vecX ⊤ BD ⊗ ⋯ ⊗ B1J1…J(D) .

(8)

Remark 1.—For the canonical link, θ = η, θ′(η) = 1, θ″(η) = 0, and the second term of 

Hessian vanishes. For the classical GLM with a linear systematic part (D = 1), d2η(G,B1, 

… , BD) is zero and thus the third term of Hessian vanishes. For the classical GLM (D = 1) 

with a canonical link, both second and third terms of the Hessian vanish and thus the 

Hessian is non-stochastic, coinciding with the information matrix.

4.2 Identifiability

The Tucker decomposition (3) is nonidentifiable due to the nonsingular transformation 

indeterminacy. That is

〚 G; B1, …, BD 〛 = 〚 G ×1 O1
−1 × ⋯ ×D OD

−1; B1O1, …, BDOD 〛

for any nonsingular matrices Od ∈ ℝRd × Rd. This implies that the number of free parameters 

for a Tucker model is ∑d pdRd + ∏dRd − ∑dRd
2, with the last term adjusting for nonsingular 

indeterminacy. Therefore the Tucker model is identifiable only in terms of the equivalency 

classes.

For asymptotic consistency and normality, it is necessary to adopt a specific constrained 

parameterization. It is common to impose the orthonormality constraint on the factor 

matrices Bd
⊤Bd = IRd, d = 1, … , D. However the resulting parameter space is a manifold and 
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much harder to deal with. We adopt an alternative parameterization that fixes the entries of 

the first Rd rows of Bd to be ones

ℬ = 〚 G; B1, …, BD 〛 :βid
(r) = 1, id = 1, …, Rd, d = 1, …, D .

The formulae for score, Hessian and information in Proposition 2 require changes 

accordingly. The entries in the first Rd rows of Bd are fixed at ones and their corresponding 

entries, rows and columns in score, Hessian and information need to be deleted. Choice of 

the restricted space ℬ is obviously arbitrary, and excludes arrays with any entries in the first 

rows of Bd equal to zeros. However the set of such exceptional arrays has Lebesgue measure 

zero. In specific applications, subject knowledge may suggest alternative restrictions on the 

parameters.

Given a finite sample size, the conditions for global identifiability of the parameters are in 

general hard to obtain except in the linear case (D = 1). Local identifiability essentially 

requires linear independence between the “collapsed” vectors 

BD ⊗ ⋯ ⊗ B1J1…JD
⊤vecxi ∈ ℝ∑d pdRd + ∏dRd − ∑dRd

2
.

Proposition 3 (Identifiability).—Given iid data points {(yi, xi),i = 1, … , n} from the 

Tucker tensor regression model. Let B0 ∈ ℬ be a parameter point and assume there exists an 

open neighborhood of B0 in which the information matrix has a constant rank. Then B0 is 

locally identifiable if and only if

I B0 = BD ⊗ ⋯ ⊗ B1J1…JD ⊤ ∑
i = 1

n μ′ ηi
2

σi2
vecxi vecxi

⊤ BD ⊗ ⋯ ⊗ B1J1…JD

is nonsingular.

4.3 Asymptotics

The asymptotics for tensor regression follow from those for MLE or M-estimation (van der 

Vaart, 1998; Lehmann and Romano, 2005).

Theorem 1.—Assume B0 ∈ ℬ (globally) identifiable up to permutation and the array 

covariates Xi are iid from a bounded underlying distribution.

1. (Consistency) The MLE is consistent, i.e., Bn converges to B0 in probability, in 

following models. (1) Normal tensor regression with a compact parameter space 

ℬ0 ⊂ ℬ (2) Binary tensor regression. (3) Poisson tensor regression with a 

compact parameter space ℬ0 ⊂ ℬ.

2. (Asymptotic Normality) For an interior point B0 ∈ ℬ with nonsingular 

information matrix I(B0) (8) and Bn is consistent, n vecBn − vecB0  converges in 

distribution to a normal with mean zero and covariance matrix I−1(B0).
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In practice it is rare that the true regression coefficient Btrue  ∈ ℝp1 × ⋯ × pD is exactly a low 

rank tensor. However the MLE of the rank-R tensor model converges to the maximizer of 

function M(B) = ℙBtrue ln pB, or equivalently, ℙBtrue ln pB/pBtrue  . In other words, the MLE 

consistently estimates the best approximation (among models in ℬ) of Btrue in the sense of 

Kullback-Leibler distance.

5 Numerical Study

We have carried out numerical experiments to study the finite sample performance of the 

Tucker regression. Our simulations focus on three aspects. First, we demonstrate the 

capacity of the Tucker regression in identifying various shapes of signals. Second, we study 

the consistency property of the method by gradually increasing the sample size. Third, we 

compare the performance of the Tucker regression with the CP regression (Zhou et al., 

2013), and some other alternative solutions. Finally, we analyze a real MRI data to illustrate 

the Tucker downsizing and to further compare different methods.

5.1 Identification of Various Shapes of Signals

In our first example, we demonstrate that the proposed Tucker regression model, though 

with substantial reduction in dimension, can manage to identify a range of two dimensional 

signal shapes with varying ranks. In Figure 2, we list the 2D signals B ∈ ℝ64 × 64 in the first 

row, along with the estimates by Tucker tensor models in the second to fourth rows with 

orders (1, 1), (2, 2) and (3, 3), respectively. Note that, since the orders along both dimensions 

are made equal, the Tucker model is to perform essentially the same as a CP model in this 

example, and the results are presented here for completeness. Later examples examine 

differences of the two models. The regular covariate vector Z ∈ ℝ5 and image covariate 

X ∈ ℝ64 × 64 are randomly generated with all elements being independent standard normals. 

The response Y is generated from a normal model with mean μ = γ⊤Z + 〈B, X〉 and variance 

var(μ)/10. The coefficient γ has all elements equal to one, and B is binary, with the signal 

region equal to one and the rest zero. Figure 2 shows that the Tucker model yields a sound 

recovery of the true signals, even for those of high rank or natural shape, e.g., “disk” and 

“butterfly”.

5.2 Performance with Increasing Sample Size

The second example employs a model similar to Figure 2, but with a three dimensional 

image covariate. The dimension of X is set as p1 × p2 × p3, with p1 = p2 = p3 equal to 16 and 

32, respectively. The signal array B is generated from a Tucker structure, with the elements 

of core tensor G and the factor matrices B’s all coming from independent standard normals. 

The dimension of the core tensor G is set as R1 × R2 × R3, with R1 = R2 = R3 = 2, 5 and 8, 

respectively. We gradually increase the sample size, starting with an n that is in hundreds 

and no smaller than the degrees of freedom of the generating model. We aim to achieve two 

purposes with this example: first, we verify the consistency property of the proposed 

estimator, and second, we gain some practical knowledge about the estimation accuracy with 

different sample sizes. Figure 3 summarizes the results. It is clearly seen that the estimation 

improves with the increasing sample size. Meanwhile, we observe that, unless the core 
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tensor dimension is small, one would require a relatively large sample size to achieve a good 

estimation accuracy. This is not surprising though, considering the number of parameters of 

the model and that regularization is not employed here. The proposed approach has been 

primarily designed for imaging studies with a reasonably large number of subjects. Recently, 

a number of large-scale brain imaging studies are emerging. For instance, the Attention 

Deficit Hyperactivity Disorder Sample Initiative (ADHD, 2017) consists of over 900 

participants from eight imaging centers. The Alzheimer’s Disease Neuroimaging Initiative 

(ADNI, 2017) accumulates over 3,000 participants with MRI, fMRI and genomics data. In 

addition, regularization discussed in Section 3.3 and the Tucker downsizing in Section 2.3 

can both help improve estimation given a limited sample size.

5.3 Comparison of Different Methods

The third example compares the Tucker tensor model with the CP tensor model of Zhou et 

al. (2013). We consider two cases. First, we generate the normal response and the 3D tensor 

covariate X with all elements drawn from a standard normal distribution. The signal array B 
has dimensions p1, p2, p3 and the d-ranks r1, r2, r3, where the d-rank is defined as the column 

rank of the mode-d matricization B(d) of B. We set p1 = p2 = p3 = 16 and 32, and (r1, r2, r3) = 

(5, 3, 3), (8, 4, 4) and (10, 5, 5), respectively. The sample size is 2000. We fit a Tucker model 

with Rd = rd, and a CP model with R = maxrd, d = 1, 2, 3. We report in Table 2 the degrees 

of freedom of the two models, as well as the root mean squared error (RMSE) out of 100 

data replications. It is seen that the Tucker model requires a smaller number of free 

parameters, while it achieves a more accurate estimation compared to the CP model. Such 

advantages come from the flexibility of the Tucker decomposition that permits different 

orders Rd along directions.

Second, we employ the approach of Goldsmith et al. (2014) to generate the 3D tensor 

covariate X based on the real data described in Section 5.4. The original image size is 121 × 

145 × 121, and for computational simplicity, we downsize the image to 15 × 18 × 15. We 

then extract the top 100 principal components ϕj j = 1
100  and the corresponding eigenvalues 

λj j = 1
100  of the the data matrix where the ith row is the vectorized image of the ith subject. 

The simulated image of the ith subject is obtained by first computing vec Xi = ∑j = 1
100 cijϕj, 

then transforming to a 15 × 18 × 15 array, where the loadings cij are generated from a 

normal distribution with mean 0 and variance λj. The image array is also standardized by 

dividing all the entries by the maximum absolute value. The true signal array B is a 3D ball 

centered at the middle of the array with value one inside the ball and zero outside. The 

response is generated from a normal model with a unit variance. In addition to comparing 

the Tucker and CP models, we also compare with the Bayesian regression method of 

Goldsmith et al. (2014) and the PCA method of Caffo et al. (2010). We set (R1, R2, R3) = (3, 

3, 3) for the Tucker model, and R = 3 for CP, which yields comparable number of 

parameters. For the Bayesian method, we only tune the sigma beta parameter using cross-

validation, and fix the rest of parameters following the rules in Goldsmith et al. (2014). 

Otherwise, the computation is prohibitive. For PCA, we keep the number of principal 

components retaining 95% of total variation. The sample size for training is 1000, and for 

testing is 500. We report in Table 3 the RMSE of both the estimated B and the predicted Y 
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based on 100 data replications. We also plot in Figure 4 the true (shown in red color) and 

estimated (green) B overlaid on a randomly chosen brain image. PCA is not reported for 

estimation of B, since only a subset of principal components are retained. It is clearly seen in 

this example that the Tucker method outperforms both CP and the alternative PCA and 

Bayesian solutions.

5.4 Attention Deficit Hyperactivity Disorder Data Analysis and Running Time Analysis

Next we analyze the attention deficit hyperactivity disorder (ADHD) data from the 

ADHD-200 Sample Initiative (ADHD, 2017) to illustrate our proposed method as well as 

Tucker downsizing. ADHD is a common childhood disorder and can continue through 

adolescence and adulthood. Symptoms include difficulty in staying focused and paying 

attention, difficulty in controlling behavior, and over-activity. The data has been pre-

partitioned into a training data of 770 subjects and a testing data of 197 subjects. We remove 

those subjects with missing observations or poor image quality, resulting in 762 training 

subjects and 169 testing subjects. In the training set, there are 280 combined ADHD 

subjects, 482 normal controls, and the case-control ratio is about 3:5. In the testing set, there 

are 76 combined ADHD subjects, 93 normal controls, and the case-control ratio is about 4:5. 

T1-weighted images have been acquired for each subject and preprocessed by standard 

steps. The data is obtained from the Neuro Bureau (the Burner data, http://

neurobureau.projects.nitrc.org/ADHD200/Data.html). In addition to the MRI image 

predictor, we also include the subjects’ age and handiness as regular covariates. The 

response is the binary diagnosis status.

The original image size is p1 ×p2 ×p3 = 121 × 145 × 121. We employ Tucker downsizing in 

Section 2.3. Specifically, we first choose a wavelet basis for Bd ∈ ℝpd × pd, then transform 

the image predictor from X to X = 〚 X; B1
⊤, …, BD

⊤ 〛. We pre-specify the values of pd’s
that are about tenth of the original dimensions pd, and equivalently, we fit a Tucker tensor 

regression with the image predictor dimension downsized to p1 × p2 × p3. In our example, we 

have experimented with a set of values of pd’s, and the results are qualitatively similar. We 

report two sets, p1 = 12, p2 = 14, p3 = 12, and p1 = 10, p2 = 12, p3 = 10. We have also 

experimented with the Haar wavelet basis (Daubechies D2) and the Daubechies D4 wavelet 

basis, which again show similar qualitative patterns.

For p1 = 12, p2 = 14, p3 = 12, we fit a Tucker tensor model with R1 = R2 = R3 = 3, resulting 

in 114 free parameters, and fit a CP tensor model with R = 4, resulting in 144 free 

parameters. For p1 = 10, p2 = 12, p3 = 10, we fit a Tucker tensor model with R1 = R2 = 2 and 

R3 = 3, resulting in 71 free parameters, and fit a CP tensor model with R = 4, resulting in 

120 free parameters. We have chosen those orders so that the numbers of free parameters of 

the Tucker and CP models are comparable. Besides, we follow the practical guideline as 

discussed in Section 3.2. We also fit the regularized version of the Tucker and CP model 

with the same orders. In addition, for comparison, we apply the Bayesian model of 

Goldsmith et al. (2014) and the PCA method of Caffo et al. (2010). The parameters are 

tuned based on 5-fold cross-validation.
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We evaluate each method by comparing the misclassification error rate on the independent 

testing set. We also remark that, our method is designed not solely for prediction or 

classification purpose, but instead to obtain a parsimonious model characterizing the 

association between the image covariates and the clinical outcome. We focus on 

classification in this example, mainly because this data set was originally released for a data 

competition where the classification accuracy is the main evaluation criterion. The results 

are shown in Table 4. We see from the table that Tucker outperforms CP and other 

alternative solutions. In addition, the regularized Tucker method performs the best in this 

example.

6 Discussion

We have proposed a tensor regression model based on the Tucker decomposition. The new 

model provides a flexible framework for regression with imaging covariates. We develop a 

fast estimation algorithm, a general regularization procedure, and the associated asymptotic 

properties. In addition, we provide a detailed comparison, both analytically and numerically, 

of the Tucker and CP tensor models.

We make some additional remarks regarding our proposed method. First, in a real imaging 

analysis, the signal hardly has an exact low rank. However, given the limited sample size, a 

low rank estimate often provides a reasonable approximation to the true signal, as 

demonstrated by the simulation examples. Second, imaging downsizing is a tradeoff, in that 

it is to facilitate the computation, including the memory usage, and is to reduce the 

dimensionality of the estimation problem, but at the cost of sacrificing the image resolution. 

Third, even after substantial dimension reduction, the number of remaining parameters can 

still be large compared to the sample size. When the sample size is limited, the optimization 

algorithm is more likely to get trapped at a local rather than global minimum. Increasing the 

number of initializations is to facilitate the issue, but cannot avoid it completely. Finally, we 

report the computation time of the proposed Tucker model. Specifically, we employ the 

simulation example in Section 5.3, and investigate how the running time of different 

methods grows along with the image dimension and sample size. Figure 5 records the 

running time (in seconds) that are obtained on a standard laptop computer with a 2.2 GHz 

Intel Core i7. The left panel shows the results with the varying dimensions, p1 × p2 × p3 = 15 

× 18 × 15, 20 × 24 × 24, 25 × 30 × 25, and 30 × 36 × 30, respectively, when the sample size 

is fixed at n = 1000. The right panel shows the varying sample size n = 500, 1000, 1500, 

2000, and 2500, respectively, when the dimension is fixed at p1 × p2 × p3 = 15 × 18 × 15. It 

is seen that, the Tucker model and its regularized version are computationally more 

expensive than the counterpart of CP. We view this as a price that comes with the additional 

flexibility of the Tucker model. However, Tucker maintains a reasonable overall 

computation time, and is much faster than the alternative solutions such as the Bayesian 

model and PCA.
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Appendix

Proof of Lemma 1

We rewrite the array inner product

B, X = B(d), X(d) = BdG(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1
⊤, X(d)

= G(d), Bd
⊤X(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1

= G(d), X(d) = G, X ,

where the second and fourth equalities follow from (4) and the third follows from the 

invariance of trace function under cyclic permutation.

Proof of Proposition 1

It is easy to see that the block relaxation algorithm monotonically increases the objective 

values, i.e., ℓ(θ(t+1)) ≥ ℓ(θ(t)) for all t ≥ 0. Therefore its global convergence property follows 

from the standard theory for monotone algorithms (de Leeuw, 1994; Lange, 2004, 2010). 

Specifically global convergence is guaranteed under the following conditions: (i) ℓ is 

coercive, (ii) the stationary points of ℓ are isolated, (iii) the algorithmic mapping is 

continuous, (iv) θ is a fixed point of the algorithm if and only if it is a stationarity point of ℓ, 
and (v) ℓ(θ(t+1)) ≥ ℓ(θ(t)) with equality if and only if θ(t) is a fixed point of the algorithm. 

Condition (i) is guaranteed by the compactness of the set {θ : ℓ(θ) ≥ ℓ(θ(0)). Condition (ii) is 

assumed. Condition (iii) follows from the strict concavity assumption and implicit function 

theorem. By Fermat’s principle, θ = (G,B1, … , BD) is a fixed point of the block relaxation 

algorithm if Dℓ(G) = 0 and Dℓ(Bd) = 0 for all d. Thus θ is a fixed point if and only if it is a 

stationarity point of ℓ, i.e., condition (iv) is satisfied. Condition (v) follows from the 

monotonicity of the block relaxation algorithm. Local convergence follows from the 

classical Ostrowski theorem, which states that the algorithmic sequence θ(t) is local attracted 

to strictly local minimum θ(∞) if the spectral radius of the differential of the algorithmic 

map ρ[dM(θ(∞))] is strictly less than one. This follows from the strict concavity assumption 

of the block updates. See Zhou et al. (2013) for more details.

Proof of Lemma 2

Assume B admits the Tucker decomposition (3). By (4),

B(d) = BdG(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1
⊤ .

Using the well-known fact that vec(XY Z) = (Z⊤ ⊗ X)vec(Y),

vecB(d) = BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 G(d)
⊤ ⊗ Ipd vec Bd .

Thus by the chain rule we have
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Jd = DB Bd = DB B(d) ⋅ DB(d) Bd = ∏d
∂vecB(d)

∂ vecBd
⊤

= ∏d BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 G(d)
⊤ ⊗ Ipd .

Again by the chain rule, Dη(Bd) = Dη(B) · DB(Bd) = (vecX)⊤Jd. For the derivative in G, the 

duality Lemma 1 implies B, X = G, X  for X = 〚 X; B1
⊤, …, BD

⊤ 〛. Then, by (4), we have

Dη(G) = (vecX)⊤ = (vecX)⊤ BD ⊗ ⋯ ⊗ B1 .

Combining these results gives the gradient displayed in Lemma 2.

Next we consider the Hessian d2η. Because B is linear in G, the block HG,G vanishes. For 

the block HB,B, the (id, rd, id′, rd′)-entry is

ℎ id, rd , id′, rd′ = ∑
j1, …, jD

xj1, …, jD
∂2bj1, …, jD
∂βid

(r)∂βid′
r′

= ∑
j1, …, jD

xj1, …, jD ∑
s1, …, sD

gs1, …, sD
∂2βj1

s1 ⋯βjD
sD

∂βid
(r)∂βid′

r′ .

The second derivative in the summand is nonzero only if jd = id, jd′ = id′, sd = rd, sd′ = rd′, 

and d ≠ d′. Therefore

ℎ id, rd , id′, rd′ = 1 d ≠ d′ ∑
jd = id, jd′ = id′

xj1, …, jD ∑
sd = rd, sd′ = rd′

gs1, …, sD ∏
d″ ≠ d, d′

βjd″
sd″ .

The first sum is over ∏d″ ≠ d, d′pd″ terms and the second term is over ∏d″ ≠ d, d′Rd′′ terms. A 

careful inspection reveals that the sub-block Hdd′ shares the same entries as the matrix

X dd′ BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ Bd′ + 1 ⊗ Bd′ − 1 ⊗ ⋯ ⊗ B1 G dd′
⊤ .

Finally, for the HG,B block, the {(r1, … , rD),(id, rd)}-entry is
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ℎ r1, …, rD , id, sd = ∑
j1, …, jD

xj1, …, jD
∂2bj1, …, jD

∂gr1, …, rD∂βid
sd

= ∑
j1, …, jD

xj1, …, jD ∑
t1, …, tD

∂2gt1, …, tDβj1
t1 …βjD

tD

∂gr1, …, rD∂βid
sd

= ∑
j1, …, jD

xj1, …, jD
∂βj1

r1 ⋯βjD
rD

∂βid
sd

= 1 rd = sd ∑
jd = id

xj1, …, jD ∏
d′ ≠ d

βjd′
rd′ ,

where the sum is over ∏d′ ≠ dpd′ terms. The sub-block Hd ∈ ℝ∏dRd × pdRd has at most 

pd∏dRd nonzero entries. A close inspection suggests that the nonzero entries coincide with 

those in the matrix

X(d) BD ⊗ ⋯ ⊗ Bd + 1 ⊗ Bd − 1 ⊗ ⋯ ⊗ B1 .

Proof of Proposition 2

Since μ = b′(θ), dμ/dθ = b″(θ) = σ2/a(ϕ) and

∇ℓ G, B1, …, BD = y − b′(θ)
a(ϕ)

dθ
dμ

dμ
dη ∇η G, B1, …, BD

= (y − μ)μ′(η)
σ2 BD ⊗ ⋯ ⊗ B1J1…JD ⊤(vecX)

by Lemma 2. Further differentiating shows

d2ℓ G, B1, …, BD
= − 1

σ2 ∇μ G, B1, …, BD dμ G, B1, …, BD + y − μ
σ2 d2μ G, B1, …, BD

= − μ′(η) 2

σ2 BD ⊗ ⋯ ⊗ B1J1…JD ⊤vecX BD ⊗ ⋯ ⊗ B1J1…JD ⊤vecX ⊤

+ (y − μ)θ″(η)
σ2 BD ⊗ ⋯ ⊗ B1J1…JD ⊤vecX BD ⊗ ⋯ ⊗ B1J1…JD ⊤vecX ⊤

+ (y − μ)θ′(η)
σ2 d2η(B) .

It is easy to see that E[∇ℓ(G,B1, … , BD)] = 0. Moreover, E[−d2ℓ(G,B1, … , BD)] = I(G,B1, 

… , BD)). Then (8) follows.

Proof of Proposition 3

The proof follows from a classical result (Rothenberg, 1971) that states that, if θ0 be a 

regular point of the information matrix I(θ), then θ0 is locally identifiable if and only if I(θ0) 

is nonsingular. The regularity assumptions are satisfied by Tucker regression model: (1) the 
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parameter space ℬ is open, (2) the density p(y, x|B) is proper for all B ∈ ℬ, (3) the support 

of the density p(y, x|B) is same for all B ∈ ℬ, (4) the log density ℓ(B|y, x) = ln p(y, x|B) is 

continuously differentiable, and (5) the information matrix

I(B) = BD ⊗ ⋯ ⊗ B1J1…JD ⊤ ∑
i = 1

n μ′ ηi
2

σi2
vecxi vecxi

T BD ⊗ ⋯ ⊗ B1J1…JD

is continuous in B by Proposition 2. Therefore B ∈ ℬ is locally identifiable if and only if 

I(B) is nonsingular.

Proof of Theorem 1

The asymptotics for tensor regression follow from the standard theory of M-estimation. The 

key observation is that the nonlinear part of tensor model (4) is a degree-(D + 1) polynomial 

of parameters G and Bd and the collection of polynomials B, X , B ∈ ℬ  form a Vapnik-

Červonenkis (VC) class. Then the classical uniform convergence theory applies (van der 

Vaart, 1998). The arguments in (Zhou et al., 2013) extends the classical argument for GLM 

(van der Vaart, 1998, Example 5.40) to the CP tensor regression model. The same proof also 

applies to the Tucker model with little changes and thus is omitted here. For the asymptotic 

normality, we need to establish that the log-likelihood function of Tucker regression model 

is quadratic mean differentiable (q.m.d.) (Lehmann and Romano, 2005). By a well-known 

result (Lehmann and Romano, 2005, Theorem 12.2.2) or (van der Vaart, 1998, Lemma 7.6), 

it suffices to verify that the density is continuously differentiable in parameter for μ-almost 

all x and that the Fisher information matrix exists and is continuous. The derivative of 

density is

∇p B1, …, BD = ∇eℓ B1, …, BD = p B1, …, BD ∇ℓ B1, …, BD ,

which is well-defined and continuous by Proposition 2. The same proposition shows that the 

information matrix exists and is continuous. Therefore the Tucker regression model is q.m.d. 

and the asymptotic normality follows from the classical result for q.m.d. families (van der 

Vaart, 1998, Theorem 5.39).
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Figure 1: 
Left: half of the true signal array B. Right: Deviances of CP regression estimates at R = 1, 

… , 5, and Tucker regression estimates at orders (R1, R2, R3) = (1, 1, 1), (2, 2, 2), (3, 3, 3), 

(4, 4, 3), (4, 4, 4), (5, 4, 4), (5, 5, 4), and (5, 5, 5). The sample size is n = 1000.
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Figure 2: 
True and recovered image signals by Tucker regression. The matrix variate has size 64 by 64 

with entries generated as independent standard normals. The regression coefficient for each 

entry is either 0 (white) or 1 (black). The sample size is 1000. TR(r) means estimate from 

the Tucker regression with an r-by-r core tensor.
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Figure 3: 
Root mean squared error (RMSE) of the tensor parameter estimate versus the sample size. 

Reported are the average and standard deviation of RMSE based on 100 data replications. 

Top: R1 = R2 = R3 = 2; Middle: R1 = R2 = R3 = 5; Bottom: R1 = R2 = R3 = 8.
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Figure 4: 
True (in red color) and recovered (green) image signal overlaid on a randomly chosen brain 

image shown in three views. Under comparison are the Tucker, CP, and Bayesian method.
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Figure 5: 
The running time (in seconds) of different methods with varying dimensions and sample 

sizes. The left panel shows the varying dimensions, p1 × p2 × p3 = 15 × 18 × 15, 20 × 24 × 

24, 25 × 30 × 25, and 30 × 36 × 30, respectively, when the sample size is fixed at n = 1000. 

The horizontal axis shows p1 × p2 × p3. The right panel shows the varying sample size n = 

500, 1000, 1500, 2000, and 2500, respectively, when the dimension is fixed at p1 × p2 × p3 = 

15 × 18 × 15. The lines, numbered from 1 to 6, indicate the running time of regularized 

Tucker, regularized CP, Tucker, CP, Bayesian model and PCA, respectively.
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Table 1:

Number of free parameters in Tucker and CP models.

CP Tucker

D = 2 R(p1 + p2) − R2 p1R1 + p2R2 + R1R2 − R1
2 − R2

2

D > 2 R ∑d pd − D + 1 ∑d pdRd + ∏dRd − ∑dRd
2
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Table 2:

Comparison of the Tucker and CP models based on the image tensor with normal elements. Reported are the 

average and standard deviation (in the parenthesis) of the root mean squared error, all based on 100 data 

replications.

Dimension Criterion Model (5, 3, 3) (8, 4, 4) (10, 5, 5)

16 × 16 × 16 Df Tucker 178 288 420

CP 230 368 460

RMSE Tucker 0.202 (0.013) 0.379 (0.017) 0.728 (0.030)

CP 0.287 (0.033) 1.030 (0.081) 2.858 (0.133)

32 × 32 × 32 Df Tucker 354 544 740

CP 470 752 940

RMSE Tucker 0.288 (0.013) 0.570 (0.023) 1.234 (0.045)

CP 0.392 (0.046) 1.927 (0.172) 16.24 (3.867)

Stat Biosci. Author manuscript; available in PMC 2021 August 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 30

Table 3:

Comparison of different methods. Reported are the average and standard deviation (in the parenthesis) of the 

root mean squared error for both the estimated coefficient tensor B and the predicted response Y, all based on 

100 data replications.

Tucker CP Bayes PCA

Prediction of Y 0.149(0.023) 0.308(0.005) 2.456(0.104) 0.855 (0.110)

Estimation of B 16.78(14.20) 16.41(16.82) 18.39(0.137) N/A
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Table 4:

ADHD testing data misclassification error. Methods under comparison are regularized Tucker, regularized CP, 

Tucker, CP, Bayesian model and PCA.

Basis Dimension Reg-Tucker Reg-CP Tucker CP Bayes PCA

Haar 12 × 14 × 12 0.361 0.367 0.379 0.438 0.414 0.485

(D2) 10 × 12 × 10 0.343 0.390 0.379 0.408 0.420 0.485

Daubechies 12 × 14 × 12 0.337 0.385 0.385 0.414 0.402 0.391

(D4) 10 × 12 × 10 0.320 0.396 0.367 0.373 0.396 0.462
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