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Abstract

Accurate segmentation of the optic disc (OD) regions from color fundus images is a critical 

procedure for computer-aided diagnosis of glaucoma. We present a novel deep learning network to 

automatically identify the OD regions. On the basis of the classical U-Net framework, we define a 

unique sub-network and a decoding convolutional block. The sub-network is used to preserve 

important textures and facilitate their detections, while the decoding block is used to improve the 

contrast of the regions-of-interest with their background. We integrate these two components into 

the classical U-Net framework to improve the accuracy and reliability of segmenting the OD 

regions depicted on color fundus images. We train and evaluate the developed network using three 

publicly available datasets (i.e., MESSIDOR, ORIGA, and REFUGE). The results on an 

independent testing set (n=1,970 images) show a segmentation performance with an average Dice 

similarity coefficient (DSC), intersection over union (IOU), and Matthew's correlation coefficient 

(MCC) of 0.9377, 0.8854, and 0.9383 when trained on the global field-of-view images, 

respectively, and 0.9735, 0.9494, and 0.9594 when trained on the local disc region images. When 

compared with the other three classical networks (i.e., the U-Net, M-Net, and Deeplabv3) on the 

same testing datasets, the developed network demonstrates a relatively higher performance.

Keywords

segmentation; color fundus images; optic disc; deep learning; U-Net

1. Introduction

As a chronic and progressive optic neuropathy, glaucoma is one of the leading causes of 

irreversible vision loss in the world [1]. In its early stage, glaucoma can gradually reduce the 

visual field of patients without obvious symptoms and ultimately leads to a severe 

deterioration of vision [2]. Hence, timely screening and early detection are very important 

for preventing vision loss associated with glaucoma [3]. In clinical practice, 

ophthalmologists typically assess glaucoma by manually measuring the cup-to-disc ratio 

(CDR) based on color fundus images [4], where identifying the optic disc is one of the most 

HHS Public Access
Author manuscript
Pattern Recognit. Author manuscript; available in PMC 2021 August 04.

Published in final edited form as:
Pattern Recognit. 2021 April ; 112: . doi:10.1016/j.patcog.2020.107810.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



important preprocessing steps. To improve the efficiency and consistency, especially in the 

screen setting, and avoid potential errors associated with this subjective assessment, it is 

extremely desirable to develop computerized algorithms [5-7] to extract the OD from retinal 

fundus images.

OD is the entry point for major blood vessels [8] and typically appears a bright yellowish 

region with a circular or elliptical shape on color fundus images [9,10]. By leveraging this 

image characteristic, a variety of unsupervised segmentation methods [11-13] have been 

developed to automatically identify OD and quantify its morphology. These methods 

generally attempted to classify each pixel as either background or disc region leveraging 

various hand-crafted features, such as structural textures and feature entropy [14,15]. A 

review of the relevant methods in this regard can be found in [16]. For instance, Welfer et al. 

[17] applied an adaptive mathematical morphology method to segment the OD. Septiarini et 

al. [18] combined an adaptive thresholding procedure and a morphological operation to 

locate the OD region. However, these hand-crafted features could be very sensitive to many 

factors [19,20], such as light exposure and the existence of diseases, which may significantly 

affect the appearance of the OD regions on color fundus images (Fig. 1), thereby making it 

challenging to accurately identify the OD regions [6,7].

In recent years, deep learning technology, especially the convolutional neural networks 

(CNNs), has been widely used in the area of medical image analysis [21-23] and 

demonstrated remarkable segmentation performance. There have been investigative efforts 

dedicated in this regard to segment OD [24-26]. Fu et al. [27] proposed a deep learning 

architecture called M-Net to jointly segment the optic disc and cup (OC) from fundus 

images in a one-stage segmentation procedure, where the M-Net consists of multi-scale side-

input and side-output layers, and a U-shape convolutional network. Wang et al. [28] 

described a coarse-to-fine deep learning framework on the basis of the classical U-Net 

network [25] to identify the OD by combining color fundus images and their vessel density 

maps. Gu et al. [29] developed a context encoder network (CE-Net) based on the U-Net 

model by introducing a dense atrous convolution block and a residual multi-kernel pooling 

block to capture more high-level image features and preserve spatial information. Wang et 

al. [30] employed a patch-based output space adversarial learning framework (pOSAL) to 

jointly and robustly extract the OD and OC from multiple fundus image datasets and reduce 

the influence of the domain shift among different datasets. To further improve the 

segmentation accuracy in the disc and cup boundary regions, Wang et al. [31] proposed a 

boundary and entropy-driven adversarial learning (BEAL) framework. In architecture, the 

available networks were typically formed by an image encoder, a feature decoder, and a skip 

connection, and thus can be viewed as somewhat variants of the U-Net model. Additional 

variants can be found in [32-34]. A common limitation of these networks lies in the 

utilization of the consecutive pooling or strided convolutional operations, which often lead 

to the loss of some important features associated with object positions and boundaries [35]. 

Also, the extracted features are used indiscriminately in the feature decoder, making these 

networks insensitive to some important feature information and the morphological changes 

of target objects. Although the limitations can be eliminated partially by training the 

networks on local disc patches with a relatively large image dimension (e.g., 512×512), this 

strategy needs the manual location of the OD regions and has a high computational cost.
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To overcome the above limitations, we propose a novel deep learning network to 

automatically segment the OD from fundus images. The proposed network uses several 

multi-scale input features to reduce the influence of the consecutive pooling operations. 

These multi-scale features are then incorporated into both the encoding and decoding 

procedures by element-wise subtraction. This motivation is to preserve key image 

information in the encoding procedure while highlighting the morphological and boundary 

changes of target objects to enable an accurate segmentation.

2. Proposed Method

2.1 Network overview

The proposed network architecture is formed by a feature detection sub-network (FDS) and 

a cross-connection sub-network (CCS) (Fig. 2). FDS is used to detect image features and 

extract desirable objects, while CCS facilitates object segmentation by providing additional 

vital features. FDS is derived from the classical U-Net model with different encoding and 

decoding convolutional blocks. The encoding block is defined by stacking two same 

convolutional layers, each of which includes a 3×3 convolutional kernel (Conv3×3), a batch 

normalization (BN), and an element-wise rectified linear unit (ReLU) activation [36]. The 

number of convolutional kernels or filters is initially set at 32 and gradually increases as the 

way shown in Fig. 2. The obtained convolutional results are processed using a 2×2 

MaxPooling layer with a stride of 2 (MaxPooling2×2) to reduce redundant features and thus 

improve training efficiency. After the application of these encoding and MaxPooling 

operations, a number of high-dimensional features are extracted from the input images. 

These features are processed using a 2×2 UpSampling layer with a stride of 2 

(UpSampling2×2), followed by a decoding block.

During the processing procedure, different convolutional features from the FDS and CCS 

sub-networks, as shown in Fig. 2, are combined to guide the extraction of desirable objects. 

The last decoding features are fed into a 1×1 convolution layer (Conv1×1) with a sigmoid 

activation to achieve a probability map for the OD on the entire fundus images. Notably, due 

to the presence of the CCS sub-network, both the encoding and decoding blocks have two 

different versions for varying input features, and these features are combined in different 

manners (Section 2.2). The source codes of the developed network can be found at https://

github.com/wmuLei/ODsegmentation.

2.2 Cross-connection sub-network (CCS)

Inspired by the M-Net model [27], we use the CCS sub-network to reduce the impact of 

multiple pooling operations and improve segmentation accuracy. CCS uses multi-scale input 

features for image encoding, which is similar to the side-input sub-network in the M-Net 

model. Specifically, CCS consists of four components by down-sampling the first four 

encoding features using a 4×4 MaxPooling layer with a stride of 4 (MaxPooling4×4). These 

components (intermediate encoding features) have relatively low convolutional hierarchies 

and contain a large number of structural textures associated with target objects. The 

structural textures are concatenated, along with image depth dimension, with the subsequent 

encoding features, when they have the same image width and height, as shown in Fig. 3(a). 
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This will lead to the combination of both low- and high-level features and make additional 

key textures available in segmentation. These texture features are fed into the decoding 

blocks using the element-wise subtraction and concatenation, as illustrated in Fig. 3(b). The 

use of the subtraction operation can improve the sensitivity of the developed model to the 

OD boundaries, as compared with the U-Net and M-Net models.

2.3 Decoding block

We use the decoding blocks to combine multiple encoding features, as displayed in Fig. 

3(b), and highlight the morphological differences of target objects in these feature maps. 

These blocks can be fed with two input features (both from FDS) or three features (one from 

CCS and two from FDS). When there are three input features for these blocks, the input 

features from the CCS sub-network are firstly processed using a sequence of Conv3×3, BN, 

and ReLU operations to ensure that they have proper image dimensions for subsequent 

operations. The processed features are then combined with another two input features from 

the FDS sub-network using the element-wise subtraction and concatenation operations to 

enhance the objects' boundaries, as illustrated in Fig. 3(b). The utilization of the subtraction 

operation is motivated by the traditional edge detection method [37], where the element-wise 

intensity differences between a given image and its Gaussian filtered version can highlight a 

variety of edge information, as shown by Fig. 4. The subtraction operation allows the 

decoding block to capture various features associated with object boundaries and thus 

improve the segmentation accuracy. Also, the subtraction operation will lead to different 

numbers of filters for the encoding and decoding blocks, which make the developed network 

asymmetric and lightweight, as compared with the classical U-Net model [28].

2.4 Training the network

We implemented the proposed network using the Keras library with TensorFlow backend 

(https://keras.io/) and trained it using the MESSIDOR dataset [28], which is publicly 

available and widely used to develop algorithms for computer-assisted diagnoses of diabetic 

retinopathy (DR). In the MESSIDOR dataset, there are 1,200 color fundus images, including 

540 normal images and 660 images diagnosed with DR. We preprocessed these images to 

exclude the background and resize the field-of-view regions to a uniform dimension of 

256×256 pixels. Then, these images were normalized to alleviate the effects caused by 

different illumination conditions (e.g., over- or under-exposure), as shown in Fig. 5. The 

processed dataset was randomly divided into three sub-groups at a ratio of 0.75:0.15:0.1 for 

training (n=900), internal validation (n=180), and independent testing (n=120), respectively. 

The local disc regions in each sub-group were manually cropped and resized at a dimension 

of 256×256 pixels, resulting in an additional local disc region image dataset, which 

consisted of training, internal validation, and independent testing sub-groups as well. The 

dimensions of these local disc regions were approximately three times the radius of the OD. 

We used the global field-of-view images and the local disc regions to train the proposed 

network separately.

The Dice similarity coefficient (DSC) [38,39] was used as the loss function and given by:

Wang et al. Page 4

Pattern Recognit. Author manuscript; available in PMC 2021 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://keras.io/


DSC = 2N(A ∩ B)
N(A) + N(B) (1)

where A and B are the segmentation results obtained by the proposed network and manual 

annotation, respectively. N(·) denotes the number of the pixels enclosed set. ∩ and ∪ are the 

intersection and union operators. The DSC was optimized using the exponential moving 

average variant of the adaptive moment (Adam) estimation (AMSGrad) [40]. In the 

AMSGrad optimization, the parameters β1 and β2 were set to 0.9 and 0.999, respectively, the 

initial learning rate was set to 1.0e-3 for the global field-of-view images and to 1.0e-4 for the 

local disc regions. A total of 150 epochs were used during the training, and the batch size 

was set at 8. The training process stopped if the DSC did not improve for consecutive 30 

epochs. To improve the robustness of the training procedure, we augmented the images to 

improve their diversity [28,30]. Specifically, the images were randomly flipped along 

horizontal and vertical axes, and translated by −15 to 15 percent per axis, and rotated from 

−90 to 90 degrees.

2.5 Performance evaluation

We assessed the performance of the developed network using the independent testing sub-

group of the MESSIDOR dataset and the publicly available ORGIA and REFUGE datasets 

[8]. A detailed description of the three datasets can be found in [28,36]. We also compared 

the performance of the developed network with three classical networks, namely the U-Net, 

M-Net, and Deeplabv3 with the backbone network ‘xception’ [30], under the same 

experiment configurations. The differences of these networks were summarized in Table 1. 

We used DSC, intersection over union (IOU) (Eq. (2)), Matthew's correlation coefficient 

(MCC) (Eq. (3)) [41], and balanced accuracy (BAC) (Eq. (4)) [28] as the performance 

metrics. These metrics range from 0 to 1, and a larger value means a better segmentation 

performance.

IOU = N(A ∩ B)
N(A ∪ B) (2)

MCC = (T pTn − F pFn)
(T p + F p)(T p + Fn)(Tn + F p)(Tn + Fn) (3)

BAC = 1
2(Se + Sp) (4)

Se = T p
T p + Fn (5)

Sp = Tn
Tn + F p (6)
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where Tp, Tn, Fp, and Fn denote true positive, true negative, false positive and false 

negative, respectively. Se and Sp are the sensitivity and specificity for a segmentation 

method. They indicate the effectiveness in identifying the disc and background pixels, 

respectively. Since the optic disc only occupies a very small area in color fundus images, this 

makes the Sp and BAC very large in most cases. Hence, the DSC, IOU and MCC are used to 

indicate the overall segmentation performance. In addition, we assessed the effect of the 

CCS sub-network on the segmentation performance by testing the developed models with or 

without CCS on global field-of-view images. To statistically assess the performance 

differences of these segmentation methods, the paired t-test was performed. A p-value less 

than 0.05 was considered statistically significant.

3. Experimental results

3.1 Segmentation based on the global field-of-view images

We comparatively assessed the segmentation performance of the developed network with 

different optimization algorithms, including Adam, AMSGrad, and the stochastic gradient 

descent (SGD) [20], and activation functions, including ReLU and Leaky ReLU (LReLU) 

[42]. In the Adam optimization algorithm, the parameters β1 and β2 were set to 0.9 and 

0.999, respectively; in the SGD, the momentum was set to 0.9, and the Nesterov momentum 

was enabled. The initial learning rates of these two optimizations were set to 1.0e-3. In the 

LReLU activation function, the scalar parameter was set to 0.00, 0.01, 0.05, 0.10, 0.15, and 

0.20, respectively for the independent testing set of the MESSIDOR dataset. The 

segmentation results (Table 2) demonstrated that the developed CNN model had the highest 

accuracy in terms of DSC, IOU, and MCC when using the AMSGrad optimization algorithm 

and the ReLU activation function.

We summarized the performance of the developed network and three classical networks (i.e., 
the U-Net, M-Net, and Deeplabv3) on the testing sub-group of the MESSIDOR dataset 

(n=120 images) and the ORIGA (n=650 images) and REFUGE datasets (n=1,200 images) in 

Tables 3 and 4. The developed model achieved performance with a mean DSC, IOU, and 

MCC of 0.9377, 0.8854, and 0.9383, respectively for the entire test images. It significantly 

outperformed the U-Net (0.9316, 0.8753, and 0.9325), M-Net (0.9078, 0.8409, and 0.9105), 

and Deeplabv3 (0.9289, 0.8733, and 0.9299) on the same test images (Tables 3 and 4). Figs. 

6 and 7 showed some segmentation examples to visually demonstrate the performance 

differences of the developed model and three other models.

3.2 Segmentation based on the local disc region images

Table 5 presented the segmentation performance of the developed network in different 

training settings (i.e., three optimization algorithms and two activation functions) on the 

local disc region images. Among the three optimization algorithms, Adam and AMSGrad 

had the initial learning rate of 1.0e-4 without changing other configurations compared to 

those in the global field-of-view segmentation. As demonstrated by the results, the 

developed model achieved reasonable accuracy when using the AMSGrad optimization 

algorithm and the ReLU activation function and was superior to the other training settings 

for the same test images in terms of DSC, IOU, and MCC.
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Tables 6 and 7 show the segmentation performance of the developed network and the 

aforementioned three classical networks on the local disc region images. It can be seen that 

these networks had high segmentation accuracy comparable to manual annotations; however, 

their performance differences were limited. Specifically, the developed model achieved the 

average DSC, IOU, and MCC of 0.9735, 0.9494, and 0.9594, respectively for a total of 

1,970 test regions, and was superior to the U-Net (0.9730, 0.9485, and 0.9586), M-Net 

(0.9594, 0.9230, and 0.9386), and Deeplabv3 (0.9571, 0.9200, and 0.9359) models. Among 

the four CNN models, the M-Net and Deeplabv3 had relatively low segmentation results for 

the same testing datasets. Some segmentation examples from the MESSIDOR and ORIGA 

datasets are shown in Fig. 8 for a straightforward visual comparison.

4. Discussion

We developed and validated a novel deep learning network to accurately segment the OD 

regions depicted on color fundus images. Due to the introduction of a sub-network and a 

decoding convolutional block, this network demonstrated more sensitivity to edge 

information than other available models, which can capture the structural details that may be 

smeared out by multiple down-sampling operations. We quantitatively evaluated the 

performance of the developed network and compared it with three typical segmentation 

networks on a total of 1,970 color fundus images from the MESSIDOR, ORIGA, and 

REFUGE datasets. The experimental results demonstrated the unique advantage of the 

developed model in segmenting the OD regions.

In the developed model, the CCS sub-network and the element-wise subtraction in the 

decoding blocks played important roles in accurately segmenting the OD regions from 

fundus images. Table 8 demonstrated that the developed model achieved performance with 

the average DSC, IOU, and MCC of 0.9377, 0.8854, and 0.9383, respectively, in the 

presence of the CCS sub-network for a total of 1,970 global field-of-view images, and of 

0.9268, 0.8717, and 0.9282 without the CCS sub-network for the same images. The 

developed model with the CCS had the potential to handle the problems caused by weak 

contrast or varying illumination, as shown in Fig 9. Table 9 summarized the performance of 

the developed model with different element-wise operations (i.e., addition, multiply, and 

subtraction) on both the global field-of-view images and their local disc versions from the 

MESSIDOR dataset. This suggests that the introduction of the CCS sub-network and the 

element-wise subtraction improved the performance of the developed model, which has 

much less convolutional parameters, as compared with the U-Net (Table 1). Their integration 

made our model computationally efficient and sensitive to the morphological changes of 

target objects in the feature maps with the same image dimension (similar to the effect 

described in Fig. 4).

The developed model demonstrated better performance as compared with three classical 

segmentation models (i.e., the U-Net, M-Net, and Deeplabv3) based on both the global and 

local images from the MESSIDOR, ORIGA, and REFUGE datasets (Tables 3 and 6). We 

also summarized the segmentation performance of our developed method and other available 

methods in Table 10. As compared with our method, most of these methods in Table 10 were 

evaluated on a relatively small number of datasets formed by local disc region images. From 
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these results, it can be seen that our developed method demonstrated a consistent and 

relatively higher performance for segmenting OD regions, given the size and diversity of our 

testing datasets as well as the small training dimension. Notably, the optic disc only occupies 

a very small area in a color fundus image. Consequently, the image background has a very 

high weight in the BAC metric, thus making this metric relatively large for different types of 

segmentation methods. Additionally, the U-Net had a different performance on local disc 

regions, in spite of the same training dimension (e.g., 256×256), because these disc regions 

were cropped from the global field-of-view images using different sizes, relative to the 

radius of the OD.

Finally, we are aware of some limitations in this study. First, the developed model tends to 

include certain background or pathological regions that had a similar appearance as the OD, 

as illustrated by Fig. 10. This is primarily caused by the sensitivity of the developed method 

to the object boundaries. Second, we conducted the segmentation experiments on images 

with a relatively small dimension (i.e., 256×256 pixels) due to the memory limit of the 

graphics process unit (GPU). This dimension may prevent the detection of certain texture 

information associated with the OD and its boundary regions and limit the amount of the 

convolutional features during the training. Third, local disc regions were manually cropped 

from the global field-of-view images with very small dimensions, relative to the diameter of 

the OD. In this way, the OD was typically located in the center of the cropped regions, and 

only a small amount of irrelevant background was retained and significantly magnified (Fig. 

11). The background is very close to the OD and generally associated with pathological 

abnormalities caused by glaucoma, DR, or myopia. It may make the developed model tend 

to identify incorrect target boundaries. Despite these limitations, our developed method 

demonstrated an exciting performance in segmenting the OD regions on color fundus 

images.

5. Conclusion

In this study, we introduced an asymmetric segmentation network based on the U-Net model 

to accurately segment the OD regions from retinal fundus images. Its novelty lies in the 

integration of a unique cross-connection sub-network and a decoding convolutional block 

with the classical U-Net architecture. The integration makes the developed network able to 

reduce the loss of important image information and improve its sensitivity to the 

morphological changes of the regions-of-interest. Our segmentation experiments on 1,970 

color fundus images demonstrated the relatively high performance of the developed network, 

as compared with other classical CNN models, including the U-Net, M-Net, and Deeplabv3. 

The developed CNN model has a smaller number of parameters and a better capability to 

alleviate the problems caused by improper light exposure and tissue abnormality close to the 

disc regions due to the use of the element-wise subtraction operations. The operations are 

very useful to locate object boundaries and exclude irrelevant optic disc pallor. We also 

discussed its limitations. In the future, we will test the generic characteristic of the 

developed CNN model by applying it to other completely different forms of medical images 

(e.g., computed tomography (CT) and Magnetic Resonance Imaging (MRI)).
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Fig. 1. 
Illustration of color fundus images with different qualities caused by tissue abnormality and 

light exposure.
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Fig. 2. 
The architecture of the developed network for segmenting the OD regions on color fundus 

images.
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Fig. 3. 
The encoding (a) and decoding (b) blocks in the developed network. The operations 

specified by the dotted lines are activated in the presence of texture features from the CCS 

sub-network.

Wang et al. Page 14

Pattern Recognit. Author manuscript; available in PMC 2021 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The difference image (c) between a given image (a) and its Gaussian filtered version (b). As 

indicated by the arrows, subtle structural features are highlighted in the difference image.
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Fig. 5. 
Illustration of three original fundus images (left column), their normalized results (middle 

column), and local disc regions (right column).
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Fig. 6. 
Illustration of the segmentation results of the U-Net (in cyan), M-Net (in red), Deeplabv3 (in 

green), and the developed model (in blue) on twelve fundus images from the testing sub-

group of the MESSIDOR dataset as well as their ground truth (manual delineations) (in 

white).
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Fig. 7. 
Illustration of the segmentation results of the U-Net (in cyan), M-Net (in red), Deeplabv3 (in 

green), and the developed model (in blue) on sixteen images from the ORGIA dataset as 

well as their ground truth (manual delineations) (in white).
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Fig. 8. 
Segmentation results of the local disc regions from the MESSIDOR (in the first two rows) 

and ORGIA (in the last two rows) datasets using four different models. The disc boundaries 

were obtained by the U-Net (in cyan), M-Net (in red), Deeplabv3 (in green), and the 

developed model (in blue) as well as manual annotations (in white), respectively.
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Fig. 9. 
Illustration of the segmentation results of the developed model with (in blue) or without (in 

magenta) the CCS sub-network on nine global field-of-view images from the MESSIDOR 

dataset as well as their ground truths (manual annotations) (in white). Only the disc regions 

were displayed for visual comparison purposes.
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Fig. 10. 
From left to right columns showed a given fundus image from the MESSIDOR dataset, and 

its segmentation results obtained by the U-Net (in cyan), M-Net (in red), Deeplabv3 (in 

green), our developed model (in blue), and manual annotation (in white), respectively. These 

results were easily affected by pathological regions close to the OD.
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Fig. 11. 
Illustration of some local disc regions manually cropped from their global field-of-view 

images. In the disc regions, only a small portion of the background surrounding the OD is 

retained and generally associated with various pathological abnormalities caused by DR, 

myopia, or glaucoma.
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Table 1.

The differences of the U-Net, M-Net, Deeplabv3, and the proposed network. (‘#’ denotes the number of a 

given variable, ‘M’ is short for Million)

Method Layer # up-sampling # Parameter #

U-Net 86 5 31.4667 M

M-Net 48 4 8.5472 M

Deeplabv3 410 3 41.2530 M

The proposed 111 5 20.7984 M
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Table 2.

The performance of the developed network with different optimization algorithms (i.e., Adam, AMSGrad, and 

SGD) and activation functions (i.e., ReLU and LReLU) on the testing sub-group of the MESSIDOR dataset 

using the average DSC, IOU, and MCC metrics.

Optimization Metric ReLU
LReLU

0.00 0.01 0.05 0.10 0.15 0.20

Adam DSC 0.9600 0.9621 0.9611 0.9626 0.9609 0.9604 0.9601

IOU 0.9241 0.9279 0.9262 0.9290 0.9259 0.9249 0.9243

MCC 0.9602 0.9620 0.9613 0.9627 0.9611 0.9606 0.9600

AMSGrad DSC 0.9646 0.9617 0.9618 0.9622 0.9641 0.9605 0.9602

IOU 0.9326 0.9274 0.9277 0.9282 0.9315 0.9252 0.9246

MCC 0.9646 0.9617 0.9619 0.9622 0.9640 0.9606 0.9603

SGD DSC 0.9450 0.9385 0.9419 0.9442 0.9415 0.9408 0.9405

IOU 0.8982 0.8876 0.8938 0.8976 0.8919 0.8911 0.8904

MCC 0.9456 0.9393 0.9427 0.9449 0.9421 0.9414 0.9411
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Table 3.

The performance of the developed network and three classical networks on the testing sub-group of the 

MESSIDOR dataset and the whole ORIGA and REFUGE datasets using the mean and standard deviation (SD) 

of DSC, IOU, BAC, MCC, and Se.

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

MESSIDOR

U-Net 0.9638±0.0271 0.9314±0.0470 0.9844±0.0137 0.9639±0.0259 0.9695±0.0278

M-Net 0.9463±0.0449 0.9011±0.0709 0.9804±0.0292 0.9468±0.0416 0.9619±0.0587

Deeplabv3 0.9557±0.0286 0.9165±0.0497 0.9815±0.0182 0.9558±0.0275 0.9639±0.0367

The proposed 0.9646±0.0234 0.9326±0.0416 0.9870±0.0123 0.9646±0.0227 0.9748±0.0249

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

ORIGA

U-Net 0.9374±0.0393 0.8845±0.0640 0.9953±0.0079 0.9386±0.0363 0.9925±0.0162

M-Net 0.9271±0.0558 0.8680±0.0762 0.9906±0.0235 0.9286±0.0523 0.9833±0.0473

Deeplabv3 0.9220±0.1145 0.8680±0.1232 0.9764±0.0635 0.9234±0.1100 0.9543±0.1274

The proposed 0.9392±0.0355 0.8873±0.0589 0.9938±0.0131 0.9401±0.0333 0.9895±0.0264

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

REFUGE

U-Net 0.9252±0.0516 0.8647±0.0812 0.9555±0.0291 0.9261±0.0494 0.9119±0.0585

M-Net 0.8935±0.1052 0.8203±0.1375 0.9650±0.0449 0.8970±0.0982 0.9325±0.0905

Deeplabv3 0.9300±0.0431 0.8719±0.0685 0.9621±0.0272 0.9308±0.0406 0.9251±0.0550

The proposed 0.9342±0.0458 0.8796±0.0729 0.9627±0.0246 0.9347±0.0434 0.9262±0.0495
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Table 4.

The p-values of the paired t-tests among the developed network and three classical networks on 1,970 global 

field-of-view images in terms of the DSC, IOU, and MCC. (‘−’ indicates invalid statistical analysis)

Method
U-Net M-Net Deeplabv3

DSC IOU MCC DSC IOU MCC DSC IOU MCC

U-Net - - -

M-Net <0.0001 <0.0001 <0.0001 - - -

Deeplabv3 0.0918 0.2852 0.0836 <0.0001 <0.0001 <0.0001 - - -

The proposed <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table 5.

The performance of the developed network with different optimization algorithms (i.e., Adam, AMSGrad, and 

SGD) and activation functions (i.e., ReLU and LReLU) on the testing sub-group of the MESSIDOR dataset 

using the average DSC, IOU, and MCC metrics.

Optimization Metric ReLU
LReLU

0.00 0.01 0.05 0.10 0.15 0.20

Adam DSC 0.9838 0.9837 0.9844 0.9840 0.9839 0.9840 0.9841

IOU 0.9683 0.9682 0.9694 0.9686 0.9685 0.9687 0.9689

MCC 0.9750 0.9749 0.9759 0.9753 0.9752 0.9753 0.9755

AMSGrad DSC 0.9843 0.9840 0.9838 0.9838 0.9837 0.9840 0.9836

IOU 0.9693 0.9687 0.9683 0.9683 0.9681 0.9686 0.9679

MCC 0.9758 0.9753 0.9750 0.9750 0.9748 0.9753 0.9747

SGD DSC 0.9787 0.9779 0.9785 0.9770 0.9787 0.9777 0.9776

IOU 0.9585 0.9569 0.9581 0.9551 0.9584 0.9566 0.9564

MCC 0.9671 0.9659 0.9669 0.9645 0.9671 0.9657 0.9654
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Table 6.

The performance of the developed network and three classical networks on the testing sub-group of the 

MESSIDOR dataset and the ORIGA and REFUGE datasets using the mean and standard deviation (SD) of 

DSC, IOU, BAC, MCC, and Se.

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

MESSIDOR

U-Net 0.9839±0.0094 0.9686±0.0177 0.9874±0.0075 0.9752±0.0144 0.9829±0.0109

M-Net 0.9796±0.0096 0.9602±0.0181 0.9837±0.0078 0.9686±0.0148 0.9773±0.0133

Deeplabv3 0.9794±0.0105 0.9599±0.0198 0.9837±0.0083 0.9683±0.0162 0.9776±0.0117

The proposed 0.9843±0.0095 0.9693±0.0179 0.9876±0.0076 0.9758±0.0147 0.9831±0.0109

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

ORIGA

U-Net 0.9778±0.0075 0.9567±0.0141 0.9867±0.0056 0.9663±0.0114 0.9936±0.0072

M-Net 0.9663±0.0121 0.9351±0.0219 0.9808±0.0073 0.9491±0.0181 0.9953±0.0068

Deeplabv3 0.9733±0.0137 0.9483±0.0247 0.9830±0.0118 0.9595±0.0201 0.9876±0.0223

The proposed 0.9797±0.0079 0.9604±0.0148 0.9869±0.0060 0.9692±0.0120 0.9899±0.0084

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

REFUGE

U-Net 0.9693±0.0333 0.9421±0.0548 0.9759±0.0257 0.9527±0.0512 0.9673±0.0340

M-Net 0.9536±0.0295 0.9127±0.0488 0.9610±0.0224 0.9298±0.0449 0.9377±0.0324

Deeplabv3 0.9461±0.0438 0.9007±0.0721 0.9540±0.0350 0.9198±0.0649 0.9222±0.0560

The proposed 0.9692±0.0325 0.9418±0.0533 0.9753±0.0252 0.9526±0.0499 0.9651±0.0339
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Table 7.

The p-values of the paired t-tests among the developed network and three classical networks on 1,970 local 

disc regions in terms of the DSC, IOU, and MCC. (‘−’ indicates invalid statistical analysis)

Method
U-Net M-Net Deeplabv3

DSC IOU MCC DSC IOU MCC DSC IOU MCC

U-Net - - -

M-Net <0.0001 <0.0001 <0.0001 - - -

Deeplabv3 <0.0001 <0.0001 <0.0001 <0.0001 0.0006 0.0003 - - -

The proposed <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
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Table 8.

The performance of the developed network with or without the CCS sub-network on a total of 1,970 global 

field-of-view images from the MESSIDOR, ORIGIA, and REFUGE datasets using the mean and standard 

deviation (SD) of DSC, IOU, BAC, MCC, and Se.

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

MESSIDOR
with 0.9646±0.0234 0.9326±0.0416 0.9870±0.0123 0.9646±0.0227 0.9748±0.0249

Without 0.9592±0.0320 0.9233±0.0548 0.9868±0.0143 0.9594±0.0304 0.9745±0.0289

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

ORIGA
with 0.9392±0.0355 0.8873±0.0589 0.9938±0.0131 0.9401±0.0333 0.9895±0.0264

Without 0.9144±0.1044 0.8530±0.1140 0.9883±0.0583 0.9169±0.0980 0.9789±0.1169

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

REFUGE
with 0.9342±0.0458 0.8796±0.0729 0.9627±0.0246 0.9347±0.0434 0.9262±0.0495

Without 0.9304±0.0777 0.8767±0.0981 0.9647±0.0419 0.9313±0.0748 0.9305±0.0842
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Table 9.

The performance of the developed network with different element-wise operations on the global field-of-view 

images and their local disc versions from the MESSIDOR dataset using the mean and standard deviation (SD) 

of DSC, IOU, BAC, MCC, and Se. (Note that there are different training schemes for global and local 

datasets.)

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

Global

Addition 0.9626±0.0264 0.9290±0.0458 0.9871±0.0120 0.9626±0.0253 0.9749±0.0244

Multiply 0.9622±0.0232 0.9280±0.0408 0.9858±0.0123 0.9621±0.0225 0.9724±0.0248

Subtraction 0.9646±0.0234 0.9326±0.0416 0.9870±0.0123 0.9646±0.0227 0.9748±0.0249

Dataset Method
DSC IOU BAC MCC Se

Mean±SD Mean±SD Mean±SD Mean±SD Mean±SD

Local

Addition 0.9839±0.0092 0.9685±0.0173 0.9876±0.0073 0.9751±0.0142 0.9839±0.0103

Multiply 0.9838±0.0097 0.9683±0.0184 0.9872±0.0077 0.9750±0.0150 0.9823±0.0111

Subtraction 0.9843±0.0095 0.9693±0.0179 0.9876±0.0076 0.9758±0.0147 0.9831±0.0109

Pattern Recognit. Author manuscript; available in PMC 2021 August 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 32

Table 10.

Performance comparison of the developed method with some available methods for the disc segmentation 

based on the DSC, BAC, and Se metrics. ‘Num’ and ‘Size’ indicate the number of images and their training 

size, respectively, ‘−’ denotes unavailable metrics in related literature.

Method DSC BAC Se Num size Domain Datasets

Feng [43] - 0.9634 0.9312 55 256×256 - DRIONS-DB

Yin [4] 0.92 0.9184 0.8542 325 - local ORIGA

Lim [44] 0.9406 - 0.8742 359 157×157 local MESSIDOR, SEED-DB DRIVE, DIARETDB1,

Abdullah [6] 0.9273 0.9926 0.8860 1,467 - local CHASE-DB1, MESSIDOR, DRIONS-DB,

Morales [13] 0.8774 0.9921 0.854 110 - local DRIONS

DRIU [24] 0.9361 0.9612 0.9252 110 565×584 local DRIONS-DB, RIM-ONE-r3

M-Net [27] 0.9632 0.983 - 325 400×400 local ORIGA

AG-Net [34] 0.9685 - - 325 640×640 local ORIGA

U-Net [28] 0.939 0.970 0.944 2,978 256×256 local DIARETDB0, DRIE, CFI, DIARETDB1, DRIONS-DB, 
MESSIDOR, ORIGA

U-Net 0.9316 0.9704 0.9420 1,970 256×256 global MESSIDOR, ORIGA, REFUGE

U-Net 0.9730 0.9802 0.9769 1,970 256×256 local MESSIDOR, ORIGA, REFUGE

M-Net 0.9078 0.9744 0.9511 1,970 256×256 global MESSIDOR, ORIGA, REFUGE

M-Net 0.9594 0.9689 0.9591 1,970 256×256 local MESSIDOR, ORIGA, REFUGE

Deeplabv3 0.9289 0.9680 0.9371 1,970 256×256 global MESSIDOR, ORIGA, REFUGE

Deeplabv3 0.9571 0.9654 0.9472 1,970 256×256 local MESSIDOR, ORIGA, REFUGE

The proposed 0.9377 0.9744 0.9501 1,970 256×256 global MESSIDOR, ORIGA, REFUGE

The proposed 0.9735 0.9799 0.9744 1,970 256×256 local MESSIDOR, ORIGA, REFUGE
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