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Cointegration of single-transistor neurons and synapses 
by nanoscale CMOS fabrication for highly scalable 
neuromorphic hardware
Joon-Kyu Han1, Jungyeop Oh1, Gyeong-Jun Yun1, Dongeun Yoo2, Myung-Su Kim1, Ji-Man Yu1, 
Sung-Yool Choi1, Yang-Kyu Choi1*

Cointegration of multistate single-transistor neurons and synapses was demonstrated for highly scalable neuro-
morphic hardware, using nanoscale complementary metal-oxide semiconductor (CMOS) fabrication. The neurons 
and synapses were integrated on the same plane with the same process because they have the same structure of 
a metal-oxide semiconductor field-effect transistor with different functions such as homotype. By virtue of 100% 
CMOS compatibility, it was also realized to cointegrate the neurons and synapses with additional CMOS circuits. 
Such cointegration can enhance packing density, reduce chip cost, and simplify fabrication procedures. The mul-
tistate single-transistor neuron that can control neuronal inhibition and the firing threshold voltage was achieved 
for an energy-efficient and reliable neural network. Spatiotemporal neuronal functionalities are demonstrated 
with fabricated single-transistor neurons and synapses. Image processing for letter pattern recognition and face 
image recognition is performed using experimental-based neuromorphic simulation.

INTRODUCTION
Although software-based artificial neural networks (ANNs) have led 
to breakthroughs in a variety of intelligent tasks, they inevitably 
have inherent delays and energy consumption because the hardware 
structure to support the ANNs is still based on the von Neumann 
architecture (1–3). To overcome these limitations, hardware-based 
ANNs, known as brain-inspired neuromorphic systems, have been 
intensively studied (4–6). The human brain consists of neurons 
for the information encoding and synapses for the memory and 
learning function, as shown in Fig. 1A. There are about 1011 neu-
rons and 1015 synapses, and thus, it is important to implement neu-
rons and synapses with high density and low power to mimic the 
brain in hardware, especially for mobile devices and Internet of 
Things applications (7, 8).

Neurons are mainly composed of complementary metal-oxide 
semiconductor (CMOS)–based circuits, while synapses primarily 
comprise memristors (9–15). However, circuit-based neurons are 
problematic for high packing density and power consumption with 
low cost because they are composed of a capacitor, integrator, and 
comparator including many transistors (16, 17). To overcome the 
limitations of circuit-based neurons, few works to cointegrate 
memristor-based artificial neuron devices and synaptic devices in a 
single crossbar array for a fully memristive neural network have 
been reported (18–20). Memristor-based neurons were realized with 
a single device, diffusive memristor (SiOx:Ag), or metal-insulator 
transition materials (NbOx and VOx). Meanwhile, neuronal inhibi-
tion and tunability of firing threshold voltage are important for an 
energy-efficient and reliable neural network. The inhibitory func-
tion of the neuron related to biological lateral inhibition can im-
prove energy efficiency by firing only specific neurons and enhance 

learning efficiency by enabling winner-takes-all (WTA) mechanism 
(21–23). In addition, the tunable firing threshold voltage related to 
biological homeostasis can allow reliable computation even when 
some neurons and synapses fail by process variations and endurance 
problems (24–26). However, the memristor-based neurons could 
not self-function for control of neuronal inhibition and firing thresh-
old voltage because of the lack of controllability.

On the other hand, it is advantageous that neuron devices and 
synaptic devices have the same homotypic structures and materials 
because simultaneous integration of neurons and synapses in a 
single chip with the same fabrication process is possible. Specific 
interconnections owing to inherent heterotypic structures and ma-
terials can impose constraints on reducing packing density and sim-
plifying process complexity. Also, extra energy consumption cannot 
be avoided at the interface between the neurons and the synapses. 
However, there was no work that neuron devices and synapse de-
vices are cointegrated with having exactly the same structures and 
materials.

The metal-oxide semiconductor field-effect transistor (MOSFET) 
structure is attractive for commercialization because it has been 
verified for more than 60 years. In addition, the neuromorphic 
hardware should contain additional CMOS circuits to support pro-
cessing units, peripheral interfaces, memory, clocking circuits, and 
input/output (I/O) for a complete application, as well as neurons 
and synapses (27–30). Therefore, if both neuron devices and synaptic 
devices can be realized with the same MOSFET structures, then 
commercialization of highly scalable neuromorphic system can be 
boosted by cointegration of neurons, synapses, and additional CMOS 
circuits on the same plane with commercial CMOS fabrication.

In this work, highly scalable neuromorphic hardware was imple-
mented by simultaneously integrating multistate single-transistor 
neurons and synapses on the same plane, in which both devices have 
the same homotypic MOSFET structure. In detail, the MOSFET for 
a neuron and a synapse encloses a charge trap layer in gate dielectrics 
with the same manner as a commercial flash memory based on a 
silicon-oxide-nitride-oxide-silicon (SONOS) structure that comprise 
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a gate polycrystalline Si (S), blocking SiO2 (O), charge trap Si3N4 
(N), tunneling SiO2 (O), and channel single-crystalline Si (S). Because 
of this CMOS compatibility, they were fabricated and integrated on 
the same plane using the standard Si CMOS fabrication. It is possible 
to cointegrate single-transistor neurons and synapses with CMOS 
circuits for processing units, peripheral interfaces, memory, clock-
ing circuits, and I/O at the same time, and thus, cointegration of the 
entire neuromorphic system is available. Therefore, a highly scal-
able neural network can be implemented in a single chip, which can 
enhance packing density, reduce chip cost, and simplify fabrication 
procedures. Neuron devices and synaptic devices were fabricated and 
directly interconnected, and their connection properties were analyzed. 
The abovementioned charge trap Si3N4 in the MOSFET can allow 
multistates. The multistates according to trapped charges control 
the excitatory/inhibitory function or change the firing threshold 
voltage in the neuron, while they regulate synaptic weight in the 
synapse. Although the applicability of charge trap flash memory as 
a synapse has already been confirmed by taking advantage of its 
maturity of device technologies, stable multistate operations, high 
ratio of on/off conductance, and superior retention characteristics 
(31, 32), cointegration of a Si-based single-transistor neuron with 

Si-based synapses has not been reported ever as a homotypic con-
figuration. Homotypic neurons and synapses were directly connected 
to realize spatiotemporal neural computations. At the same time, 
CMOS circuits such as a current mirror and inverter, which are key 
elements for analog and digital circuits, were fabricated on the same 
plane to show the feasibility of cointegration of the interface and 
control circuits. In addition to real device fabrication, image recog-
nition was successfully implemented with the aid of experimental-
based simulations.

RESULTS
Unit device characteristics of neuron and synapse
N-channel single-transistor neuron and synapse have the same 
SONOS structure, as shown in Fig. 1B. The intercalated charge trap 
nitride (Si3N4) in the multilayered gate dielectrics allows multistates 
according to the amount of trapped charges. They can perform two 
functions: (i) enable excitatory/inhibitory function or tuning the 
firing threshold voltage (VT,firing) in the neuron and (ii) control 
weight update in the synapse. Like the homotype, the neuron and 
the synapse have the same structure but operate differently, as shown 
in Fig. 1C. For neuron operation, input current (Iin) collected from 
the presynapses is applied to a n+ drain (or source) electrode, and 
output voltage (Vout) is produced from the same n+ drain (or source) 
electrode. For synapse operation, the voltage transferred from the 
preneuron (Vin) is applied to the gate electrode of the synapse, and 
output current (Iout) is flown from the n+ source (or drain) elec-
trode. These neurons and synapses were fabricated on an 8-inch 
wafer by using the same standard Si CMOS process and were con-
nected to each other through metallization for a monolithically in-
tegrated neuromorphic system, as shown in Fig. 1D. The fabrication 
details are described in fig. S1.

As mentioned earlier, the excitation/inhibition of the neuron is 
determined by electron trapping in the nitride of the SONOS struc-
ture. An inhibitory function that disables the firing of the neuron is 
necessary, because it can improve the energy efficiency of the neuro-
morphic system by selectively firing a specific neuron. Hence, it can 
realize effective learning and inference through the WTA mechanism 
(21–23). As shown in Fig. 2A, unless the electrons are trapped in the 
nitride, the neuron is at a low-resistance state. Thus, current flows 
through the channel when the Iin is applied. As a consequence, charges 
are not integrated and a leaky integrate-and-fire (LIF) function is 
inhibited. Otherwise, the neuron is at a high-resistance state (HRS) 
when trapped electrons in the nitride raise a potential barrier be-
tween the n+ source and a p-type channel referred to as a p-n built-in 
potential. Accordingly, charges are integrated until the firing. For the 
neuron operation, the gate of the neuron transistor is a kind of a 
pseudo-gate, unlike a conventional actual gate. It is used not for the 
LIF operation but for charge trapping. For electron trapping in the 
nitride, a positive voltage pulse is applied to the pseudo-gate. Afterward, 
it is sustained in a floating state for the neuron operation. Because of 
nonvolatility of the trapped charges even without gate biasing, energy 
consumption is much smaller compared to our previous study, which 
required additional and continuous gate voltage control (33, 34).

Figure 2B shows output characteristics of the fabricated n-channel 
single-transistor neuron, which is represented by the drain current 
versus drain voltage (ID-VD). Its gate length (LG) and channel width 
(WCH) are 880 and 280 nm, respectively. Before the electron trap-
ping, ID flows regardless of VD. After the electron trapping with a 

Fig. 1. Concept of cointegrated single-transistor neurons and synapses. 
(A) Schematic of biological neuron and synapse. About 1011 neurons and 1015 
synapses are densely interconnected in human brain. (B) Schematic of cointegrated 
single-transistor neurons and synapses. They have exactly the same SONOS struc-
ture, which includes a charge trap layer (Si3N4) in the gate dielectrics as shown in 
the cross-sectional transmission electron microscopy (TEM) image. They are fabri-
cated with the same fabrications and connected through metallization. (C) Opera-
tion scheme of the neuron and synapse. The input and output of the neuron are 
current and voltage, respectively, while those of the synapse are voltage and cur-
rent. (D) Fabricated 8-inch wafer in which single-transistor neurons, synapses, and 
additional CMOS circuits were cointegrated. It was fabricated with 100% standard 
Si CMOS fabrications. Photo Credit: J.-K. Han, Korea Advanced Institute of Science 
and Technology (KAIST).
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gate voltage (VG) of 12 V and a pulse time of 100 s, the ID does not 
flow at a low VD. However, a large amount of ID abruptly flows be-
yond a critical VD; this is called latch-up voltage (Vlatch). This is 
known as a phenomenon of single-transistor latch (STL) and serves 
as a threshold switch (35, 36).

Figure 2C shows the Vout versus time when a constant Iin was 
applied to the drain electrode of the single-transistor neuron, before 
and after the electron trapping. VG of 12 V was applied for electron 
trapping (excitatory), and VG of −12 V was applied for electron de-
trapping (inhibitory). After trapping and detrapping, the gate was 
sustained in a floating state for the neuron operation. The Vout was 
measured at the same drain electrode. Before the electron trapping, the 
applied Iin directly flowed through the channel toward the source, 
and charge accumulation (integration) was not allowed. As a result, 
the inhibitory function was enabled, unlike the two-terminal–based 
memristor–based neuron. After the electron trapping, the applied 
Iin did not flow out toward the source, and charges accumulated in 
a parasitic capacitor (Cpar). According to this integration process, 
VD equivalent to Vout was increased before the VT,firing. Simultane-
ously, iterative impact ionization was induced by the increased VD, 
and holes accumulated in the body. When the Vout reaches Vlatch, 
which is the same as the VT,firing, the accumulated charges in Cpar are 
suddenly discharged by STL. This is a firing process. Therefore, 
spiking of the neuron was mimicked. Figure S2 shows the energy 
band diagram during the LIF operation, which was extracted by 
a technology computer-aided design (TCAD) device simulation. 
Note that at the moment of the firing, the energy barrier between 

the n+ source and the p-type body is lowered enough to allow the 
integrated charges to escape toward the source. The measured spiking 
frequency (f) was increased as the Iin was increased.

In addition to the control of the excitation and inhibition, the 
VT,firing was tunable by controlling the trapped charge density in the 
nitride. This tunable property of the VT,firing is important to imple-
ment a reliable neuromorphic system (23, 24). If the conductivity of 
the synapse is unsuitably low or high owing to process-induced 
variability and endurance problems, then the targeted number of 
firings cannot be achieved. To suppress this instability, a tunable 
VT,firing is required. As shown in fig. S3A, the Vlatch was increased by 
the applied program pulse. This is because the number of carriers 
supplied from the source to the body was reduced owing to the 
lowered body potential (i.e., the increased built-in potential at the 
n+ source and the p-type body) by the trapped electrons. As a result, 
VT,firing of the spiking was increased, as shown in fig. S3 (B and C). 
In summary, the demonstrated multistate single-transistor neuron 
harnesses both controllability of the excitatory/inhibitory function 
and tunability of the VT,firing.

A leaky characteristic by diffusion of ions through a membrane 
is important in a biological neuron. This is because if there is no 
leaky characteristic, then the previous signal below threshold will 
retain the voltage until another upcoming input induces firing even 
after a long time. We performed current pulse measurements to 
confirm the LIF characteristic of the fabricated single-transistor 
neuron. A square pulse of 1-Hz frequency with a peak of 500 pA 
and a duty rate of 2% was applied to the drain electrode, and the 

A B C

D E F

Fig. 2. Unit device characteristics of single-transistor neuron and synapse. (A) Operation principle of the single-transistor neuron. The excitation/inhibition of the 
neuron is determined by electron trapping in the nitride. (B) Output characteristic (ID-VD) of the fabricated single-transistor neuron. The single-transistor latch (STL) 
phenomenon that allows threshold switching near Vlatch was observed only after electron trapping (excitatory). (C) Spiking characteristics of the fabricated single-transistor 
neuron. The neuronal spiking by LIF operation was excited after electron trapping, while it was inhibited before electron trapping. (D) Operation principle of the single-
transistor synapse. The weight of the synapse can be adjusted by controlling the trapped charge density in the nitride. (E) Transfer characteristic (ID-VG) of the fabricated 
single-transistor synapse after potentiation and depression. Threshold voltage (VT) was shifted leftward after potentiation and rightward after depression. (F) Potentiation-
depression (P-D) characteristic of the fabricated single-transistor synapse. Thirty-two levels of the conductance state were secured (5 bits).
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Vout was measured at the same drain electrode. As shown in fig. 
S4A, it was confirmed that the Vout was decreased when no input 
current was applied. This represents the leaky property. On the ba-
sis of the measured data, the LIF behavior of the single-transistor 
neuron was modeled with a simulation program with integrated 
circuit emphasis (SPICE) simulation using a threshold switch and a 
parasitic capacitor, as shown in fig. S4B. Note that nodes for voltage 
sensing and nodes for switching are equal in a voltage-controlled 
threshold switch. Cpar, VT,firing, and resistance at HRS (Roff) were set 
as 8 pF, 3 V, and 5 terohms, respectively. As a consequence, there 
was good agreement between the simulated and the measured spiking 
characteristic (fig. S4A).

The f of the LIF neuron can be modeled as follows

	​ f  = ​   1 ─────────────  
​∫0​ 

​V​ T,firing​​
 ​​​(​​ ​  ​C​ par​​ _ 

​I​ in​​ − ​​V​ out​​ _ ​R​ off​​
 ​
​​)​​d ​V​ out​​

 ​​	

where Roff is an off-state current at HRS during the integration. As the 
VT,firing decreases, the f increases because the firing occurs at the lower 
voltage. It should be noted that the VT,firing, which corresponds to the 
Vlatch in Fig. 2B, is determined by various parameters such as LG, 
body doping concentration (Nbody), and energy bandgap (36, 37).

As the LG increases, the Vlatch and VT,firing are increased because 
it requires higher drain voltage to enable the latch-up owing to a 
reduced lateral electric field (Elateral). Note that the Elateral can be ap-
proximated to (VD − VS)/LG. Figure S5A shows the VT,firing as a 
function of the LG. In addition to the measurements, we performed 
device simulations to confirm the similar tendency between the 
VT,firing and the LG shorter than the fabricated LG with the aid of a 
Synopsys Sentaurus TCAD Transient simulation. As expected, as the 
LG was decreased, VT,firing was decreased by the reduction in Vlatch. 
When the LG is shortened to 250 nm, the VT,firing can be decreased 
to 1.1 V. Figure S5 (B and C) shows the f and the energy per spike 
(E/spike) as a function of the LG, respectively. The E/spike for 1 s 
was calculated by multiplying Iin and the area under one spike in 
Fig. 2C, which shows measured output voltage (Vout) versus time. 

Thus, it is extracted as ​​I​ in​​ ⋅ ​∫0​ 
​1 _ 
f
 ​
 ​​ ​V​ out​​ dt​. As the LG was decreased, the f 

was increased and the E/spike was decreased by the reduced VT,firing. 
When the LG is reduced to 250 nm, the f can be increased to 7.6 kHz 
and the E/spike can be reduced to 1.3 pJ/spike at the Iin of 10 nA. On 
the other hand, when the LG is smaller than 250 nm, the STL does 
not occur owing to the leakage caused by punchthrough current 
directly flowing via n+ drain to n+ source. Thus, neuron operation 
may not be enabled. Further downscaling of LG will be possible with 
the aid of junction engineering such as pocket (or halo) implanta-
tion via suppression of punchthrough leakage that disables the STL.

As the Iin increases, charging speed becomes faster, and the f 
tends to be increased. Besides the VT,firing and Iin, the Cpar plays an 
important role in controlling the f. From the above equation, the f is 
increased as the Cpar is reduced because it takes shorter time to 
charge the smaller parasitic capacitor. To confirm the effect of the 
Cpar, we measured the f and extracted the E/spike by connecting the 
external capacitor parallel to the single-transistor neuron. LG was 
fixed as 880 nm. Figure S6 (A and B) shows that the f was increased 
and E/spike was decreased as the Cpar was decreased. To confirm the 
neuron characteristics with a smaller Cpar than the measured Cpar, 
we performed device simulations with the aid of Synopsys Sentaurus 

TCAD. Notably, it is difficult to characterize the capacitance of a 
sub-picofarad level owing to pad capacitance of the device. Note 
that a pad size is larger than 100 m by 100 m for direct probing 
compared to a single-transistor neuron size. According to the sim-
ulation data, when the Cpar was 0.5 pF, the f could be increased to 
11.7 kHz and the E/spike could be reduced to 0.7 pJ/spike at an 
Iin of 10 nA. Therefore, it is better to reduce the Cpar of the single-
transistor neuron to enhance the computational speed and energy 
efficiency. This means that miniaturization of the single-transistor 
neuron is favorable to enhance neuron performance, i.e., they are 
scalable to each other.

Power consumption was compared between the single-transistor 
neuron and the memristor-based neuron. The peak power con-
sumption was extracted from the multiplication of peak current and 
peak Vout (fig. S7). It was found that the single-transistor neuron 
consumed a peak power of 1.5 W, which was 7- to 261-fold smaller 
than memristor-based neurons (18, 20). This low peak power con-
sumption compared to the memristor-based neurons is attributed 
to a small cross-sectional channel area for current flowing due to 
the high scalability of the nano-CMOS fabrication. Its fabricated area 
was extracted from the product of the channel thickness (50 nm, 
i.e., channel height) and the channel width (280 nm). In addition, 
power consumption was compared between the single-transistor 
neuron and a conventional circuit-based neuron. Average power 
consumption of the circuit-based neuron is in a range of 0.3 to 
78.16 W (9–11). It is well known that average power consumption 
is much smaller than peak power consumption. Note that the peak 
power consumption of the single-transistor neuron is comparable 
to the averaged power consumption of the circuit-based neuron, 
because power is not consumed during the integration when the 
spike current does not flow. For example, the average power in one 
spike was extracted as 15.4 nW, when the Iin was 10 nA. Therefore, 
the single-transistor neuron can consume low power for neuromor-
phic computing.

On the other hand, it is noteworthy that the single-transistor 
neuron has a bidirectional characteristic, in which the spiking oper-
ation is possible in both the drain I/O and source I/O (fig. S8). 
When the current is forced to the drain electrode (drain I/O), the 
positive charges are integrated in the drain-side parasitic capacitor. 
Accordingly, the level of the Vout is low at the resting state and high 
at the integration state, as shown in fig. S8A. On the contrary, when 
the current is pulled out from the source (source I/O), negative 
charges are integrated at the source-side parasitic capacitor. In other 
words, a level of the Vout is high at the resting state and low at the 
integration state, as shown in fig. S8B. This bidirectional charac-
teristic can provide more degrees of freedom in designing a neuro-
morphic system. Thus, we used both methods to construct a 
neuromorphic system.

Because the synapse device has the same SONOS structure as the 
neuron, the weight of the synapse can be adjusted by controlling the 
trapped charge density in the nitride. For example, if the electrons 
are trapped by applying a positive bias to the gate, then the thresh-
old voltage (VT) is shifted rightward and the channel conductance is 
decreased at the same read voltage, as depicted in Fig. 2D. This is a 
kind of depression. Otherwise, VT is shifted leftward and the chan-
nel conductance is increased at the same read voltage. This is a kind 
of potentiation. Figure 2E shows transfer characteristics of the fab-
ricated n-channel single-transistor synapse, which is represented by 
the drain current versus gate voltage (ID-VG). Its LG and WCH are 
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1880 and 180 nm, respectively. VT was adjusted by the applied gate 
voltage that controls the trapped charge density. The potentiation-
depression (P-D) curve in Fig. 2F shows the conductance change 
(weight update) according to the number of applied pulses with an 
identical amplitude and duty cycle. Both VG and VD for the reading 
operation were set as 1 V. The VG for potentiation and depression 
was set as −11 V with a pulse width of 100 ms and 11 V with a pulse 
width of 10 s, respectively. As a result, 32 levels (5 bits) of conduc-
tance states were secured. It is noteworthy that the VG for potentia-
tion and depression can be reduced by engineering a thickness of a 
tunneling oxide and a dielectric constant of a blocking oxide.

Cointegration of neuron and synapse
If a neuron and a synapse are homotypic, then they can be integrated 
on the same plane at the same time with the same fabrication. 
Thereafter, they can be connected by metal interconnections. This 
cointegration is demonstrated for two layers in a neural network. 
One is a prelayer composed of a presynaptic neuron and a transmitted 
synapse. The other is a postlayer comprising a transmitting synapse 
and a postsynaptic neuron. Figure 3 (A to C) shows the cointegrated 
presynaptic neuron and transmitted synapse as the prelayer. Refer-
ring to the circuit schematic of Fig.  3A, a constant input current 
(Iin,neuron) is applied to the drain electrode of the neuron, and the 
drain is connected to a gate of the synapse to apply the output volt-
age from the presynaptic neuron (Vout,preneuron). Note that this con-
figuration uses the abovementioned drain I/O scheme. Therefore, 
when spiking of the neuron occurs, the corresponding drain cur-
rent (ID) flows through the channel of the synapse. Its magnitude is 
modulated by the synaptic weight. Figure 3B shows the fabricated 
presynaptic neuron and transmitted synapse interconnected through 

metallization. As shown in Fig. 3C, the spike-shaped output current 
of the transmitted synapse (Iout,syn) was increased according to the 
Vout,preneuron of the excited presynaptic neuron in order of weight: 
w1 < w2 < w3. It should be noted that the f of the Iout,syn was deter-
mined by the Iin,neuron. Note that stable inference operation is al-
lowed unless the tunneling oxide thickness of the SONOS-based 
synapse is reduced (fig. S9). This is because the synaptic weight 
would not be changed by Vout,preneuron, which is small compared to 
the voltage of potentiation/depression (P/D). Therefore, it is suit-
able for off-chip learning application, where learning is not neces-
sary in the hardware. However, by engineering the VT,firing of the 
neuron and the thickness of the tunneling oxide (Tox) in the syn-
apse, the weight of the transmitted synapse can be changed by the 
output voltage of the presynaptic neuron without extra pulse mod-
ulation circuits. This means that it is also applicable to on-chip 
learning applications.

To confirm the applicability to on-chip learning, we increased the 
VT,firing of the neuron to 5.5 V by increasing the Nbody to 1×1018 cm−3 
and increasing the LG to 1.9 m. At the same time, when the Tox of 
the synapse is reduced, the weight of the synapse can be further 
changed by the lower voltage. As shown in fig. S9A, the hysteresis 
was increased under the same voltage condition when Tox of the 
synapse was reduced from 3 to 2 nm. This implies that a larger 
threshold voltage (VT) shift and conductance change can be made 
under the same P/D voltage. Figure S9B shows that when the Tox of 
the synapse was 2 nm, the VT of the synapse was gradually shifted 
by the spike of the neuron. On the other hand, when the Tox is 3 nm, 
the VT shift was not significant, as shown in fig. S9C. The depres-
sion where the conductance gradually decreases occurred by neuron 
spiking for the Tox of 2 nm, as shown in fig. S9D. However, the 

A

D E F

B C

Fig. 3. Cointegrated single-transistor neuron and synapse. (A) Circuit diagram of presynaptic neuron and transmitted synapse connection in the prelayer of neural 
network. The output voltage of the presynaptic neuron (Vout,preneuron) is transmitted to the gate of the synapse. (B) Fabricated presynaptic neuron and transmitted synapse 
interconnected through metallization. (C) Measured synapse output current (Iout,syn) as a function of synaptic weight. The level of Iout,syn became higher when the synaptic 
weight was larger. (D) Circuit diagram of transmitting synapse and postsynaptic neuron in the postlayer of neural network. The current of the transmitting synapse is 
applied to the source of the postsynaptic neuron. (E) Fabricated transmitting synapse and postsynaptic neuron interconnected through metallization. (F) Measured 
neuron output voltage (Vout,postneuron) as a function of synaptic weight. The spiking frequency (f) of Vout,postneuron became higher when the synaptic weight was larger.
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conductance was not changed significantly for the Tox of 3  nm. 
From the viewpoint of retention characteristics, a Tox of 3 nm was 
better than a Tox of 2 nm, as shown in fig. S9E. Therefore, a Tox of 
3 nm is suitable for off-chip learning applications that require good 
retention characteristics without weight change, and a Tox of 2 nm 
is suitable for on-chip learning applications that require a weight 
change with lower P/D voltage. It should be noted that the forma-
tion of various gate oxide thicknesses has already been used for a 
commercial logic chip. The abovementioned features are readily 
realized by CMOS fabrications. By the way, only depression was 
shown in fig. S9D because Vout,preneuron is positive when the firing oc-
curs. However, the potentiation can also be achieved when the 
source I/O is used. When 0 V is applied to the drain of the presyn-
aptic neuron and input current is applied to the source, Vout,preneuron 
is 0 V at the resting state, and it is negative when the firing occurs, 
which induces potentiation of the transmitted synapse. Therefore, 
bidirectional characteristic of the single-transistor neuron can allow 
both depression and potentiation.

Figure 3 (A to C) shows the analysis of one presynaptic neuron 
and one transmitted synapse connection, when the Iin,neuron to the 
excited postsynaptic neuron was fixed. To show the effect of Iin,neuron 
with excitatory/inhibitory function in the single-transistor neuron, 
we constructed an array structure for cointegration with high den-
sity. Figure S10 shows the array structure in which both presynaptic 
excited and inhibited neurons with different Iin,neuron values and 
transmitted synapses with different conductance (weight) were 
connected. As shown in fig. S10A, each neuron was connected to 
four synapses with different weight, and different Iin,neuron were ap-
plied to each neuron. Synapses have four different weights (w1 < 
w2 < w3 < w4). As an example, the first neuron to the third neuron 
were excited in which electrons were trapped in the charge trap lay-
er, and the fourth neuron was inhibited in which electrons were not 
trapped in the charge trap layer. For each excited neuron, a different 
Iin,neuron was applied. In more detail, 500 pA, 1 nA, and 5 nA were 
applied for the first, second, and third neurons, respectively. Last, 
the Iout,syn of the transmitted synapse was measured in each synapse. 
Figure S10B shows a color map to represent the f of the Iout,syn of 
each synapse in the array. The f of the Iout,syn was expressed with 
brightness. A dark-colored pixel indicates a synapse with a high f, 
and a white-colored pixel indicates a synapse with a low f. As the 
Iin,neuron applied to the presynaptic neuron was increased, the spik-
ing frequency of the Iout,syn was increased. Figure S10C shows a color 
map to represent the peak current of the Iin,neuron of each synapse in 
the array. The peak current of the Iin,neuron was expressed with 
brightness. A dark-colored pixel indicates a synapse with high peak 
current, and a white-colored pixel indicates a synapse with low peak 
current. As the synaptic weight was increased from w1 to w4, the 
peak current of Iin,neuron was increased. Synapses in the first column 
did not show firing events regardless of the Iin,neuron of the pre-
synaptic neuron, because the VT of the synapse was higher than the 
output voltage of the presynaptic neuron. Synapses in the last row 
did not show firing events regardless of the synaptic weight, either. 
It is because the presynaptic neuron was inhibited.

On the other hand, it is curious how many transmitted synapses 
can be cointegrated with a single presynaptic neuron. Theoretically, 
it is possible to drive a number of the transmitted synapses that are 
connected to the single presynaptic neuron. As an example, we 
simulated the architecture composed of one presynaptic neuron 
and 100 synapses with the aid of the SPICE circuit simulator. The 

current flowing from the neuron to the synapses is negligibly small 
because the gate of the synapse has very high input resistance due to a 
low level of gate leakage current. It should be noted that the gate 
leakage current of the fabricated synapses was less than 1 pA. Because 
there is no direct current flowing from the neuron to the synapses, 
the number of transmitted synapses that can be driven by the 
Vout,preneuron of the presynaptic neuron is not limited. As a result, 
Vout,preneuron was invariant although 10 synapses were connected 
to the single presynaptic neuron, as shown in fig. S10D. Further-
more, the Vout,preneuron was not varied even when the weight of each 
synapse was changed. This is an important advantage of cointegra-
tion with a MOSFET-based three-terminal synapse such as SONOS 
compared to cointegration with a resistor-based two-terminal syn-
apse such as a memristor. Because of the loading effect, the number 
of synapses inevitably affects the neuronal output when two-terminal 
synapses are connected (38, 39). For example, neuron oscillation 
was impossible when the number of two-terminal synapses with a 
conductance (G) of 1 nS was more than 10. This is because the cur-
rent is flown out to the synapses by increased conductance, as shown 
in fig. S10E. This problem was exacerbated for the larger G, as 
shown in fig. S10F, because larger current is flown out to the syn-
apses. Referring to fig. S10F, as the number of the transmitted syn-
apses was increased, the leakage current toward the synapses was 
increased and the f of the presynaptic neuron was decreased. Then, 
when the number of synapses exceeded a certain level, spiking did 
not occur. To solve this problem of two-terminal synapses, a 1T1R 
configuration composed of an extra transistor (1T) and a memris-
tor (1R) or a buffer circuit is required. However, these configura-
tions sacrifice layout efficiency, worsen fabrication complexity, and 
increase hardware cost.

Figure 3 (D to F) shows the cointegrated postlayer composed of 
the transmitting synapse and the postsynaptic neuron. As shown in 
the circuit schematic of Fig. 3D, a constant gate voltage (Vin,syn) is 
applied to the transmitting synapse, and the drain of the synapse is 
connected to the source of the postsynaptic neuron. Iout,syn is thus 
applied to the postsynaptic neuron. The output voltage is measured 
at the source of the postsynaptic neuron. In other words, it adopts 
the source I/O scheme. If the Iout,syn is applied from the source of the 
transmitting synapse to the drain of the postsynaptic neuron (drain 
I/O scheme), then the source voltage of the transmitting synapse is 
varied by the deviation of the output voltage of the postsynaptic 
neuron (Vout,postneuron). Otherwise, if the drain of the transmitting 
synapse is connected to the source of the postsynaptic neuron 
(source I/O scheme), then such issue is mitigated. This feature is 
attributed to saturated drain current that is very insensitive to the 
change of the VD in a saturation region. Figure 3E shows the fabri-
cated transmitting synapse and postsynaptic neuron intercon-
nected through metallization. As shown in Fig.  3F, the f of the 
Vout,postneuron is increased according to the increment of Iout,syn from 
the transmitting synapse in order of weight: w1 < w2 < w3.

Another way to connect the transmitting synapse and the post-
synaptic neuron is suggested in fig. S11A, where a current mirror is 
used. The current mirror is composed of two NMOSFETs and two 
PMOSFETs. As a channel length of the transmitting synapse is 
aggressively scaled down, Iout,syn cannot be sufficiently saturated by 
the short-channel effects, even in the source I/O scheme. In this 
case, a current mirror between the transmitting synapse and the 
postsynaptic neuron is necessary that can isolate the sharing node. 
This configuration is also attractive to modulate the Iout,syn over a wide 
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range. Reduction in Iout,syn is important to realize ultralarge-scale 
integration of a neuromorphic system where the postsynaptic neu-
ron is connected to numerous synapses. A low level of Iin smaller 
than 10 A, which is below the current range where the latch-up 
occurred in Fig. 2B, is preferred for nominal operation of the single-
transistor neuron. When the Iin is higher than 10 A, the current 
flows out to the source without charge integration. Therefore, the 
postsynaptic neuron does not operate when a number of synapses 
are connected. The aforementioned concerns can be resolved by 
cointegrating a current mirror between the transmitting synapse and 
the postsynaptic neuron. Figure S11B shows the cointegrated trans-
mitting synapse, the current mirror, and the postsynaptic neuron 
interconnected through metallization. Figure S11C shows the mea-
sured transfer characteristics of the fabricated PMOSFET, and fig. 
S11D shows the output current of the output PMOSFET in the cur-
rent mirror. As a result, spiking of the postsynaptic neuron was 
achieved when it was excited, as shown in fig. S11E. Otherwise, 
when it was inhibited, no spiking was observed. In addition to the 
current mirror that can be used for analog circuitry, an inverter, 
which is a fundamental block to construct digital logic circuitry that 
controls the neural network for collecting, processing, and trans-
porting data, was also fabricated on the same plane with cointegra-
tion of the neuron and synapse at the same time, as shown in fig. S12. 
The current mirror and inverter are examples to show the feasibility 
of cointegration with analog circuits and digital circuits.

Gain modulation and coincidence detection
Using the cointegrated neurons and synapses, we carried out spatio-
temporal neural computations such as gain modulation and coinci-
dence detection. In biology, gain modulation is observed in many 
cortical areas and is thought to play an important role in maintain-
ing stability (40–43). Here, additive operation of gain modulation 
was realized by cointegration of two transmitting synapses and one 
postsynaptic neuron, as shown in the circuit diagram of Fig. 4A. Two 
types of presynaptic inputs are applied to the gate electrodes of two 
synapses. A driving input (VG,S1) enables the postsynaptic neuron 
to fire, and a modulatory input (VG,S2) tunes the effectiveness of the 
driving input, as illustrated in Fig. 4B. As shown in Fig. 4C, the f of 
the postsynaptic neuron was modulated by the VG,S2 for the fixed 
VG,S1. This is because the Iin applied to the postsynaptic neuron was 
increased as the VG,S2 was increased. Figure 4D shows a secondary 
data that the f was increased as the VG,S2 was increased at various 
VG,S1. Figure 4E shows another secondary data of the f as a function 
of the VG,S1 at various VG,S2. Referring to Fig. 4E, a shift along with 
a vertical direction is similar to the additive operation of output 
gain modulation (42). It should be noted that such additive opera-
tion of output gain modulation underlies sophisticated sensory pro-
cessing in biology.

Coincidence detection is another important neural computation 
that encodes information by detecting the occurrence of temporally 
close but spatially distributed input signals. It has been found that 
coincidence detection is significant for highly efficient information 
processing in auditory and visual systems (44–47). By the cointe-
gration of neuron and synapses, coincidence detection is also possi-
ble. When two inputs were applied at the same time, the f was 
increased because the Iin applied to the postsynaptic neuron was 
increased, as illustrated in Fig. 4B. Accordingly, it is possible to de-
termine whether two inputs are simultaneously applied. Figure 4F 
shows the corresponding data. When the two input signals applied 

at the same time, the f of the neuron was larger than the other cases 
of the two signals that were not synchronized. In addition, when 
two input signals overlapped for a certain period of time, the f of the 
neuron increased only in the overlap region.

Letter recognition with hardware circuit simulation
The neuromorphic system is commonly used to recognize images 
such as letters, numbers, objects, and faces. Pattern recognition of a 
letter was demonstrated with the aid of SPICE circuit simulations 
that were based on the measured neuron-synapse characteristics. 
As a simple model, the neuron is composed of a threshold switch 
and a parasitic capacitor connected in parallel. As a result, the sim-
ulated electrical properties are similar to the measured characteris-
tics from the fabricated neuron, as shown in fig. S3. The synapse 
was implemented with a three-terminal MOSFET, and the weight 
of the synapse was controlled by adjusting the VT. We implemented 
two types of neural networks: a classifier based on a single-layer 
perceptron (SLP) and an autoencoder based on a multilayer perceptron 
(MLP). First, a neural network for the classifier was constructed 
to distinguish the letters “n,” “v,” and “z,” which was composed of 
3 × 3 black-and-white pixels (Fig. 5A). It was composed of nine in-
put layers labeled with “i1” to “i9,” which correspond to each pixel 
and three output layers labeled with “On,” “Ov,” and “Oz” that are 
corresponding to each letter (Fig. 5B). The circuit diagram for the 
classifier is shown in fig. S13. Note that the output neurons were 
connected to each other to enable the lateral inhibition. According 
to the output voltage of the output neurons, each letter was identi-
fied. First spiking occurred in the first neuron for the input of n, the 
second neuron was for the input of v, and the third neuron was for 
the input of z. It should be noted that the multistate properties of 
the single-transistor neuron play an important role in recognizing a 
pattern. First, it was confirmed that the unwanted spiking was 
inhibited by the neuronal inhibition before reaching the VT,firing, which 
can enhance the energy efficiency of the neural network. Second, 
it was verified that the pattern was well recognized by appropriately 
tuning the VT,firing, even if the synaptic weight was changed abnor-
mally. This feature can enhance the reliability of the neural network.

If the weight of the synapse is unsuitably low or high owing to 
process-induced variability and endurance problems, then the neu-
ron cannot be fired with the targeted number. For instance, the 
VT,firing should be lowered if the current input to the neuron is too 
small because the weight of the synapse is abnormally low. In the 
reverse case, if the weight of the synapse is too high, then the VT,firing 
must be increased. This allows the number of neuron firings to be 
stably maintained regardless of the nonideal synapse operations. To 
show the benefit of the multifiring threshold property, we per-
formed SPICE circuit simulations. Consider a situation where an 
input pattern is n. The first output neuron should be fired, and other 
neurons should be inhibited before the firing. However, when the 
threshold voltage (VT) of the high-weight synapses connected to the 
first output neuron was abnormally increased to 0.35 V from 0 V, 
the current from the synapses to the first output neuron decreased. 
As a result, the first output neuron could not be fired and instead, 
another output neuron was fired, as shown in fig. S14A. Therefore, 
the pattern recognition failed. At this time, normal pattern recogni-
tion could be achieved by lowering the VT,firing of the first neuron to 
2.6 V, as shown in fig. S14B. Otherwise, when the VT of the low-
weight synapses connected to the second output neuron was abnor-
mally decreased to −0.1 V from 1 V, the current from the synapses 



Han et al., Sci. Adv. 2021; 7 : eabg8836     4 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 12

to the second output neuron increased. As a consequence, the 
second output neuron was fired in advance to the first output neu-
ron and the first output neuron was inhibited, as shown in fig. 
S14C. Therefore, the pattern recognition failed. At this time, nor-
mal pattern recognition could be achieved by increasing the VT,firing 
of the second neuron to 3.4 V, as shown in fig. S14D. In summary, 
reliable pattern recognition was performed by tuning the VT,firing of 
the single-transistor neuron when the weight of the synapses was 
abnormally changed. It should be noted that an additional circuit is 
needed for the actual implementation of VT,firing tunable single-
transistor neuron, which receives the Vout of the neuron for reading 
abnormal spiking frequency and transmits voltage pulse to the gate 
for tuning the VT,firing.

To improve the recognition rate of an image, an autoencoder is 
commonly used (48). The autoencoder can remove the effect of 
noisy input and reconstruct the image by encoding the image and 

decoding it again. As shown in Fig. 5C, we implemented the auto-
encoder by use of the MLP network with one middle layer. The in-
put layer and the output layer were composed of nine neurons, and 
each layer represented each pixel. After encoding three letters in the 
first perception, the information of each pixel was newly decoded in 
the second perception. A circuit diagram for the autoencoder is 
shown in fig. S15. It should be noted that the inhibitory function of 
the single-transistor neuron allowed the autoencoder operation. In 
more detail, the middle neurons were connected to each other to 
enable lateral inhibition, and hence, the noisy signal could be re-
moved. Receiving the signal from the middle neurons, some output 
neurons were fired, while others were not fired. The fired output 
neuron was decoded as a black pixel, while the unfired output neu-
ron was decoded as a white pixel, as shown in Fig. 5C. As a result, 
noisy input images became clearer via the image reconstruction by 
the autoencoder.

A B

C D E

F

Fig. 4. Gain modulation and coincidence detection by cointegrated single-transistor neuron and synapses. (A) Circuit diagram of connected two transmitting 
synapses and one postsynaptic neuron for gain modulation and coincidence detection. (B) Schematic diagram of gain modulation and coincidence detection. Neuronal 
output can be determined by the modulatory input as well as the driving input, and the coincidence of the two inputs can be detected from the neuronal output. 
(C) Spiking characteristics of the postsynaptic neuron depending on the modulatory input voltage (VG,S2) when the driving input voltage (VG,S1) was fixed. The spiking 
frequency (f) was increased as the VG,S2 was increased because the input current to the postsynaptic neuron was increased. (D) f as a function of the VG,S2 at various VG,S1. 
(E) f as a function of the VG,S1 at various VG,S2. It showed a shift in the vertical direction, which is a typical additive operation of output modulation. (F) Spiking characteris-
tics of the postsynaptic neuron depending on the delay between the two signals. f was larger when two signals became more synchronized. When two signals overlapped 
for a certain period of time, the f was increased only in the overlap region.
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Face recognition with software simulation
Using the hardware-based circuit simulation, we implemented off-
chip learning that is applicable to inference operation with fixed 
weights of the synapses. On the other hand, on-chip learning is also 
possible by using additional circuits. With the aid of a MATLAB 
software simulation, a network capable of face recognition through 
on-chip learning was explored. A fully connected two-layer spiking 
neural network consisting of 32 × 32 input neurons, 20 neurons in 
a middle layer, and 3 output neurons was designed, as shown in 
Fig. 6A. The measured neuron-synapse characteristics were reflected 
to the simulation based on the circuit diagram of Fig. 6B. From the 
Yale Face Database, nine training images composed of 32 × 32 pixels 
were selected (Fig. 6C) (49). After clustering from an unsupervised 
crossbar, the classification was evaluated by a supervised crossbar. 
The input neurons generated presynaptic spikes (Vpre) with the timing 
proportional to the pixel intensity of the training image, as depicted 
in fig. S16A. Synapses that received presynaptic spikes transmitted 
current to the postsynaptic neurons according to weight. The cur-
rent mirror was used as an interface circuit to reduce the current 

level from the synapses to the postsynaptic neurons. It should be 
emphasized that these circuits for waveform generation can be 
cointegrated on the same plane with neurons and synapses by stan-
dard CMOS fabrications. The postsynaptic neuron that received the 
highest current caused postsynaptic spikes to be fired for updating 
the synaptic weights of the synapses, which were connected with the 
fired postsynaptic neuron. A proper shape of the postsynaptic spike 
(Vpost) was generated by a waveform generator, which was com-
posed of a pulse voltage with sequential negative and positive polar-
ities. Referring to the pulse scheme illustrated in fig. S16A, when the 
presynaptic spike was fired earlier than the postsynaptic spike (tpre − 
tpost = t < 0), positive long-term depression voltage (VLTD) was ap-
plied to the gate of the synapse, which decreased the conductance of 
the synapse. On the other hand, the conductance of the synapse was 
increased by negative long-term potentiation voltage (VLTP) applied 
to the gate of the synapse, if the presynaptic spike was fired later 
than the postsynaptic spike (tpre − tpost = t > 0) (23). A simplified 
spike timing–dependent plasticity learning rule scheme was used 
for the synaptic weight update (25). The face recognition was 

A B

C

Fig. 5. Letter recognition with hardware-based circuit simulation by reflecting the measured characteristics of single-transistor neuron and synapse. (A) Input 
image of the 3 × 3 pixel letter pattern. (B) SLP for a classifier and classification results. Each input layer represents each pixel, and each output layer represents each letter. 
Classification determined by which neuron expressed spiking first was performed. All other neurons except the first spiked output neuron were laterally inhibited. (C) MLP 
network for an autoencoder and its encoding/decoding results. Each input layer represents each pixel of noisy input, and each output layer represents each pixel of 
reconstructed output by the autoencoder. The output neuron that was fired could be newly decoded as a black pixel, and the output neuron that was not fired could be 
newly decoded as a white pixel to reconstruct a clearer image from a blurred noisy pattern.
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evaluated with 24 test set images, containing 8 images of each per-
son (fig. S16B). After the training, the conductance of the synapses 
was determined, as shown in the visual map diagram of the synapse 
array (Fig. 6D and fig. S16C). As a result, a recognition rate of 95.8% 
was achieved for “after training with the lateral inhibition” and that 
of below 60% was observed for “after training without the lateral 
inhibition,” as shown in Fig. 6E. Unless the lateral inhibition was 
applied, a high-level recognition was not performed because the 
global weight updates were performed via the firing of all engaged 
neurons. In addition, although the conductance of the synapses 
were abnormally changed by process-induced variability or endur-
ance problems, the recognition failure was prevented by the VT,firing 
modulation. Figure S16D shows the extracted recognition rate by 
inference operation without the VT,firing modulation and with the 
VT,firing modulation, when the conductance of the synapses (G) was 
abnormally changed by process-induced variability or endurance 
problems. For example, it can be assumed that G is randomly and 
abnormally changed to 2Gmin. The recognition rate was decreased 
as the device failure rate was increased, unless the VT,firing modula-
tion is applied. Otherwise, the recognition failure would be prevented 
when the VT,firing was modulated. These results prove that the effi-
cient and reliable neural network can be implemented by the multi-
state single-transistor neuron.

To realize such large-scale neural network, variability should be 
minimized as much as possible. Therefore, cycle-to-cycle variation 
and device-to-device variation of the SONOS-based single-transistor 
neuron and synapse were evaluated, as shown in fig. S17. Blue sym-
bols represent a high-VT state that more electrons are trapped, and 
black symbols denote a low-VT state that less electrons are trapped. 
Note that the higher VT induces higher firing threshold voltage for 

neuron device and lower weight for synaptic device. In contrast, the 
lower VT induces lower firing threshold voltage for neuron device 
and higher weight for synaptic device. For switching in between two 
states, a programming pulse of 11.5 V with a 500-s pulse width was 
used to trap the electrons, and an erasing pulse of −11.5 V with a 
50-ms pulse width was used to detrap the electrons. Cumulative dis-
tribution of VT to show cycle-to-cycle variation was plotted after 
50 cycles in fig. S17A. Its SDs of the high VT and low VT were 0.0103 
and 0.0185, respectively. From these data, stable operation can be 
assured. Other cumulative distribution of VT to show device-to-
device variation was also plotted for 40 different samples in fig. 
S17B. Its SDs of the high VT and low VT were 0.0369 and 0.0428, 
respectively. From these data, device and process variability cannot 
be a concern due to well-established CMOS technology. In addi-
tion, the endurance performance of the SONOS-based single-
transistor neuron and synapse was measured. As shown in fig. S18, 
a VT shift by the repetitive trappings in the gate dielectrics was char-
acterized. Such VT shift should also be minimized as small as possi-
ble because the firing threshold voltage of the neuron and the 
weight of the synapse can be changed. Otherwise, it can provoke 
degradation of a learning rate and inference error of the neural net-
work. For further improvement of endurance characteristics, vari-
ous technologies such as high-pressure annealing, Si-rich nitride, 
and bandgap engineering can be used (50–52).

DISCUSSION
Completely CMOS-based neuromorphic hardware with high scal-
ability was fabricated by the cointegration of single transistor–based 
neurons and synapses that are homotypic. The charge-trapping 

A B C

D E

Fig. 6. Face recognition with software-based simulation by reflecting the measured characteristics of single-transistor neuron and synapse. (A) Spiking neural 
network for face recognition. The input layer is composed of 1024 neurons that represent each pixel, the middle layer is composed of 20 neurons, and the output layer is 
composed of three neurons that represent each person’s face. (B) Simplified circuit diagram to represent the connection of neuron-synapse. Neuronal output is converted 
through a waveform generator to make a proper pulse shape applied to the synapse for spike timing–dependent plasticity learning. (C) Nine training images of three people. 
(D) Visual map of the synapse array to represent the conductance of the synapses, “before training,” “after training with lateral inhibition,” and “after training without lateral 
inhibition.” (E) Comparison of recognition rate depending on the number of training epochs between “after training with lateral inhibition” and “after training without lateral 
inhibition.” Higher recognition rate is achieved with the inhibitory function of the neurons. Photo Credit: J.-K. Han, Korea Advanced Institute of Science and Technology (KAIST).
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layer intercalated in the neurons and synapses allows multistates. 
They were used to control the excitatory/inhibitory function and to 
modulate the firing threshold voltage for the neurons, which were 
not accomplished at memristor-based neurons (table S1). They 
were also used to determine the weight for the synapses. A footprint 
area of the single-transistor neuron could be reduced to 6 F2, and its 
power consumption can be smaller than 1.5 W (table S2). Because 
the neuron and the synapse have exactly the same structure, they 
were simultaneously integrated on the same plane at the same time 
with the same fabrications. This feature permits improvement of 
packing density, reduction of chip cost, and simplification of the 
fabrication procedures. In addition, it is possible to cointegrate with 
additional CMOS circuits for processing units, peripheral interfac-
es, memory, clocking circuits, and I/O because of the same in situ 
CMOS fabrications.

MATERIALS AND METHODS
Fabrication
Neurons and synapses with the same SONOS structure, which had 
a tunneling oxide (SiO2) of 3 nm, a charge trap nitride (Si3N4) of 
6 nm, and a blocking oxide (SiO2) of 8 nm, were fabricated. They 
were interconnected through metallization (Ti/TiN/Al) using a 
standard Si CMOS process. See fig. S1 for details of the fabrica-
tion process.

Electrical characterization
Electrical characteristics of the cointegrated neurons and synapses 
were measured using a B1500 semiconductor parameter analyzer 
(Agilent Technologies). I-V characteristics of the neuron and syn-
apse were measured by voltage source current measurement mode, 
and the spiking characteristic of the neuron was measured by cur-
rent source voltage measurement mode. A semiconductor pulse 
generator unit was used to control the excitation/inhibition and the 
firing threshold voltage of the neuron, as well as the weight of the 
synapse. The leaky characteristic of the neuron was measured using 
a Keithley 6221 current pulse source (Keithley). The source current 
was measured using a 428 current amplifier (Keithley) and a TDS 
744A oscilloscope (Tektronix).

Transmission electron microscopy and scanning electron 
microscopy analysis
Transmission electron microscopy (TEM) images were taken 
with a field-emission scanning transmission electron microscope 
(HD-2300A) by Hitachi High-Technologies Corporation. Scan-
ning electron microscopy (SEM) images were taken with a critical-
dimension scanning electron microscope (S-9260A) by Hitachi 
High-Technologies Corporation.

Device simulation
Device simulations for the analysis of the neuron characteristics 
were performed using a TCAD Sentaurus simulator (Synopsys). All 
the device parameters were set as the closest values obtained from 
the SEM and TEM images.

Hardware-based circuit simulation
Circuit simulations for the letter pattern recognition were per-
formed using LTspice software (Analog Devices). Neurons were 
modeled with a capacitor and a threshold switch, wherein the 

parasitic capacitance (Cpar) and the firing threshold voltage (VT,firing) 
were extracted from the measured spiking characteristics of the 
neuron. Synapses were modeled with a three-terminal MOSFET, in 
which the device parameters were set as the closest values obtained 
from the SEM and TEM images. The weight of the synapses was 
controlled by changing the threshold voltage (VT) of the MOSFET.

Software-based simulation
Software simulations for the face image recognition were performed 
using MATLAB. Spiking characteristics of the neurons and P-D 
characteristics of the synapses were reflected in the simulation.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/32/eabg8836/DC1
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