
Myeloid cell-associated resistance to PD-1/PD-L1 blockade in 
urothelial cancer revealed through bulk and single-cell RNA 
sequencing

Li Wang1,2,3, John P. Sfakianos4, Kristin G. Beaumont1,2, Guray Akturk5, Amir Horowitz5, 
Robert Sebra1,2,3,6, Adam M. Farkas5, Sacha Gnjatic5, Austin Hake1,2,*, Sudeh Izadmehr7, 
Peter Wiklund4, William K Oh7, Peter Szabo8, Megan Wind-Rotolo8, Kezi Unsal-Kacmaz8, 
Xin Yao9, Eric Schadt1,2,3, Padmanee Sharma10, Nina Bhardwaj5,7,**, Jun Zhu1,2,3,**, 
Matthew D. Galsky7,**

1Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount 
Sinai, New York, NY

2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New 
York, NY

3Sema4, a Mount Sinai venture, Stamford, CT

**Addresses for correspondence: Dr. Matthew D. Galsky, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New 
York, NY 10029, matthew.galsky@mssm.edu or Dr. Jun Zhu, Icahn Institute for Genomics and Multiscale Biology, Icahn School of 
Medicine at Mount Sinai, New York, NY 10029, jun.zhu@mssm.edu or Dr. Nina Bhardwaj, The Tisch Cancer Institute, Icahn School 
of Medicine at Mount Sinai, New York, NY 10029, Nina.bhardwaj@mssm.edu.
Author contributions:

LW JS KB GA AH RS AF SG AH SI PW WO PS MW KU XY ES PS NB JZ MG

Conception 
and design: X X X X X

Financial 
support: X X X

Administrative 
support: X

Provision of 
study 
materials:

X X X X X

Collection and 
assembly of 
data:

X X X X X X X X X X

Data analysis 
and 
interpretation

X X X X X X X X X X X X X X X X X

Manuscript 
writing: X X X X X X X

Final approval 
of manuscript X X X X X X X X X X X X X X X X X X X X X

Accountable 
for all aspects 
of the work:

X X X

*Current affiliation: Renaissance School of Medicine at Sony Brook University, Stony Brook, NY

HHS Public Access
Author manuscript
Clin Cancer Res. Author manuscript; available in PMC 2022 February 01.

Published in final edited form as:
Clin Cancer Res. 2021 August 01; 27(15): 4287–4300. doi:10.1158/1078-0432.CCR-20-4574.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4Department of Urology; Icahn School of Medicine at Mount Sinai, New York, NY

5Precision Immunology Institute; Icahn School of Medicine at Mount Sinai, New York, NY

6Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY

7Department of Medicine, Division of Hematology Oncology, Icahn School of Medicine at Mount 
Sinai, Tisch Cancer Institute, New York, NY

8Bristol-Myers Squibb, Princeton, NJ

9Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, 
National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 
Tianjin, China

10Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer 
Center, Houston, TX

Abstract

Purpose: To define dominant molecular and cellular features associated with PD-1/PD-L1 

blockade resistance in metastatic urothelial cancer.

Experimental Design: We pursued an unbiased approach using bulk RNA sequencing data 

from two clinical trials to discover (IMvigor 210) and validate (CheckMate 275) pre-treatment 

molecular features associated with resistance to PD-1/PD-L1 blockade in metastatic urothelial 

cancer. We then generated single-cell RNA sequencing data from muscle-invasive bladder cancer 

specimens to dissect the cellular composition underlying the identified gene signatures.

Results: We identified an adaptive immune response gene signature associated with response and 

a pro-tumorigenic inflammation gene signature associated with resistance to PD-1/PD-L1 

blockade. The adaptive immune response:pro-tumorigenic inflammation signature expression 

ratio, coined the 2IR score, best correlated with clinical outcomes and was externally validated. 

Mapping these bulk gene signatures onto single-cell RNA sequencing data uncovered their 

underlying cellular diversity with prominent expression of the pro-tumorigenic inflammation 

signature by myeloid phagocytic cells. However, heterogeneity in expression of adaptive immune 

and pro-tumorigenic inflammation genes was observed among single myeloid phagocytic cells 

quantified as the Msc2IR score. Single myeloid phagocytic cells with low Msc2IR scores 

demonstrated upregulation of proinflammatory cytokines/chemokines and downregulation of 

antigen presentation genes, were unrelated to M1 versus M2 polarization, and were enriched in 

pre-treatment blood from patients with PD-L1 blockade-resistant metastatic urothelial cancer.

Conclusions: The balance of adaptive immunity and pro-tumorigenic inflammation in 

individual tumor microenvironments is associated with PD-1/PD-L1 resistance in urothelial cancer 

with the latter linked to a proinflammatory cellular state of myeloid phagocytic cells detectable in 

tumor and blood.

Introduction

Standard treatment for metastatic urothelial cancer (UC) of the bladder has historically been 

limited to platinum-based chemotherapy. However, the treatment landscape has experienced 
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a major shift with the introduction of several PD-1/PD-L1 immune checkpoint inhibitors 

(CPI) into the armamentarium.1–5 These therapies are characterized by durable responses, 

often measured in years, but achieved in only a subset of ~15–25% of patients. This 

therapeutic profile has led to intensive investigation into dominant mechanisms of intrinsic 

resistance in pursuit of biomarkers and combination strategies to extend the benefits of CPI 

to additional patients.

Responses to CPI are thought to be predicated on a pre-existing anti-tumor T cell response 

restrained due to adaptive immune resistance.6 Measures of T cell infiltration, IFNγ-related 

gene signatures, and PD-L1 expression, colloquially referred to as reflecting “hot” or 

“inflamed” tumors, have all been correlated with response to CPI in patients with UC and 

other cancers.1,3 While classifying tumors as “inflamed” versus “non-inflamed” provides a 

convenient framework for conceptualizing the immunobiology underlying sensitivity and 

resistance to CPI, this nomenclature fails to distinguish anti-tumor versus pro-tumorigenic 
inflammation. Pro-tumorigenic inflammation, a “Hallmark of Cancer” pathogenesis7, 

involves a TME shaped by activated fibroblasts, endothelial cells and innate immune cells, 

particularly myeloid phagocytic cells, which promote cancer growth and progression at least 

in part by impairing antitumor immunity.7–9 Antitumor immunity and pro-tumorigenic 

inflammation coexist in delicate spatiotemporal balance in individual TMEs complicating 

identification of tumors in the clinic which are resistant to CPI due to the latter and 

obfuscating identification of cellular populations or signaling interactions for prioritization 

as therapeutic targets to overcome such resistance.

To identify dominant molecular and cellular interactions in the UC TME associated with 

CPI resistance, we pursued an unbiased approach (Figure 1). We first used pre-CPI treatment 

bulk RNA sequencing data from a large clinical trial cohort and identified two gene 

signatures independently associated with CPI outcomes beyond tumor mutational burden 

alone: 1) a signature enriched in adaptive immune response genes and associated with better 

CPI outcomes dubbed the adaptive immune response signature, and 2) a signature enriched 

in inflammation and innate immune genes and associated with worse CPI outcomes dubbed 

the pro-tumorigenic inflammation signature. Consistent with the notion that antitumor 

immunity and pro-tumorigenic inflammation coexist within individual TMEs, the adaptive 

immune response:pro-tumorigenic inflammation gene expression ratio, coined the 2IR score 
(adaptive Immune:pro-tumorigenic Inflammation Ratio), had the largest effect on clinical 

outcomes and was validated in an independent UC clinical trial cohort. We then generated 

single-cell RNA sequencing (scRNA-seq) data from UC bladder specimens to uncover the 

cellular composition underlying the gene signatures revealing diverse cellular populations 

contributed to both the adaptive immune response and pro-tumorigenic inflammation gene 

signatures. Though the pro-tumorigenic inflammation signature was expressed prominently 

by myeloid phagocytic cells as a whole, diverse expression of the adaptive immune response 

and pro-tumorigenic signature genes were observed across individual macrophages/

monocytes and neutrophils leading to application of the 2IR score to each individual cell 

(Myeloid Single Cell Immune:protumorigenic Inflammation Ratio or Msc2IR score). 

Myeloid phagocytic cells with low Msc2IR scores demonstrated upregulation of 

proinflammatory cytokines (e.g, IL1B) and chemokines (e.g., CCL20) and downregulation 
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of antigen presentation genes, could not be discerned based on M1 versus M2 classification, 

and were enriched in the pretreatment blood of patients with CPI-resistant metastatic UC. 

Thus, the balance of adaptive immunity and pro-tumorigenic inflammation is associated 

with CPI outcomes in UC and resistance associated with the latter may be driven by 

interactions among diverse cell types in the TME and linked to a proinflammatory cellular 

state of myeloid phagocytic cells detectable in both the TME and peripheral blood.

Materials and Methods

Identification and validation of gene signatures associated with CPI outcomes from bulk 
RNA sequencing data

Patient cohorts with tumor mutational burden data and/or bulk RNA 
sequencing data—Three datasets including bulk RNA sequencing (RNAseq) data from 

patients with urothelial cancer were analyzed in this study (Figure 1 and Supplemental Table 

S1): IMvigor 210, The Cancer Genome Atlas (TCGA) urothelial bladder cancer dataset, and 

the Checkmate 275 study.

IMvigor 210 was a single arm phase 2 study investigating PD-L1 inhibition with 

atezolizumab (1200 mg intravenously every 3 weeks) in patients with metastatic urothelial 

cancer (NCT01208652, NCT02951767). The primary endpoint of the trial was the objective 

response rate according to Response Evaluation Criteria In Solid Tumors v1.1. Patients with 

metastatic urothelial cancer progressing despite prior platinum-based chemotherapy, or 

chemotherapy-naïve patients who were not eligible for cisplatin-based chemotherapy, were 

eligible. The results of IMvigor 210 have previously been reported.1,11 Patients enrolled on 

IMvigor 210 were required to have archival tumor tissue obtained within two years of study 

entry submitted for analysis which including bulk RNAseq as well as targeted next-

generation sequencing-based genomic profiling for 395 cancer-related genes 

(FoundationOne, Foundation Medicine, Cambridge MA). For the current study, RNAseq 

data, TMB (“FMOne mutation burden per MB”), objective response rate, and survival data 

for 348 unique patients were extracted using the R package IMvigor210CoreBiologies 
(http://research-pub.gene.com/IMvigor210CoreBiologies/)

The Cancer Genome Atlas bladder cancer dataset includes patients with clinically localized 

muscle-invasive urothelial cancer of the bladder who underwent radical cystectomy. This 

cohort has previously been described in detail45 and RNAseq data 

(“Level_3_RSEM_genes_normalized”) for 408 unique patients was downloaded from 

Firehose (2016_01_28) at the Broad Institute (https://confluence.broadinstitute.org/display/

GDAC/Home/). The updated clinical data were downloaded from an integrated TCGA pan-

cancer clinical data resource.46

Checkmate 275 was a single arm phase 2 study investigating PD-1 inhibition with 

nivolumab (3 mg/kg intravenously every 3 weeks) in patients with metastatic urothelial 

cancer (NCT02387996). The primary endpoint of the trial was the objective response rate 

according to Response Evaluation Criteria In Solid Tumors v1.1. Patients with metastatic 

urothelial cancer progressing despite prior platinum-based chemotherapy were eligible. The 

results of Checkmate 275 have previously been reported.3 Patients enrolled on Checkmate 
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275 were required to have archival tumor tissue submitted for analysis which included bulk 

RNAseq and whole exome sequencing. Patients who were consented for genomic studies 

and had tumor material that passed quality control were included in the current analysis. 

RNAseq and tumor mutational burden data was provided by Bristol Myers-Squibb and the 

latter was calculated as the missense mutation count. TMB (n=139) and/or RNAseq (n=72) 

data, objective response rate, and survival data was available with both TMB and RNAseq 

data available for 54 patients.

Preprocessing of bulk RNAseq expression datasets—For the IMvigor 210 dataset, 

only genes with a read count >1 in more than 10% of the samples were considered. The raw 

read count data from the IMvigor and Checkmate 275 datasets were first transformed to 

RPKM and then scaled patient-wise such that the 75% quantile of each sample was equal to 

1000 (similar to the RSEM normalization47). To facilitate analysis across datasets, only 

16339 genes common among the three datasets were analyzed in this study. Batch effects 

were removed across the three datasets using R package ComBat.48

Step-wise identification of consistently co-expressed gene modules (CCGMs)
—With the goal of identifying consistently coexpressed gene modules associated with 

survival, we first identified genes nominally associated with better overall survival outcomes 

in the IMvigor 210 dataset. A bivariable Cox regression model was used to estimate the 

association between the expression of each gene, Genei, with the overall survival conditional 

on TMB: Surv(Event, Time) ~ Genei + log(TMB). We identified 1193 genes for which 

higher expression was associated with better survival outcomes (nominal P-value of two-

sided Wald’s test <0.05). We employed a lenient P-value cutoff to be as inclusive as possible 

at this initial gene selection step, and then identified consistently co-expressed gene modules 

(CCGMs) to enrich for true signals and filter out possible noise. A CCGM is defined as a list 

of genes that are co-regulated in multiple datasets. Using weighted correlation network 

analysis49 among these 1193 genes, we identified one co-expression module in the IMvigor 

210 dataset (735 genes) and one co-expression module in the TCGA dataset (600 genes). 

Significant overlap (575 genes) existed between the modules identified in the IMvigor 210 

and TCGA datasets ( p<1e-16 by two-sided Fisher’s exact test) and these 575 overlapping 

genes were considered a CCGM, referred to as the “adaptive immune response” signature.

Next, we identified genes associated with worse survival outcomes conditioned on both 

TMB and the adaptive immune response signature genes (Madaptive immune). Specifically, we 

assessed the association of each gene (Genei) with overall survival using a multivariable Cox 

regression model Surv(Event, Time) ~ Genei + Madaptive immune + log(TMB)), where 

Madaptive immune was calculated for each sample by averaging expression of the adaptive 

immune response signature genes. A total of 1498 genes were associated with worse 

survival outcomes (nominal P-value of two-sided Wald’s test <0.05). The weighted 

correlation network analysis was conducted for the 1498 genes in both the IMvigor 210 and 

TCGA datasets, followed by the overlapping analysis analogous to the methodology 

described for derivation of the adaptive immune response signature which resulted in two 

CCGMs, i.e. the “pro-tumorigenic inflammation” signature (437 genes) and stromal 

signature (287 genes). A third CCGM (50 genes) enriched with HALLMARK_MYC_targets 
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was not further pursued in this study given its small size. We further updated the “adaptive 

immune response” signature by excluding genes associated with worse survival in this three 

variate Cox regression model (Z>1.5), resulting in 483 genes in the module.

To investigate the pathways enriched in each CCGM, we compared the signature genes with 

the HALLMARK and canonical gene sets in the Molecular Signatures Database (MSigDB, 

software.broadinstitute.org/gsea/msigdb)50 using Fisher’s exact test (nominal p-value of 

two-sided test <1e-5).

Calculation of the 2IR score, identification of top-ranked genes, comparison with other 

biomarkers, and multiplex immunohistochemistry is detailed in the Supplemental Methods.

Univariable and multivariable models—Cox proportional hazard regression models 

(coxph() function) were performed using the R package survival to evaluate the association 

between the gene signatures and TMB with overall survival (OS). When signature 

expression and TMB were treated as continuous variables, they were standardized to N(0,1) 

before entering the Cox regression model to estimate hazard ratio and confidence interval, 

and the significance testing was performed by Wald’s test. When the 2IR score was 

discretized into tertiles, the R package survminor was used to plot the Kaplan Meier curve, 

and the significance testing for differences in OS was performed using the log-rank test. 

Logistic regression models were performed to evaluate the association between the gene 

modules and TMB with objective response. In the logistic regression, a complete response or 

partial response were treated as 1, and stable disease or progressive disease were treated as 

0. The signature expression and TMB were similarly standardized before entering the 

logistic regression model to estimate the coefficient, and the significance testing was 

performed by Wald’s test. All statistical analyses and figures were generated in R version 

3.6.3.

Single-cell RNA Sequencing of Urothelial Cancer Specimens

Sample collection and specimen processing—Primary urothelial bladder cancer 

tumor tissue was obtained after obtaining informed consent in the context of an institutional 

review board approved genitourinary cancer clinical database and specimen collection 

protocol (IRB #10–1180) at the Tisch Cancer Institute, Icahn School of Medicine at Mount 

Sinai. Patients undergoing transurethral resection of bladder tumor had a portion of their 

tumor placed immediately into RPMI medium in the operating room. The specimen was 

then transferred to the laboratory for further processing. Patients undergoing radical 

cystectomy and lymph node dissection had their bladder and lymph nodes sent directly to 

the pathology suite upon completion of the lymph node dissection. The bladder was bivalved 

and a portion of visible tumor was then placed in media as above. Adjacent normal tissue 

was identified in a subset of specimens based on visual inspection. The specimen was then 

transferred to the laboratory for further processing.

Tissue specimens were processed immediately upon receipt and dissociated into single cell 

suspensions using the GentleMACS Octodissociator with kit matched to the tissue type 

(Miltenyi Biotech) following the manufacturer’s instructions. Single-cell RNA sequencing 

was performed on these samples using the Chromium platform (10x Genomics, Pleasanton, 
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CA) with the 3’ gene expression (3’ GEX) V3 kit, using an input of ~10,000 cells. Briefly, 

Gel-Bead in Emulsions (GEMs) were generated on the sample chip in the Chromium 

controller. Barcoded cDNA was extracted from the GEMs by Post-GEM RT-cleanup and 

amplified for 12 cycles. Amplified cDNA was fragmented and subjected to end-repair, poly 

A-tailing, adapter ligation, and 10X-specific sample indexing following the manufacturer’s 

protocol. Libraries were quantified using Bioanalyzer (Agilent) and QuBit (Thermofisher) 

analysis. Libraries were sequenced in paired end mode on a NovaSeq instrument (Illumina, 

San Diego, CA) targeting a depth of 50,000–100,000 reads per cell. Sequencing data was 

aligned and quantified using the Cell Ranger Single-Cell Software Suite (version 3.0, 10x 

Genomics) against the provided GRCh38 human reference genome.

Preprocessing—Seurat26 (version 3.0) was used to process the single-cell RNA 

sequencing data. After filtering cells with a high percentage (>20%) of mitochondrial reads 

and cells with <200 or >6000 genes detected, as well as potential doublets uncovered during 

subsequent analysis steps, 19,708 cells from 10 samples and 22,175 genes with nonzero read 

counts in > 5 cells were included for further analysis.

Identification of major cell clusters—After the read count data was log-normalized, 

the most variable 2000 genes were selected. Then the effect of the unique molecular 

identifier (UMI) count and percentage of mitochondria per cell was regressed out, followed 

by dimensionality reduction using principle component analysis (PCA). Finally, the cells 

were clustered using the K-nearest neighbors graph-based methods as implemented in Seurat 
(with the top 20 PC and resolution = 0.5). Cells were grouped into 9 major cell clusters 

based on the canonical cell-type-specific markers: T/NK (“CD3E”), B/plasma 

(“MS4A1”,”MZB1”,”CD79A”), DC (“HLA-DQA1”, “HLA-DQB1”), Mast (“MS4A2”), 

Macrophage/Monocyte (“C1QA”,”LYZ”), Endothelial (“PLVAP”), Fibroblast-related 

(“DCN”, “ACTA2”), Epithelial (“KRT19”) and Neuronal cells (NNAT). The identification 

of minor cell clusters, Msc2IR score calculation, and Nichenet analysis are detailed in the 

Supplemental Methods.

Association between cell subsets and adaptive immune response, pro-
tumorigenic inflammation, and stromal signatures.—For each of the 9 major cell 

clusters, we identified cell type-overexpressed genes using FindAllMarker() function in 

Seurat package (with default parameters). The overlap between each of the adaptive immune 

response, pro-tumorigenic inflammation, and stromal signature genes and overexpressed 

genes among the major cell clusters was assessed using odds ratio and p-value (two-sided 

Fisher’s exact test).

Peripheral blood mononuclear cell single-cell RNA sequencing cohort—Single-

cell RNA sequencing data for 10 frozen PBMC samples derived from pre-treatment 

peripheral blood of 5 patients with metastatic UC who achieved an objective response to 

treatment with atezolizumab and 5 patients with metastatic urothelial cancer who did not 

achieve an objective response to treatment with atezolizumab in the setting of the IMvigor 

210 study were downloaded from GEO (GSE145281). The peripheral blood single-cell RNA 

sequencing cohort and analysis are detailed in the Supplemental Methods.
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Results

Gene signatures independently associated with CPI outcomes in patients with UC.

To identify molecular features associated with survival in CPI-treated patients with 

metastatic UC, we utilized bulk RNA sequencing and TMB data from the IMvigor 210 

study, a large single arm phase 2 trial testing the PD-L1 inhibitor, atezolizumab (Figure 1a).
1,10,11 This cohort has been previously described and additional details are provided in Table 

S1; RNA sequencing and TMB data were available for 348 and 272 patients, respectively.10 

We pursued step-wise identification of consistently co-expressed gene modules, which 

focused on identifying gene modules associated with overall survival (OS) and utilizing gene 

modularity to enrich for true signals (Figure 1b, Figure S1; see Methods). Given the 

correlation between TMB and response to CPI in UC10,12, we explored genes associated 

with OS conditioning on TMB (see Methods) and identified a signature consisting of 1193 

genes associated with longer OS. To refine this signature, we performed meta-analysis of co-

expression patterns13,14 using both the IMvigor 210 and The Cancer Genome Atlas (TCGA) 

UC datasets and identified a consistently co-expressed gene module comprised of 483 genes 

(see Methods and Supplementary Data S1). Gene set enrichment analysis revealed that this 

module was highly enriched in adaptive immune response-related genes (Figure 1c and 

Figure S2) and was therefore labeled the adaptive immune response signature.

In the second step, we further analyzed the IMvigor 210 dataset to identify genes associated 

with survival conditioning on both TMB and the adaptive immune response signature 

(Figure 1b). We identified 1498 genes associated with shorter OS. We again applied meta-

analysis of co-expression patterns15,16 in the IMvigor 210 and TCGA UC datasets and 

identified two consistently co-expressed gene modules for further analysis. The first module 

consisting of 437 genes, was enriched in inflammation and innate immune genes (Figure 1c, 

Figure S2, and Supplementary Data S1) and associated with shorter OS and was therefore 

labeled the pro-tumorigenic inflammation signature. The second module associated with 

shorter OS, consisting of 287 genes, was enriched in epithelial mesenchymal transition 

(EMT)- and extracellular matrix (ECM)-related genes (Figure 1c and Supplementary Data 

S1) and consistent with our prior work17 was named the stromal signature. Importantly, 

expression of the adaptive immune response and stromal signatures were both positively 

correlated with the adaptive immune response module (Figure S3) such that their disparate 

impact on OS was only revealed using our stepwise approach (Figure S4) and suggesting 

that the balance of these features in individual tumors may impact CPI outcomes.

We next sought to define the independent contribution of the three gene signatures to 

outcomes with CPI in the IMvigor 210 cohort. Models combining both the adaptive immune 

response and pro-tumorigenic inflammation signatures (see Methods), particularly the 

adaptive Immune response:pro-tumorigenic inflammation signature expression Ratio 

(hereafter referred to as the 2IR score), demonstrated the largest effect size on OS and 

similar findings were observed with objective response rate (Figure 2a–c and Table S2). 

Importantly, when both the pro-tumorigenic inflammation and stromal signatures were 

entered into a multivariable model along with the adaptive immune response signature and 

TMB, the stromal module was no longer independently associated with OS (Figure 2a and 
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Table S2). These findings indicated that (a) the balance of cellular and molecular events 

underlying the adaptive immune response versus pro-tumorigenic inflammation signatures 

within an individual UC TME may dictate outcomes with CPI and (b) the negative impact of 

the stromal signature on outcomes may be more indirect and mediated via the events 

underlying the pro-tumorigenic inflammation signature (Figure 2a).

Given the potential practical advantages of smaller sets of genes for validation and clinical 

biomarker development, we identified the top-ranked genes within the three signatures (see 

Methods, Table S3, and Figure S5). Signature scores derived from these smaller gene sets 

demonstrated similar associations with OS compared with scores derived from the full gene 

sets (Table S4).

The 2IR score was validated in an independent cohort of patients with metastatic UC 
treated with PD-1 blockade, conveyed information beyond previously identified features, 
and was associated with the cellular organization of the TME.

For validation, we utilized TMB and RNA sequencing data from the Checkmate 275 study, a 

single-arm phase 2 trial evaluating the PD-1 inhibitor, nivolumab, in patients with metastatic 

UC (Figure 1d).3 This cohort has been previously described, with further detail provided in 

Table S1; RNA sequencing and TMB data were available for 72 and 139 patients, 

respectively.3 The adaptive immune response, pro-tumorigenic inflammation, and stromal 

gene signatures demonstrated similar associations with OS, progression free survival (PFS) 

and response rate in the Checkmate 275 cohort (Table S5). As observed in the IMvigor 210 

cohort, the 2IR score in the Checkmate 275 cohort demonstrated the largest effect on CPI 

outcomes (Figure 2e,f). Furthermore, the 2IR score remained significantly associated with 

overall survival after several clinical prognostic factors were taken into consideration 

(supplementary results and Table S6).

Other cancer cell-intrinsic and TME-related features have been associated with CPI 

outcomes in UC and other tumors.10,18–20 The 2IR score demonstrated favorable 

performance characteristics relative to such features including PD-L1 protein expression, the 

tumor immune dysfunction and exclusion (TIDE) and CD8 effector T cell gene signatures, 

ARID1A mutation status, and CXCL13, TGFB1, or CXCL8 (IL8) gene expression (Figure 

2d,g; see Figure S7 for correlation between these features and the 2IR score) in both the 

IMvigor 210 and Checkmate 275 cohorts. Less dramatic findings were observed applying 

the 2IR score to the TCGA UC dataset, a cohort of patients with muscle-invasive UC of the 

bladder treated with curative-intent cystectomy (Figure S6), suggesting that the 2IR score 

may impart predictive rather than solely prognostic information. Taken together, the 2IR 

score, representing the balance of expression of the adaptive immune response and pro-

tumorigenic inflammation gene signatures within individual TMEs, is associated with 

objective response and OS in CPI-treated patients with metastatic UC in two clinical trial 

cohorts and conveys information beyond that achieved with previously identified features.

We next sought to characterize the relationship between the 2IR score and the cellular 

organization of the UC TME, particularly the spatial localization of T cells, based on prior 

work from our group and others linking T cell spatial localization with CPI resistance in UC.
10,17 We employed a tissue profiling approach known as multiplexed immunohistochemical 
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consecutive staining on a single slide (MICSSS)21,22 on a subset of 19 specimens from the 

Checkmate 275 cohort with matched RNA sequencing data. Notably, MICSSS revealed that 

specimens with higher 2IR scores exhibited occasional tertiary lymphoid-like structures 

(Figure 3a,b and Figure S8) consistent with prior findings linking such structures with 

improved CPI outcomes.23,24 To quantify the localization of T cells according to gene 

signature expression, we defined cancer cell and stromal zones based on pan-cytokeratin 

staining using a machine learning segmentation tool and examined CD8+ expression in 76 

regions of interest across the 19 specimens (see Methods and Figure 3e). Lower 2IR scores 

correlated with decreased CD8+ T cell enumeration in cancer cell nests, with T cells more 

prominently localized to the stromal regions, suggestive of a T cell “excluded” phenotype 

(Figure 3c–g).10,17 These findings suggested that CPI resistance associated with lower 2IR 

scores may be related to impairment of T cell trafficking and/or function prompting us to 

further probe the cellular populations and interactions underlying the gene signatures.

Diverse cellular populations underlie the adaptive immune response, pro-tumorigenic 
inflammation, and stromal gene signatures.

Our gene signatures were derived from bulk RNA sequencing data from archival UC 

specimens obtained pre-treatment with CPI, the vast majority of which represented invasive 

primary tumors (Table S1). Therefore, to map the cellular origins of the three gene 

signatures (Figure 4a), we performed droplet-based encapsulation single cell RNA 

sequencing (scRNA-seq) on an analogous set of eight freshly resected invasive UC bladder 

specimens as well as two specimens derived from adjacent grossly normal urothelium using 

the 10x Genomics Chromium system (see Methods and cohort characteristics in Table S7). 

The characteristics of the cohort are detailed in Table S7. After excluding cells not passing 

quality control (see Figure S9 for QC plots), 19,708 cells from the 10 samples were 

analyzed. A median of 1456 genes were detected per cell. We performed graph-based 

clustering as implemented in the Seurat package.26 A two-stage clustering approach was 

employed in which cells were first grouped into major populations and subsequently further 

partitioned into minor populations (see Methods).

Canonical marker genes revealed nine major cell populations identified by scRNA-seq 

including T- and NK cells, B-cells, myeloid-lineage cells, non-hematopoietic stromal cells, 

and epithelial cells (Figure 4b,c, Supplementary Data S2). To determine the origins of the 

adaptive immune response, pro-tumorigenic inflammation, and stromal signatures, the 

expression pattern of the signature genes was assessed among these major cell populations 

(Figure 4d). While adaptive immune response gene expression was prominent among T and 

B cells [(odds ratio (OR) = 7.65 and 11.19, respectively] and pro-tumorigenic inflammation 

gene expression was prominent among monocytes/macrophages (OR = 12.49), diversity in 

expression of signature genes among cell populations was observed (Figure 4d). For 

example, there were pro-tumorigenic inflammation signature genes overexpressed in T cells 

(OR = 5.01) and adaptive immune response signature genes overexpressed in monocytes/

macrophages (OR = 2.55). Notably, expression of stromal signature genes demonstrated 

much less cellular diversity and was detected predominantly from cancer associated 

fibroblast (CAF) (OR = 22.03) and endothelial (OR = 2.78) cell populations.
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To determine if the adaptive immune response and pro-tumorigenic inflammation signature 

genes expressed by a given major cell type were arising from discrete cellular 

subpopulations (e.g., adaptive immune response genes from one subset of macrophages and 

pro-tumorigenic inflammation genes from another subset of macrophages), we subjected 

each major cluster to a second round of partitioning revealing a total of 50 minor cell 

clusters (described in detail in Supplemental Results and Figures S10–16). Unexpectedly, we 

observed expression of both adaptive immune response and pro-tumorigenic signature genes 

within most minor cell populations (Figure 4e). Hence, the adaptive immune response and 

pro-tumorigenic inflammation gene signatures are contributed to by diverse cell types within 

the TME and may be linked to underlying cellular states rather than discrete cellular 

subpopulations.

Individual myeloid phagocytic cells demonstrate heterogeneous expression of adaptive 
immune response and pro-tumorigenic inflammation signature genes.

Myeloid phagocytic cells demonstrated the most prominent expression of the pro-

tumorigenic inflammation signature genes that were associated with CPI resistance in our 

clinical trial cohorts, yet also expressed some adaptive immune response signature genes 

(Figure 4e). Consequently, the expression level of pro-tumorigenic inflammation signature 

per cell (as assessed by the AddModuleScore() function in the Seurat package) was highest 

in myeloid phagocytic cells (Figure 4f). In addition, compared with other types of cells in 

the scRNAseq dataset, myeloid phagocytic cells had much higher variance in the expression 

of the pro-tumorigenic inflammation signature genes (aka. heterogeneity of molecular state, 

Figure 4f) yet comparable variance in adaptive immune signature genes (Figure S4f). Thus, 

we turned further attention to the myeloid phagocytic cells. We identified seven minor 

monocyte/macrophage populations and one neutrophil population by scRNA-seq analysis 

(Figure 5a and b and Figure S17a). While some of these minor cell populations 

demonstrated higher expression of M1 versus M2 signature genes (Figure 5c), or vice versa, 

heterogeneity of monocyte/macrophage minor populations was observed beyond classical 

M1 and M2 polarization as has been documented in prior analyses.27,28 The macrophage 

populations resembled previously described “TAM-like macrophages” with increased 

expression of APOE, C1QA, C1QB, SLC40A1 and TREM2.27,29 Two populations 

demonstrated higher expression of S100A family genes, but lower M1 and M2 signature 

gene expression, and were annotated as monocyte-Jun and monocyte-LYZ. These clusters 

resembled previously described “MDSC-like macrophages” with overexpression of THBS1, 

S100A8, FCN1 and VCAN.27 A population annotated as MM-CCL2 shared marker genes 

with both “TAM-like” and “MDSC-like” macrophages.

We next sought to better characterize the myeloid cells that might be linked to CPI 

resistance. Myeloid phagocytic cells are highly plastic, educated by cellular and signaling 

interactions in the TME, and play diverse roles in promoting and restraining anticancer 

immunity.30 Our single cell characterization of UC specimens revealed diversity in 

expression of the pro-tumorigenic inflammation and adaptive immune response signature 

genes across individual macrophages/monocytes and neutrophils (Figure 5d). Intrigued by 

the observation that the balance of pro-tumorigenic inflammation and adaptive immunity 

plays a key role in bulk UC specimens, and reasoning that such balance might be relevant at 
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the level of individual cells, we extended this concept to the monocyte/macrophage and 

neutrophil population and calculated a 2IR score for each individual cell termed the myeloid 

single cell 2IR score (Msc2IR score; see Figure 5d,e and Methods). While low Msc2IR score 

cells were observed across all minor myeloid phagocytic cell populations and were not 

correlated with M1 or M2 signatures (Figure S17b), these cells were highly enriched in the 

MM-CCL20 minor population (OR=11.0, p-value<1e-16 by fisher’s exact test) and under-

represented in the Macrophage-C1QA minor population (OR=0.14, p-value<1e-16 by 

fisher’s exact test; Figure 5f).

Differential gene expression and gene set enrichment analysis of myeloid phagocytic cells 

with low versus high Msc2IR scores revealed upregulation of proinflammatory pathways and 

top-ranking genes such as IL1B, CXCL8 (IL8), SPP1, and CCL20 in the former while the 

latter demonstrated upregulation of genes and pathways related to antigen presentation and 

the T cell recruiting chemokines CXCL9 and CXCL10 (Figure 5e,g and S18).

Pro-tumorigenic monocytes derived from patients with renal cancer have previously been 

shown to express proinflammatory cytokines and chemokines, including IL1B, CCL20, and 

CXCL8 (IL8), via an IL-1β-dependent mechanism.31 We sought to define putative 

therapeutic targets implicated in polarizing myeloid phagocytic cells with low Msc2IR scores 

and not restrict our analysis to genes overexpressed in low Msc2IR score cells but rather seek 

upstream ligands implicated in driving the expression of such genes. We therefore used 

NicheNet32, an approach that predicts ligands that modulate target gene expression by 

leveraging prior knowledge of signaling pathways and transcriptional regulatory networks 

(see Methods). Indeed, this analysis revealed that IL-1α and IL-1β were the top-ranked 

ligands inferred to regulate genes overexpressed in low Msc2IR score cells (Figure 5h). Both 

IL1A and IL1B were also predominantly expressed by myeloid phagocytic cells in our 

single cell cohort (Figure S19).

Thus, the Msc2IR score, reflecting the balance of adaptive immune response and pro-

tumorigenic inflammation gene expression in individual myeloid phagocytic cells, may 

reflect the plasticity of these cells in the TME (Figure 5e). Low Msc2IR score monocytes/

macrophages and neutrophils, with upregulation of proinflammatory genes and 

downregulation of antigen presentation genes and not delineated by classical M1 versus M2 

polarization or graph-based unsupervised cell clustering, may define a cellular state of 

myeloid phagocytic cells contributing to CPI resistance.

Monocytes with low Msc2IR scores are enriched in the pre-treatment peripheral blood of 
patients with CPI-resistant metastatic UC.

We next asked whether similar heterogeneity in Msc2IR scores was present in monocytes in 

the peripheral blood of patients with metastatic UC and whether these populations were 

associated with CPI resistance. Single-cell RNA sequencing data from peripheral blood 

mononuclear cells collected prior to the initiation of treatment with anti-PD-L1 CPI from 

five patients who achieved an objective response, and five patients who did not achieve an 

objective response, were utilized (see Methods and Figure S20). We calculated Msc2IR 

scores in individual monocytes identifying low, intermediate, and high Msc2IR score 

populations. Monocytes with low Msc2IR scores were significantly enriched in the 
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peripheral blood of patients with CPI-resistant versus CPI-responsive metastatic UC (Figure 

6a; p value =0.0048 by two-sided t-test). Alternatively, the five patients who responded to 

CPI could not be readily distinguished from the five patients with CPI resistant metastatic 

UC using monocyte minor populations identified by graph-based unsupervised cell 

clustering (Figure 6b), individual genes such as CXCL8 (IL8) (Figure 6c) or M1 and M2 

signatures (Figure S21). Similar to our findings in the UC TME, low Msc2IR score 

monocytes in the pre-treatment peripheral blood of patients with metastatic UC 

demonstrated upregulation of proinflammatory genes and downregulation of antigen 

presentation genes (Figure 6d) and IL-1α and IL-1β were the top ranked ligands inferred to 

regulate this gene expression program. Therefore, low Msc2IR score myeloid cells are 

present in both the TME and peripheral blood of patients with UC and are associated with 

CPI resistance.

Discussion

Pro-tumorigenic inflammation is recognized as a “Hallmark of Cancer” pathogenesis.7,33,34 

However, antitumor immunity and tumor-promoting inflammation coexist in delicate 

balance complicating dissecting the role of the latter in mediating CPI resistance in studies 

using human specimens. Using an unbiased approach, we identified an adaptive immune 

response gene signature associated with better CPI outcomes and pro-tumorigenic 

inflammation and stromal gene signatures associated with worse CPI outcomes in patients 

with metastatic UC. We further demonstrated that: 1) expression of the three gene signatures 

were positively correlated with one another, consistent with the coexistence and balance 

between antitumor immunity and tumor-promoting inflammation, 2) the stromal gene 

signature, linked to activated CAFs, did not convey independent information related to CPI 

outcomes beyond the pro-tumorigenic inflammation signature suggesting a more indirect 

role (e.g., recruitment and education of myeloid cells), 3) the 2IR score, reflecting the 

balance of antitumor immunity and tumor-promoting inflammation in individual TMEs, best 

correlated with CPI outcomes and was reflective of diverse cell types in the TME and 4) low 

Msc2IR score myeloid phagocytic cells were characterized by increased expression of 

proinflammatory genes and decreased expression of antigen presentation genes, could not be 

discerned based on classical M1 versus M2 polarization, and were enriched in the pre-

treatment blood of patients with metastatic UC resistant to CPI. Together, our findings define 

a myeloid phagocytic cell state associated with CPI resistance, highlight potential 

approaches to identify patients potentially best suited for therapies seeking to overcome pro-

tumorigenic inflammation-related CPI-resistance, and delineate putative therapeutic targets 

for further study.

Our overarching goal was to identify dominant clinically relevant features correlated with 

CPI resistance that might be linked to underlying immunobiology and associated therapeutic 

targets for prioritization for further preclinical and clinical testing as CPI-based combination 

strategies. Additionally, with further refinement and validation, the identified tissue and 

blood-based features could prove valuable in establishing proof-of-concept in early phase 

clinical development of combination regimens targeting myeloid-related CPI resistance, 

through associations with clinical outcomes and/or pharmacodynamic monitoring (e.g., 

serial changes in low Msc2IR score monocytes in peripheral blood).
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Other studies have linked aspects of the TME with response/resistance to CPI in UC and 

other malignancies. Features reflecting an activated tumor stroma, including EMT- and 

TGFβ-related gene signatures have been correlated with poor outcomes with CPI treatment.
10,17 In our current study, our stromal gene signature was no longer independently associated 

with CPI outcomes when the pro-tumorigenic inflammation signature was included in 

multivariable models suggesting the former may play a more indirect role. Multiple studies 

have correlated T cell gene signatures, or related measures of adaptive immune resistance, 

with sensitivity to CPI.1,3,35 However, analyses utilizing human tumor specimens 

demonstrating an independent association between gene signatures reflecting pro-

tumorigenic inflammation, or related myeloid cells, and CPI resistance have been much 

more limited. This disconnect is likely in part related to the positive correlation between 

gene signatures reflecting the presence of T cells, and other stromal and immune cells, 

despite a disparate impact on outcomes complicating dissecting the role of the latter and due 

to the plasticity of immune cells in the TME. Recently, elevated levels of serum/plasma 

IL-8, traced primarily to the myeloid cell compartment, was associated with decreased 

efficacy of CPI across several tumor types.19,36 These studies likely relate to similar biology 

exposed in our analysis, though we extend these findings by: (1) contextualizing the 

importance of pro-tumorigenic inflammation in contributing to CPI resistance in UC relative 

to other features defined through an unbiased approach, (2) providing a refined 

understanding of the myeloid cellular state associated with pro-tumorigenic inflammation 

characterized by expression of a number of inflammatory cytokines and chemokines, beyond 

IL-8 alone, suggesting that targeting upstream regulators may be required for optimal 

therapeutic modulation, and (3) defining tumor-tissue and blood-based measures using bulk 

or scRNA sequencing to identify tumors for which pro-tumorigenic inflammation may be 

contributing to CPI resistance in UC.

Myeloid phagocytic cells have been linked to suppression of antitumor immunity across a 

range of malignancies via a variety of mechanisms though clinically tractable approaches to 

target myeloid cell-related CPI resistance have remained elusive.37–39 IL-1 was among the 

top-ranked ligands inferred to regulate the low Msc2IR score myeloid phagocytic cell gene 

program in line with prior experimental data demonstrating that inflammatory cytokine and 

chemokine production from pro-tumorigenic monocytes in patients with renal carcinoma 

was IL-1β-dependent.31 IL-1β has been considered a “master regulator” of inflammation 

involved in the tumor-promoting and immune suppressive function of myeloid cells, anti-

IL-1β combined with anti-PD-1 therapy abrogated tumor growth in model systems, and anti-

IL-1β has been associated with lower cancer mortality in human studies.31,40–42 Building on 

this collective work, our findings raise the hypothesis that targeting IL-1 may reverse the 

inflammatory phenotype of low Msc2IR score myeloid phagocytic cells and may represent a 

rational combination strategy to overcome CPI resistance in a defined subset of patients with 

UC. Additional studies are required to refine the role of IL-1α versus IL-1β in this context 

though IL-1β is not present in cells from healthy individuals, and is a product of limited cell 

types such as myeloid-phagocytic cells, whereas IL-1α is more ubiquitously expressed. 

Clinical trials combining CPI and anti-IL-1 therapies have already been initiated 

(NCT03631199, NCT03742349). Further, the gene expression program of low Msc2IR score 
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myeloid phagocytic cells in the TME reveals several additional putative targets previously 

linked to inflammatory disorders worthy of further investigation.43,44

There are potential limitations to our study. While our study is among the first to 

characterize the UC TME at the single cell RNA level, the quantity of single cells from each 

specimen was variable with two specimens contributing a large proportion of cells; a larger 

cohort is required to establish a definitive cellular atlas of UC specimens. Still, the main goal 

of our scRNA-seq cohort in this study was to uncover the cellular origins our gene 

signatures derived from bulk RNA sequencing data. Features of urothelial cancer cells are 

likely associated with sensitivity and resistance to CPI. However, beyond TMB, on which 

our three gene signatures were conditioned, our current analysis was focused on the TME 

given the expression of the module genes when projected onto our scRNA-seq data. Cancer 

cell-intrinsic features that contribute to immune escape and ultimately shape the pro-

tumorigenic inflamed TME require further study. Though we linked low Msc2IR score 

monocytes in peripheral blood with resistance to CPI in patients with metastatic UC, we did 

not have paired scRNA-seq data from the matched primary tumors to directly explore the 

association between the TME and circulating immune cells. Together, these considerations 

underscore the need for additional studies of UC specimens profiled at single cell resolution 

and linked to CPI treatment outcomes.

Our study identified and validated key gene signatures associated with sensitivity or 

resistance to CPI in patients with metastatic UC related to adaptive immunity and pro-

tumorigenic inflammation, defined the 2IR score as reflecting such balance in individual UC 

TMEs, established the Msc2IR score as reflecting the cellular state of myeloid phagocytic 

cells linked to CPI resistance, and identified putative therapeutic targets to overcome 

resistance. Future work exploring the 2IR and Msc2IR scores in clinical trials seeking to 

overcome myeloid-related CPI resistance, further defining and credentialing “master 

regulators” of low Msc2IR score myeloid cell polarization as putative therapeutic targets, 

and dissecting the dominant mechanisms of immune suppression related to these cells may 

help facilitate extension of the benefits of CPI to additional patients with UC.
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Refer to Web version on PubMed Central for supplementary material.
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Statement of translational relevance

Using an unbiased approach, we identified and validated gene signatures related to 

adaptive immunity and pro-tumorigenic inflammation associated with sensitivity or 

resistance to PD-1/PD-L1 blockade in patients with metastatic urothelial cancer. We 

defined the balance of these signatures, coined the 2IR score, in individual urothelial 

cancer tumor microenvironments best correlated with clinical outcomes and defined 

cellular states of single myeloid cells linked to these microenvironments and PD-1/PD-L1 

blockade resistance. Integrating these bulk and single cell RNA signatures into clinical 

trials seeking to overcome myeloid cell-related PD-1/PD-L1 blockade resistance, and 

further credentialing therapeutic targets linked pro-tumorigenic inflammation, may help 

facilitate extension of the benefits of PD-1/PD-L1 blockade to additional patients with 

urothelial cancer.
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Figure 1. Cohorts and workflow for discovery of gene signatures associated with sensitivity and 
resistance to anti-PD-1/PD-L1 treatment in metastatic urothelial cancer.
A. IMvigor 210 was a single-arm phase 2 study investigating PD-L1 inhibition with 

atezolizumab in patients with metastatic urothelial cancer. The illustration depicts the 

numbers of patients with available pre-PD-L1 inhibition RNA-sequencing (RNA-seq) data, 

tumor mutational burden (TMB) data, or both, derived from archival tumor specimens 

available for the current analysis. B. Step-wise approach to the identification of consistently 

co-expressed gene modules, conditioned on TMB, associated with better overall survival or 

worse overall survival with PD-L1 blockade treatment in patients with metastatic urothelial 

cancer. Data from The Cancer Genome Atlas (TCGA) urothelial bladder cancer dataset was 

used to identify consistently co-expressed gene modules (see Methods). C. Hallmark 

pathways enriched in the adaptive immune response, pro-tumorigenic inflammation, and 
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stromal gene signatures using Fisher’s exact test (nominal two-sided p-value <1e-5). Color 

corresponds to the −log10 of the p-value. D. Checkmate 275 was a single-arm phase 2 study 

investigating PD-1 inhibition with nivolumab in patients with metastatic urothelial cancer. 

The illustration depicts the number of patients with available pre-PD-1 inhibition RNA-

sequencing data, TMB data, or both derived from archival tumor specimens used for 

validation of the association between the adaptive immune response, pro-tumorigenic 

inflammation, and stromal gene signatures and outcomes with PD-1/PD-L1 blockade in 

metastatic urothelial cancer.
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Figure 2. The adaptive immune response and pro-tumorigenic inflammation gene signatures, 
and the ratio of signature expression termed the 2IR score, are associated with clinical outcomes 
with PD-1/PD-L1 blockade in patients with metastatic urothelial cancer.
A. Multivariable Cox regression model for overall survival (OS; n=272 patients with RNA 

sequencing and tumor mutational burden (TMB) data) including adaptive immune response, 

pro-tumorigenic inflammation, and stromal gene signature expression, as well as TMB from 

the IMvigor 210 cohort (HR, hazard ratio; 95% CI, 95% confidence interval; error bars 

represent 95% CI of the HRs). Gene signature expression and TMB were standardized 

before entering the Cox regression model. The plot indicates log HRs while annotation 

provides HRs. Schematic representation of the relationship of the adaptive immune 

response, pro-tumorigenic inflammation, and stromal gene signatures and outcomes with 

atezolizumab indicating potential indirect role of the stromal signature on resistance 

mediated more directly through the pro-tumorigenic inflammation signature and the 2IR 
score representing the adaptive Immune response:pro-tumorigenic Inflammation gene 

signature expression Ratio. B. Kaplan-Meier curve for overall survival (OS) stratified by the 

2IR score cut at tertiles in the IMvigor 210 cohort (n=348 patients with RNA sequencing 

data; log-rank p value shown). C. Objective response rate with PD-L1 blockade in the 

IMvigor 210 cohort according to the 2IR score (cut at tertiles). For each 2IR score tertile, bar 

graphs depict the percentage of patients achieving a complete response (CR), partial 

response (PR), stable disease (SD), or progressive disease (PD) as the best objective 

response with PD-L1 blockade. D. The association between each biomarker (or biomarker 

combination) and overall survival (OS) in the IMvigor 210 cohort was evaluated using the Z-

score by univariate Cox regression analysis and the p-value by log likelihood ratio test (left). 

The association between each biomarker and response to PD-L1 blockade (CR/PR versus 

SD/PD) was evaluated using the area under curve (AUC) score and the p-value by the 

Wald’s test in univariate logistic regression (right). E. Kaplan-Meier curves for overall 

survival (OS) stratified by the 2IR score (cut at tertiles) in the Checkmate 275 cohort (n=72 
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patients with RNA sequencing data; log rank p value shown). F. Objective response rate with 

PD-1 blockade in the Checkmate 275 cohort according to the 2IR score (cut at tertiles). For 

each 2IR score tertile, bar graphs depict the percentage of patients achieving a complete 

response (CR), partial response (PR), stable disease (SD), or progressive disease (PD) as the 

best objective response with PD-1 blockade. G. The association between each biomarker (or 

biomarker combination) and overall survival (OS) in the Checkmate 275 cohort was 

evaluated using the Z-score by univariate Cox regression analysis and the p-value by log 

likelihood ratio test (left). The association between each biomarker and response to PD-1 

blockade (CR/PR versus SD/PD) was evaluated using the area under curve (AUC) score and 

the p-value by the Wald’s test in univariate logistic regression (right).
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Figure 3. The adaptive immune response and pro-tumorigenic inflammation gene signatures are 
associated with spatial organization of immune cells in the tumor microenvironment.
A-D. Representative images of multiplexed immunohistochemical consecutive staining on a 

single slide (MICSSS) demonstrating abundance of CD8+ T cells (A, B) and tertiary 

lymphoid-like structures (B) in specimens with high 2IR scores and a paucity of CD8+ T 

cells and prominent macrophages and stroma (C, D) in specimens with a low 2IR scores. 

Yellow outline in panel A represents demarcation of cancer cell nests. All slides were 

initially scanned at 20x magnification. E. Representative image of urothelial cancer 

specimen demonstrating region of interest (ROI), designated by the square, and machine 

learning-based segmentation of cancer cell nest and stromal zones to define T cell 

localization in the tumor microenvironment using pancytokeratin immunohistochemical 

staining, designated by the yellow outline bordering cytokeratin-expressing cells. F. 

Spearman’s correlation between enumeration of CD8+ T cells localized to cancer cell nests 

or stromal zones and adaptive immune response gene signature, pro-tumorigenic 

inflammation gene signature, or 2IR score. The results are based on analysis of 76 ROIs 

across 19 specimens with both immunohistochemistry and RNA sequencing data from the 

Checkmate 275 cohort. G. Correlation between enumeration of CD8+ T cells localized to 

cancer cell nests and the 2IR score. The results are based on analysis of 76 ROIs across 19 

Wang et al. Page 24

Clin Cancer Res. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specimens with both immunohistochemistry and RNA sequencing data from the Checkmate 

275 cohort. Spearman’s correlation was used to determine the correlation coefficient R and p 

value.
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Figure 4. Defining the cellular origins of adaptive immune response, pro-tumorigenic 
inflammation, and stromal gene signature expression using single-cell RNA sequencing.
A. Schematic representation of projection of gene signatures identified using bulk RNA 

sequencing data linked to outcomes with anti-PD-1/PD-L1 treatment onto single-cell RNA 

sequencing data generated from a separate cohort of invasive urothelial bladder cancer 

specimens. The illustration depicts nine major cell clusters visualized using Uniform 

Manifold Approximation and Projection (UMAP) across eight urothelial cancer specimens 

and two adjacent normal urothelial cancer specimens profiled using droplet-based 

encapsulation single-cell RNA sequencing. The adaptive immune response, pro-tumorigenic 

inflammation, and stromal gene signatures identified using bulk RNA sequencing data from 

clinical trial cohorts were projected onto the single-cell RNA sequencing data to define the 

predominant cellular sources of the respective signature gene expression. B. Single-cell 
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expression of top 10 overexpressed genes in each major cell cluster. Heatmap visualization 

color-coding the scaled gene expression level for selected marker genes (rows). Visualized 

are 500 randomly selected cells per cluster. C. Frequency of cell populations in individual 

samples included in the single-cell RNA sequencing cohort. For each sample, bar graphs 

depict the percentage of cells in clusters associated with each population. Samples were 

ranked according to T/NK cell frequency. Normal indicates samples obtained for urothelial 

tissue that was considered grossly normal by visual inspection adjacent to site of harvested 

tumor tissue. D. Heatmap of overlap between genes comprising the adaptive immune 

response, pro-tumorigenic inflammation, and stromal gene signatures and genes 

overexpressed in each of the major cell clusters in the single-cell RNA sequencing cohort. 

The number in each cell corresponds to the odds ratio for the corresponding overlap between 

genes, the color corresponds to the −log10 p-value (for enrichment) or log10 p value (for 

depletion) by two-sided Fisher’s exact test. E. Heatmap visualizing the expression of 

adaptive immune response, pro-tumorigenic, and stromal signature genes across each of the 

major and minor cell clusters in the single-cell RNA sequencing cohort. F. Expression level 

of pro-tumorigenic inflammation signature genes per cell (left) and adaptive immune 

response signature genes per cell (right) as assessed by the AddModuleScore() function in 

the Seurat package across major cell populations.
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Figure 5. The pro-tumorigenic inflammation gene signature is expressed prominently by myeloid 
phagocytic cells and low Msc2IR score myeloid phagocytic cells are characterized by increased 
expression of proinflammatory genes and decreased expression of antigen presentation genes.
A. Eight minor myeloid phagocytic cell clusters visualized using Uniform Manifold 

Approximation and Projection (UMAP) across eight urothelial cancer specimens and two 

adjacent normal urothelial cancer specimens profiled using droplet-based encapsulation 

single-cell RNA sequencing. B. Myeloid phagocytic cell populations in the single-cell RNA 

sequencing cohort. Heatmap visualization color-coding the scaled gene expression level for 

selected marker genes (rows). Visualized are 200 randomly selected cells per cluster or all 

cells when the cell cluster contained <200 cells. C. Expression level of M1 and M2 

macrophage polarization signature genes in the myeloid phagocytic cell populations as 

assessed by the AddModuleScore() function in the Seurat package. D. Expression of pro-

tumorigenic inflammation signature genes versus adaptive immune response genes in single 

myeloid phagocytic cells in the urothelial cancer tumor microenvironment and classification 

of single myeloid phagocytic cells by myeloid single cell 2IR (Msc2IR) score. E. Schematic 

representation of the relationship between the 2IR score in the urothelial cancer tumor 

microenvironment based on bulk RNA sequencing and the Msc2IR score in individual 

myeloid phagocytic cells based on single cell RNA sequencing. F. The frequency of cells 

with low, intermediate and high Msc2IR score within each myeloid phagocytic cell minor 

population. G. Volcano plot of genes differentially expressed between myeloid phagocytic 

cells with high versus low Msc2IR scores. P-value was calculated by Wilcoxon rank-sum test 

and then adjusted by Bonferroni correction. Genes with log fold change (FC) >0.1 and 

adjusted p-value <0.05 were considered as significant. H. Top-ranking ligands inferred to 

regulate genes upregulated in low Msc2IR score myeloid phagocytic cells according to 
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NicheNet. Heatmap visualization of ligand activity and downstream target genes inferred to 

be regulated by each respective ligand.
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Figure 6. Low Msc2IR score monocytes are enriched in the pre-treatment peripheral blood of 
patients with metastatic urothelial cancer resistant to anti-PD-L1 treatment.
Single-cell RNA sequencing data from peripheral blood mononuclear cells collected prior to 

the initiation of treatment from five patients with metastatic urothelial cancer who achieved 

an objective response, and five patients with metastatic urothelial cancer who did not achieve 

an objective response, to anti-PD-L1 immune checkpoint inhibition (CPI). A. The frequency 

of monocytes with low, intermediate and high Msc2IR scores in the pre-treatment peripheral 

blood of patients (n=10 patients) resistant or sensitive to anti-PD-L1 CPI. B. The frequency 

of monocyte minor cell populations in the pre-treatment peripheral blood of patients (n=10 

patients) resistant or sensitive to anti-PD-L1 CPI. C. Dot plot of expression of select genes in 

monocytes from pre-treatment peripheral blood of patients (n=10 patients) resistant or 

sensitive to anti-PD-L1 CPI. D. Volcano plot of genes differentially expressed between 

peripheral blood monocytes with high and low 2IR score. P-value was calculated by 

Wilcoxon rank-sum test and then adjusted by Bonferroni correction. Genes with log fold 

change (FC) >0.1 and adjusted p-value <0.05 were considered as significant. E. Top-ranking 

ligands inferred to regulate genes upregulated in low Msc2IR score peripheral blood 

monocytes according to NicheNet. Heatmap visualization of ligand activity and downstream 

target genes inferred to be regulated by each respective ligand.
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