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Abstract

Gamma interferon inducible lysosomal thiol reductase (GILT), is known to be involved in 

immunity, but its role in hematopoiesis has not been previously reported. Herein, we demonstrate 

using gilt knockout (−/−) mice that loss of gilt associates with decreased numbers and cycling 

status of femoral hematopoietic progenitor cells (CFU-GM, BFU-E, and CFU-GEMM) with more 

modest effects on splenic progenitor cells. Thus, GILT is associated with positive regulation of 

hematopoietic progenitor cells in mice, mainly in bone marrow.

Keywords

Gilt; Bone Marrow; Spleen; Hematopoietic Progenitor Cells; CFU-GM; BFU-E; CFU-GEMM

Introduction

Hematopoiesis and hematopoietic stem (HSC) and progenitor (HPC) cells are regulated by 

cytokines, chemokines, other growth modulating proteins, and induction of intracellular 

signaling, and gene regulation (1–3). While knowledge in HSC and HPC regulation is 

greatly increasing, we are far from knowing and understanding all of the positive and 

negative aspects of the regulation of these cells under normal conditions or disease states. 

Hence, the research is ongoing to identify factors and genes that control hematopoiesis. We 

became intrigued with Gilt as a possible influence on the regulation of hematopoietic 

progenitor (granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multiple potential 

(CFU-GEMM)) cells. Gilt (Gamma interferon inducible lysosomal thiol reductase) is an 

enzyme, also known by other names such as IFI30, IP30, lysosomal thiol reductase, and 

IFI30 lysosomal thiol reductase. Gilt has been associated with immunological regulation (4–

8) and cancer (9–11). Its function is in major histocompatibility (MHC) class II restricted 

antigen processing and MHC class I restricted cross-presentation by reducing disulfide 
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bonds of endocytosed proteins which facilitate their unfolding and optimal degradation (4, 

8–10). Gilt’s influence on peptide repertoires during antigen presentation alters the 

characteristics of immune responses and effects controlling tolerance. However all functions 

of Gilt are not known, and some other actions involve its activity as a host factor for certain 

bacteria, the maintenance of the levels of glutathione, and perhaps as secretion of 

enzymatically active gilt outside the cell, after secretion by cells such as activated 

macrophage (4, 12–16). First identified as an interferon-gamma-inducible 30KDa 

polypeptide, it is the only known lysosomal thiol reductase, with the precursor and mature 

forms of GILT having enzymatic activity. It has also been implicated in production of 

reactive oxygen species (ROS) and autophagy (14–16). We now report a role for GILT in 

regulation of hematopoiesis. Since ROS has been implicated in the regulation of HSC and 

HPC (17,18), we utilized gilt −/− mice to assess the effects of loss of gilt on nucleated 

cellularity, absolute numbers of CFU-GM, BFU-E, and CFU-GEMM in bone marrow and 

spleen of gilt −/− vs. control wildtype mice. We report that gilt loss is associated with 

decreased numbers and cycling status of HPC, suggesting a positive role for gilt in the 

regulation of HPC. We believe that this is the first evidence of a role for gilt in 

hematopoietic cell regulation.

Materials and Methods

Mice

Gilt −/− mice were supplied by Dr. Janice Blum, Indiana University School of Medicine 

(IUSM) and control wildtype (WT) mice from the animal core at the IUSM, both on a 

C57Bl/6 mouse strain background. The mice were 6–7 weeks old; with the WT mice being 

female, and the gilt −/− mice being half female and half male. Results of male and female 

gilt −/− mice were similar.

Colony Assays for HPC

Assays for numbers of BM and spleen CFU-GM, BFU-E, and CFU-GEMM and the cycling 

status of these HPC was as reported previously (17,19). Cells were suspended in a 1% 

methylcellulose culture system with FBS, and purified recombinant human erythropoietin 

(Epo, 1U/ml), mouse stem cell factor (SCF, 50ng/ml), mouse granulocyte macrophage 

colony stimulating factor (GM-CSF, 10ng/ml), mouse interleukin-3 (IL-3, 10ng/ml) and 

hemin (0.1mM). Cells were cultured in a humidified atmosphere, 5% CO2 and lowered (5%) 

O2 tension, for 7 days. Estimates of the cell cycling of the HPC utilized the thymidine kill 

assay in order to determine the percent of HPC in S-phase of the cell cycle (19). These 

culture conditions result in optimal colony formation of CFU-GM, BFU-E and CFU-

GEMM. Absolute numbers these HPC were calculated from the BM and spleen nucleated 

cellularity.

Statistics

P values are calculated by 2-tailed student’s t test for gilt −/− vs. WT HPC. P values less 

than or equal to <0.05 were considered significantly different.
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Results

To assess a role for gilt expression on hematopoiesis, we utilized gilt −/− mice, and 

evaluated bone marrow (BM) and spleen nucleated cellularity and absolute numbers of 

granulocyte-macrophage (CFU-GM), erythroid (BFU-E), and multipotential (CFU-GEMM) 

progenitor cells and their cell cycling, the latter assessed by high specific activity tritiated 

thymidine kill, compared to control WT mice (Figure 1). While there was no significant 

difference in BM nucleated cellularity between WT and gilt −/− mice (Figure 1A), there 

were highly significant decreases in absolute numbers of CFU-GM, BFU-E, and CFU-

GEMM per femur (Figure 1C) and in the cycling status of these progenitors (Figure 1E). 

While the nucleated cellularity of spleen cells was significantly decreased in gilt −/− mice 

(Figure 1B), the only significant decrease in spleen progenitors was for CFU-GEMM with 

non-significant trends to decreased numbers of splenic CFU-GM and BFU-E seen (Figure 

1D). Splenic CFU-GM, BFU-E, and CFU-GEMM from WT mice are usually in a slow or 

non- cycling state, as we noted for the data in our study, and there were no significant 

differences in the cycling status of gilt −/− splenic CFU-GM, BFU-E and CFU-GEMM 

compared to WT controls (Figure 1F).

Thus, gilt −/− was associated with decreased BM progenitors and their cycling status with 

more modest effects on splenic progenitors. This suggests that gilt expression plays a role in 

the positive regulation of progenitors.

Discussion

Our studies have now implicated gilt expression as a positive regulator of CFU-GEM, BFU-

E, and CFU-GEMM, as these HPC are decreased in gilt −/− vs. WT control mice. While our 

studies do not assess the mechanisms of gilt effects on numbers and cycling status of BM, 

and to a lesser extent splenic HPC, they do, perhaps for the fist time demonstrate a new and 

not previously known role for gilt on hematopoiesis at the level of HPC. Whether these 

hematopoietic effects of gilt are direct or indirect, or are in part regulated by ROS as noted 

for gilt −/− mice in other circumstances (14), and exactly how the effects are mediated are 

yet to be defined. They likely reflect the enzymatic actions of gilt, and its lysosomal thiol 

reductase activity, with its effects on ROS production possibly playing a role.

It is yet to be elucidated how gilt fits into the overall regulation of hematopoiesis as a direct 

intracellular or indirect extracellular mediator, at the level of the HPC, or on the 

microenvironmental niche that plays an intricate role in the regulation of hematopoiesis. 

Further studies on a role of gilt on HSC regulation, and greater mechanistic insight into gilt 

effects on HSC and HPC are warranted. How gilt functions in aging, where hematopoiesis is 

known to be defective (20), is of interest. Such studies might eventually lead to gilt/GILT 

modulation of hematopoiesis for clinical translation and benefit.
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Figure 1. 
Effects of loss of gilt, using gilt −/− mice on nucleated cellularity of BM and spleen (A,B), 

BM progenitors (C), spleen progenitors (D), and cycling status of BM (E) and spleen (F) 

progenitors. A 2-tailed t test was used to assess significance of significant differences 

between gilt −/− vs. wildtype control cells with a P value of at least <0.05 considered 

statistically significant.
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