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Abstract

Background: Integrating results from multiple samples is often desirable, but privacy 

restrictions may preclude full data pooling, and most datasets do not include fully harmonized 

variable sets. We propose a simulation-based method leveraging partial information across datasets 

to guide creation of synthetic data, based on explicit assumptions about the underlying causal 

structure, that permits pooled analyses that adjust for all desired confounders in the context of 

privacy restrictions.

Methods: This proof-of-concept project uses data from the Health and Retirement Study (HRS) 

and Atherosclerosis Risk in Communities (ARIC) study. We specified an estimand of interest and 

a directed acyclic graph (DAG) summarizing the presumed causal structure for the effect of 

glycated hemoglobin (HbA1c) on cognitive change. We derived publicly reportable statistics to 

describe the joint distribution of each variable in our DAG. These summary estimates were used as 

data-generating rules to create synthetic datasets. After pooling, we imputed missing covariates in 

the synthetic datasets and used the synthetic data to estimate the pooled effect of HbA1c on 

cognitive change, adjusting for all desired covariates.

Results: Distributions of covariates, as well as model coefficients and associated standard errors 

for our model estimating the effect of HbA1c on cognitive change were similar across cohort-

specific original and pre-imputation synthetic data. The estimate from the pooled synthetic 

incorporates control for confounders measured in either original dataset.

Discussion: Our approach has advantages over meta-analysis or individual-level pooling/data 

harmonization when privacy concerns preclude data sharing and key confounders are not 

uniformly measured across datasets.
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INTRODUCTION

Combining data from multiple studies can enhance research by broadening the diversity of 

study participants or by improving statistical power. Unfortunately, privacy restrictions often 

preclude full data pooling. While data from multiple studies can be combined by meta-

analysis1, related Bayesian approaches2,3, coordinated analsyes4,5, or aggregate-data based 

approaches6, analyses may not be perfectly parallel due to differences in covariate sets or 

parameterizations, and summary measures may remain confounded. Partially or fully 

synthetic data approaches may permit data sharing and pooled analyses while remaining 

consistent with data privacy goals.7–12 Most prior work has conceptualized data generation 

as a statistical problem with the goal of posting synthetic datasets for analyses,7–12 without 

grounding the data generation in prior knowledge of the causal structure. Although some 

synthetic data approaches have applied causal discovery algorithms13,14, some controversy 

about the validity and utility of causal discovery algorithms remains, and epidemiologists 

typically rely on expert knowledge to generate causal models.15–17 Here, we propose a 

simulation-based method leveraging partial information across datasets that draws on 

researchers’ prior understanding of the causal structure to guide creation of synthetic data, 

permitting pooled analyses in the context of privacy restrictions that adjust for all desired 

confounders. These synthetic datasets preserve the complexity of the original data sources 

relevant to estimating the desired estimand and can be used in lieu of formal data pooling of 

the original datasets to conduct pooled analyses. Imputation of missing covariates in the 

pooled data also allows for pooled estimates that explicitly account for all desired 

confounders.

This proof-of-concept paper uses data from the Health and Retirement Study (HRS) and the 

Atherosclerosis Risk in Communities Study (ARIC) to illustrate this method. We use the 

motivating example of estimating the effect of glycated hemoglobin (HbA1c) on cognitive 

change in the domain of memory. This work was a collaborative effort between two separate 

institutions. After specifying the estimand and the presumed causal structure, we propose a 

method that uses publicly reportable summary statistics to construct synthetic datasets. Each 

analyst accessed raw data for only one of the two studies and only publicly reportable 

information (i.e., summary statistics from regression models) was shared. Here we 

demonstrate that we are able to generate synthetic datasets from these summary statistics 

that allow estimation of the pooled effect estimate of interest without direct access to 

individual-level data. We then demonstrate the opportunity for control of desired 

confounders measured in at least one contributing data set using the pooled synthetic 

datasets through imputation of missing covariates.
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METHODS

Data Sources

The Health and Retirement Study (HRS) is a nationally representative cohort with a target 

population of noninstitutionalized adults age 50+ in the contiguous United States.18,19 HRS 

participants have been invited to study visits every 2 years since 1998; new participants are 

enrolled at approximately 6-year intervals to maintain a steady-state sample. The subset of 

HRS participants ages 50+ who participated in blood collection at the 2006 or 2008 HRS 

interviews and have valid measures of HbA1c were eligible for inclusion (n=12,186). After 

excluding participants with missing or ambiguous/unknown status on race (n=551), 

childhood socioeconomic status (CSES) (n=3), education (n=43) and memory assessment at 

the HRS wave where they completed blood collection (n=80), our final HRS analytic sample 

included 11,509 participants. All subjects provided informed consent to participate in HRS.

The Atherosclerosis Risk in Communities (ARIC) Study is a multicenter population-based 

prospective cohort study that enrolled participants in 1987 to 1989, when they were ages 45 

to 64. The subset of ARIC participants aged 50+ with valid measures of HbA1c from ARIC 

Visit 2 (1990–1992) were eligible for inclusion (n=12,533). After excluding participants 

who were neither Black nor White due to small numbers (n=36), and participants missing 

data on dietary pattern (n=325), education (n=18) and memory assessment at Visit 2 

(n=111), our final ARIC analytic sample included 12,043 participants. The ARIC study was 

approved by the institutional review boards of all participating institutions. All subjects 

provided informed consent to participate in ARIC.

Outcome assessment

In both HRS and ARIC, memory was assessed by delayed recall of a 10-word list, scored as 

the number of correctly recalled nouns.20 In HRS, delayed recall scores are available at each 

biennial HRS wave from sample baseline (2006 or 2008) through 2012. In ARIC, we use 

delayed recall scores obtained at Visit 2 (1990–1992), Visit 4 (1996–1998), Visit 5 (2011–

2013) and Visit 6 (2016–2018). We standardized the memory scores separately within each 

cohort by subtracting the cohort-specific mean and dividing by the cohort-specific standard 

deviation within the subset of participants ages 50–65 years old at the time of HbA1c 

measurement (2006 or 2008 for HRS, 1990–1992/Visit 2 for ARIC).

Exposure assessment

Glycated hemoglobin (HbA1c) is a measure of blood glucose concentration over the past 2 

to 3 months; it is used for diagnosis of diabetes and for disease management among people 

with diabetes.21 In HRS, HbA1c was measured by dried blood spot in either 2006 or 2008 

(year randomly assigned).22 In ARIC, HbA1c was measured in stored whole blood samples 

from Visit 2.23 For the purpose of these analyses, we anticipated that the effect of HbA1c on 

cognition may differ for values above 6.5%, the threshold used for diagnosis of diabetes.

Covariates

Age, race (White, Black), gender (male, female), and education (Less than High School, 

High School, College or more) were self-reported in both HRS and ARIC. For this proof-of-
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concept analysis, we selected one plausible confounder from each data set that was not 

measured in the other sample. Information on childhood socioeconomic status (CSES) was 

available in HRS but not ARIC. In HRS, CSES is a validated continuous composite score 

based on measures of childhood financial capital (income or wealth), childhood human 

capital (stock of knowledge and skills, e.g. parental educational attainment) and childhood 

social capital (quality and number of relationships with household adults).24 Information on 

diet was available from ARIC, but not HRS. ARIC participants completed a food-frequency 

questionnaire at Visit 1. We use two indices of dietary patterns derived from principal 

components analyses, which can be interpreted as the degree of adherence to a “western” 

(i.e., highest factor loadings for refined grains, processed meat, fried food, and red meat) or 

“prudent” (i.e. highest factor loadings for cruciferous, carotenoid, or other vegetables, and 

fruit) dietary pattern.25

Statistical methods

We provide a detailed explanation of how each step was implemented in the eMethods, and 

provide code on Github (https://github.com/powerepilab/Sim_for_data_pooling). We 

encourage the reader to reference the eMethods and code as they read through the following 

sections of the manuscript.

Step 1: Specify the presumed causal structure based on prior knowledge.—
We specified, a priori, the estimand and described the presumed, corresponding causal 

structural model using a directed acyclic graph (DAG). Here, we choose to estimate the 

marginal effect of HbA1c on cognitive change (Figure 1). HRS included all variables in the 

DAG except diet, while ARIC included all variables except childhood SES.

Step 2: Estimation of data generating rules in the original datasets.—We 

estimated the joint distributions of all variables represented in the DAG using individual-

level data in each dataset. Decisions about the dependencies used to derive the data 

generating rules were based on the DAG derived in Step 1 (Figure 1) and are described in 

Table 1. Decisions about the specific functional form for the approach to estimating the data 

generating rules was based on consideration of the individual-level data in HRS and 

recognition that inclusion of higher-level interactions or use of non-parametric approaches 

may increase the possibility of deductive re-constitution of individual-level data.

For age, race, and gender we used non-parametric summaries of the joint distribution for 

these variables corresponding to the observed distribution in the respective datasets. To 

estimate the distributions for other variables in the DAG, we used regression models, 

predicting each variable as a function of its parents. Analyses were conducted first in HRS 

by one analyst (TF) with access to the raw data. Guided by the decisions made in estimating 

these quantities in HRS, TF then requested publicly reportable information summarizing the 

joint distributions and associations for the variables in the DAG in ARIC from a second 

analyst (XL), who had access to the individual-level ARIC data. Only publicly reportable 

information was transferred to the primary analyst (TF) for use in synthetic data generation, 

including regression coefficients and distributional parameters of residuals from each 

regression model.
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It should be noted that the approach itself does not guarantee lack of privacy concerns. The 

summary information created should adhere to typical data security rules implemented to 

avoid individual-level identification. Just as one would suppress summary statistics that 

might be identifying from general publication, similar caution should be taken when creating 

and releasing the data generating rules. If sufficient precautions are taken, this step generates 

publicly reportable information that can be easily shared, akin to summaries of the data 

frequently shared in published papers.

Step 3: Generate and validate the synthetic data.—We generated simulated datasets 

of identical size to the original HRS (n=11,509) and ARIC (n=12,043) datasets. We 

generated data for each variable in a stepwise process that preserved the causal structure of 

the data. We generated data separately for HRS and ARIC based on the data-generating rules 

derived from each dataset.

To reflect the uncertainty in any single data generation, we iterated the data generation 

process 5,000 times. Next, we compared the covariate distributions in the original datasets to 

the average distributions across iterations, as well as effect estimates and standard errors of 

the observed association of HbA1c and memory decline with the average associations and 

associated standard errors in the synthetic data, to identify coding errors and gross model 

misspecification.

Step 4: Pool simulated datasets & impute data for missing variables.—We 

pooled pairs of HRS and ARIC simulated datasets and conducted a single imputation to 

impute covariates missing from each dataset using multivariate imputation by chained 

equations (MICE),26,27 Dietary measures were imputed for synthetic HRS participants, 

while childhood SES measures were imputed for synthetic ARIC participants. To understand 

the importance of including the imputed covariates, we computed effect estimates and 

standard errors of the observed association of HbA1c and memory change in the synthetic 

data before and after imputation in the individual, simulated HRS and ARIC datasets.

Step 5: Estimate the causal effect of interest.—Finally, we compute effect estimates 

and standard errors of the observed association of HbA1c and memory decline after 

imputation in the pooled synthetic HRS and ARIC datasets to derive a pooled effect estimate 

that includes adjustment for all of the confounding variables, including those structurally 

missing from one dataset, as well as cohort and the interaction between cohort and all other 

terms in the model except for the HbA1c by age term.

In sensitivity analyses, we considered pooling and estimating pooled effects omitting CSES 

and diet as covariates and estimation of a simpler model omitting cohort by covariate terms. 

We also provide a random effects meta-analysis estimate of the coefficients of interest 

(age*HbA1c above and below 6.5) based on parallel analyses in each original dataset.

Simulation Study

Finally, we conducted a simulation study to illustrate the impact of using relatively simple, 

parametric models – which may be misspecified relative to the true data generating process 

-- to generate our synthetic data while achieving our privacy goals. Details of this simulation 
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study are available in eAppendix A and eAppendix B. We first generated a simulated dataset 

(i.e. original simulated data). Next we followed the process above to generated synthetic data 

and effect estimates in the synthentic data under three scenarios. Scenario 1 considers the 

situation where the data generating process perfectly matches the parametric assumptions 

detailed above. Scenario 2 explores a misspecification of the data-generating process for our 

exposure (HbA1c). Scenario 3 explores misspecification of the underlying data-generating 

process for both exposure and outcome. For each Scenario, we estimate the effect of HbA1c 

on cognitive change using the model described in equation 7 of the eMethods in the original 

simulated data. We then compare this to the synthetic, cohort-specific results for the effect of 

memory on cognitive change generated through repeating steps 1–5 above using our original 

assumptions about the data-generating mechanism. This provides an assessment of the 

impact of misspecifying the data generating process through assumption of reasonable, 

parametric models, on recovering the coefficients that would be estimated in the original 

data.

RESULTS

The distributions of all variables in the HRS and ARIC synthetic datasets (averaged over 

5,000 iterations) were similar to those in the original datasets (Table 2). Overall fits for the 

model of HbA1c on change in memory scores from the synthetic datasets reflected the 

original effect estimates, with reasonably similar precision (Table 3). Estimates in the 

synthetic datasets pre- and post-imputation were also similar (Table 3), suggesting that there 

was little residual confounding introduced by the omission of diet or childhood SES data. 

The estimates for the associations between HbA1C and cognitive change in the synthetic, 

pooled data after imputation of missing covariates and adjustment for cohort fell in between 

the cohort-specific original estimates (Table 4), and precision was improved for the estimate 

of the impact of HbA1c under 6.5 on excess cognitive change compared to either of the 

original datasets (Figure 2). In this case, sensitivity analyses suggested that imputation of 

missing covariates did not substantially change estimates, but confirmed the necessity of 

including cohort by confounder interactions, as pooled models omitting these terms 

produced estimates of slope outside the range of the individual estimates from the original 

cohorts (Table 4).

As expected given little evidence of residual confounding by CSES or diet, pooled estimates 

for the interaction of age*HbA1c below and above 6.5 were similar to the meta-analysis 

estimates (Below 6.5: −0.05, 95%CI: −0.073, −0.028; above 6.5: 0.010, 95%CI: −0.007, 

0.026). Our simulation study illustrates that once we assume a model to estimate the causal 

effect of HbA1c on cognitive change, misspecification of the data generating rules used to 

generate the synthetic data did not lead to substantial differences between the synthetic, 

cohort-specific effect estimates and the equivalent effect estimates in the original (simulated, 

so as to have known data generating mechanisms) data (see eAppendix).

DISCUSSION

We demonstrated that we can use publicly reportable summary statistics to create synthetic 

datasets that allow estimation of the pooled effect estimate of interest by a single analyst 
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without direct access to all of the relevant individual-level data. Use of the causal inference 

framework makes our assumptions explicit and provides a guide for generation of synthetic 

data. Moreover, use of imputation provides an opportunity to allow better control for 

confounding by covariates not uniformly found in individual datasets. Our sensitivity 

analyses also suggest that it is important to recognize that confounders may have different 

impact in different samples, and that this heterogeneity is important to recognize when 

estimating summary effects in pooled, individual-level data.

Combining data from multiple sources to address a specific question has many benefits, 

including the potential for increased statistical power and increased diversity in sample 

composition. While pooling and harmonization of individual-level data remains the gold-

standard approach, this approach is often impractical or inefficient given the effort needed to 

obtain required legal agreements and fulfill associated contractual obligations, as well as 

other barriers related to provider willingness for data sharing. While the approach outlined 

here represents one solution to overcoming these barriers, others have been proposed as 

well. Meta-analysis1 of published statistics is common and creates no privacy concerns, but 

requires published analyses to have parallel designs and analyses. Bayesian approaches 

allowing generalized synthesis of the evidence are more flexible, but ultimately similar in 

their requirement for availability of published analyses.2,3 Coordinated analyses, such as 

those facilitated by the Integrative Analysis of Longitudinal Studies of Aging and Dementia 

(IALSA) research network4,5, overcome some of the limitations of meta-analyses by 

ensuring each contributing sample produces parallel analyses, which are then meta-analyzed, 

but cannot overcome issues of missing covariate data in individual datasets. Sharing of 

aggregate-level data (e.g. risk-set data sharing, summary table data-sharing), using varying 

approaches for confounding control, has been shown to allow statistical inference akin to 

what is achievable with access to individual-level data.6 However, depending on the level of 

aggregation and confounder control method, a subset of the aggregated data may remain 

close to or equivalent to individual-level data, which may not be permissible, and differences 

in availability of data on potential confounders remains an issue.

In comparison to these approaches, the approach we outline has some advantages. As with 

other approaches sharing aggregate-level data, our approach can be used to avoid sharing of 

individual-level data, given sufficient attention to the specification of the models. However, 

unlike these aggregate level approaches, the data generating rules can be used to simulate 

individual-level data by the recipient, allowing imputation and control for structurally 

missing covariates. Moreover, our approach easily incorporates consideration of effect 

modifiers, and because data pooling will increase the sample size of small groups, will 

support better evaluation of subgroup effects. Finally, as the presented approach is closely 

aligned with the process used for applications of the parametric g-formula28–31, this 

approach may form the basis for simulations to answer related questions.

The idea of synthetic data generation to address issues of data sharing and privacy concerns 

is not new. Generation of fully or partially synthetic data for the purpose of minimizing 

disclosure risk was initially proposed by Rubin7 and Little8 in 1993, who proposed multiple 

imputation of synthetic data as an alternative to other approaches, including perturbation, 

masking, and cell suppression. More recently, others have proposed use of machine learning 
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algorithms to synthesize data (e.g.,9–12). To date, there has been less work adopting a causal 

framework, though Bayesian network approaches which involve both a causal discovery 

stage (to estimate the relevant causal structure) and regression-based or machine learning 

methods to generate synthetic data have been proposed.13,14

Our approach is similar to other synthetic data generating processes in that it creates data 

generating rules using parametric or non-parametric descriptions of the data distribution.
32,33 However, most prior work conceptualizes synthetic data generation as a purely 

statistical problem, without reference to the underlying causal structure. Our approach 

specifies that these structures can be used to guide the data synthesis method just as they 

guide data analysis. If our goal was to publicly release fully imputed datasets for broad use, 

other methods allowing use of a smaller number of synthesized datasets might be more 

appropriate.34–36

As our approach generates a fully synthetic dataset, there is no 1:1 correspondence between 

the observed and synthetic data, and many argue that this eliminates identification disclosure 

risk.36–39 However, fully synthetic data such as ours remain susceptible to attribution or 

inferential disclosure risk.39,40 For settings in which there is a clearly defined concern about 

a potential attribution risk, formal methods to quantify attribution risk can be applied.37,39

This study has several strengths. Most importantly we provide a detailed, rigorous approach 

for creating complex synthetic datasets. We generated data based on the DAG, simulating 

each variable as a function of its parents. This simulation process is akin to application of 

the parametric G- formula to create the data28–31, differing in the fact that we do not impose 

treatment, thus the joint distributions implied by the causal structure of the DAG are built 

into the synthetic samples. The imputation of the missing covariates can be conceptualized 

as a convenient approach to bias correction, assuming that the joint distribution of the 

covariate found in a data set in which it was measured also applies in a data set in which it 

was not.

This study also has limitations. Although we chose childhood SES and diet a priori, as 

theoretically important confounders this was not borne out in the data. By using multiple 

imputation, we were able to derive pooled estimates controlling for confounders measured in 

at least one of the datasets. The success of this approach will depend, in general, on whether 

the missing covariate values in one sample can be appropriately imputed based on the 

distributions in another data set and whether there are interactive effects between covariates 

missing from different datasets in determining the exposure or outcome. For example, if 

childhood SES had modified the effect of diet on cognition, we could not plausibly recover 

this. Whether use of multiple imputation is appropriate should be considered on a case-by-

case basis and merits further exploration in both real and simulated datasets. Despite these 

caveats, results obtained when imperfectly imputing a structurally missing covariate is 

unlikely to be more systematically biased than results obtained from analyses which simply 

omit the variable if the missing variable is an important confounder. Our approach relies on 

assumptions to simulate the joint distribution of variables within each data set (i.e., adequate 

specification of the data generating rules) as well as assumptions to justify pooling the data 

and estimating a single coefficient. With respect to the joint distribution, our process 
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includes checks to identify gross misspecification, but as with any model for an unknown 

data generating process, our models are undoubtedly misspecified, especially given 

constraints on the degree to which we could use interactions or non-parametric approaches 

given privacy concerns. However, our simulation study provides some assurance that 

misspecification of the data generating process through use of reasonable parametric models 

does not lead to estimates that differ substantially from those that would be obtained using 

the original data. The assumptions to justify pooling the two datasets are distinct and mirror 

the assumptions necessary for any efforts to estimate a single parameter in pooled data. 

Similarly, as with any attempt at causal inference, we assume that our DAG is correct, that 

the covariates considered are sufficient to ensure exchangeability, and that our statistical 

estimand represents the causal quantity of interest. If this is not true, then the estimates from 

the original data and the pooled synthetic data will be biased. Our approach is designed to 

overcome specific hurdles to conducting pooled analyses, namely the need for access to 

individual-level data and lack of overlap in covariates; as such, all the limitations and 

challenges one would encounter if individual-level data pooling of the original data were 

possible still apply. In addition, as with other similar approaches to creating synthetic data36, 

our synthetic data can only capture relationships inherent in the joint distribution of the 

variables considered; if developed to address one research question, it cannot necessarily be 

repurposed for a second question with a different causal structure. Finally, imputation of 

missing variables using multiple imputations by chained equations (MICE) may not be the 

best approach. Other imputation methods or methods may be more appropriate. We 

acknowledge that this was a proof-of-concept study. While this approach is broadly 

generalizable, the implementation of the steps will need to be tailored to the presumed 

causal structure generating the data and the causal quantity of interest. Studies like this can 

only be successful with a strong and open communication between the analysts for each 

cohort. Though not necessary, common coding of variables and models provides a much 

cleaner and streamlined analysis. Incorporating additional cohorts into this study (and 

possibly more analysts) would require a structured communication plan at project inception.

Though we demonstrate this procedure with two datasets, the approach itself can be used for 

multiple datasets and provides a backbone for more complex extensions necessary to address 

substantive questions of interest. Potential extensions include incorporating time-varying 

exposures and accounting for selection bias due to death or drop-out when creating our 

synthetic datasets. Other potential extensions include extension to more complex causal 

scenarios incorporating mediators and confounders; extensions dealing with missing data 

within the variables measured in the original cohort; creation of synthetic, nationally 

representative samples based on data from less representative samples; and pre-

implementation evaluation of randomized controlled trial study designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Directed acyclic graph (DAG) depicting the structural causal model for the association 

between HbA1c and change in memory scores over time
a Variable presents in the HRS dataset and not in the ARIC dataset.
b Variable presents in the ARIC dataset and not in the HRS dataset.

Abbreviations: Health and Retirement Study (HRS) and Atherosclerosis Risk in 

Communities (ARIC) Study, glycated hemoglobin (HbA1c)

Note: We specified, a-priori, the estimand of interest and described the corresponding causal 

structural model using a directed acyclic graph (DAG). This DAG, informed by prior 

analyses and knowledge, includes all exposures, confounders, effect modifiers, and 

outcomes measured in at least one dataset, that we deem sufficient to allow estimation of the 

estimand of interest.
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Figure 2. Effect estimates and confidence intervals for the association between HbA1c and 
cognitive change across the original, synthetic, and pooled data.
Dashed lines denote estimates and 95% confidence intervals for the effect of HbA1c on rate 

of memory decline for models fit using the original HRS and ARIC original data. Solid lines 

denote the average of 5000 effect estimates with 95% confidence bands for the effect of 

HbA1c on rate of memory decline for models fit with HRS, ARIC and Pooled synthetic 

data. Estimates of difference in HbA1c were estimated separately for those with HbA1c 

above and below 6.5%.
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