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Abstract

Methamphetamine (METH) is an illicit psychostimulant that is abused throughout the world. 

METH addiction is also a major public health concern and the abuse of large doses of the drug is 

often associated with serious neuropsychiatric consequences that may include agitation, anxiety, 

hallucinations, paranoia, and psychosis. Some human methamphetamine users can also suffer from 

attention, memory, and executive deficits. METH-associated neurological and psychiatric 

complications might be related, in part, to METH-induced neurotoxic effects. Those include 

altered dopaminergic and serotonergic functions, neuronal apoptosis, astrocytosis, and 

microgliosis. Here we have endeavored to discuss some of the main effects of the drug and have 

presented the evidence supporting certain of the molecular and cellular bases of METH 

neurotoxicity. The accumulated evidence suggests the involvement of transcription factors, 

activation of dealth pathways that emanate from mitochondria and endoplasmic reticulum (ER), 

and a role for neuroinflammatory mechanisms. Understanding the molecular processes involved in 

METH induced neurotoxicity should help in developing better therapeutic approaches that might 

also serve to attenuate or block the biological consequences of use of large doses of the drug by 

some humans who meet criteria for METH use disorder.
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1. General introduction

Methamphetamine (METH) is a psychostimulant that is abused worldwide (UNODC 2018; 

Yang et. al., 2018). METH was first synthesized from ephedrine by Japanese chemist, 

Nagayoshi Nagai in 1893. In 1919, another Japanese chemist, Akira Ogata streamlined the 

process and produced the first crystallized form of drug (Nagai and Kamiyama, 1988; 

Buxton and Dove, 2008; Panenka et. al., 2013). The use of METH, which is also a schedule 

II drug, has been restricted by USA law since 1971. METH is used as a second line of 

treatment for attention deficit hyperactivity disorder (ADHD), severe obesity, and narcolepsy 

(Moszczynska and Callan, 2017). Its repeated use, under uncontrolled conditions, can lead 

to the user meeting diagnostic criteria for METH use disorder which is characterized by 

compulsive use in the presence of adverse consequences and craving for the drug (DSM5). 

Some of the adverse consequences include neurological and psychiatric complications, 

cardiovascular problems, ulmonary arterial hypertension, periodontal (gum) disease, and 

renal failure (Ho et al., 2009; Schep et al., 2010; Moratalla et al., 2017; Yang et. al., 2018). 

Specific METH-induced neurological and psychiatric effects include cerebral stroke, 

seizures, schizophrenia, and psychotic illness (Cadet and Gold, 2017; Hsieh et. al., 2014; 

Yang et. al., 2018; Lappin and Sara, 2019; Wearne and Cornish, 2018).

In addition to the clinical signs and symptoms associated with the large doses of METH, 

several lines of evidence have documented its toxic effects on dopamine (DA) and serotonin 

(5-HT) systems (Cadet and Krasnova, 2009). Large METH doses can cause neuronal 

apoptosis and glial activation in the brain (Panenka et al., 2013; Moratalla et al., 2017; 

Sekine et al., 2008; Yang et. al., 2018). Moreover, acute and chronic injection of the drug 

have induced a diversity of toxic responses in animal models (Cadet et. al., 2003; 2005; 

2007; Cadet and Bisagno, 2016). Despite knowing the potential toxic effects of the drug, 

little effort has been spent to develop pharmacological approaches in order to counter these 

effects in human users. Studies focusing biological mechanisms of METH induced 

neurotoxicity should provide the knowledge necessary to approach these problems more 

rationally (Ashok et.al., 2017; Moszczynska and Callan, 2017; Yang et. al., 2018; Xie et. al., 

2018).

2. Epidemiology of METH use

METH is a member of the amphetamine-type stimulants (ATSs) that include amphetamine, 

methylene dioxy methamphetamine (MDMA), and other designer amphetamine (Chomchai 

and Chomchai, 2015; Yang et. al., 2018). It has been reported that approximately 27 million 

individuals use ATSs in 2019, a number that corresponds to 0.5 per cent of the world adult 

population (UNODC, 2020). North America with 2.3 per cent, Australia and New Zealand 

with 1.3 per cent, and Asia with 0.5 per cent of their populations have the highest prevalence 

of METH use between ages 15 and 64 (UNODC, 2020). METH is indeed the second most 

used illicit drug after cannabis (Stoneberg et. al., 2018). METH manufacturing contributes to 

95% of illigally synthesized ATS, with the quantities of the drug having been seized between 

2009 and 2017 increasing by sevenfold (UNODC, 2020). Seizures of illegal METH remain 

highly concentrated in the United States, Thailand, and Mexico, accounting for 80% of total 

global seizures (UNODC, 2020). The compounds utilized to synthesize METH, ephedrine 
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and pseudoephedrine, are used in Asia, Oceania, Africa and in some European regions 

whereas phenyl-2-propanone (P-2-P), a pseudoephedrine precursor, is mostly used in North 

America and Western Europe (EU Drug Markets Report 2019: E/INCB/2019/1; UNODC, 

2020).

In the USA, nearly 1.6 million individuals were reported to use METH in 2016, with an 

average age of 23.3 years old according to the National Survey on Drug Use and Health 

(2017). In 2017, METH-related overdose deaths in United states increased by 7.5 times 

compared to 2007. These cases occurred mostly in Washington, Colorado, Texas, Florida, 

and Georgia (National Survey on Drug Use and Health, 2017).

3. METH use and its clinical neuropsychiatric presentations

METH use is associated with several health complications secondary to the negative impact 

of the drug on the central nervous system (CNS). These include cognitive and psychomotor 

impairments users of large doses of the drug (Panenka et al., 2013; Yang et. al., 2018; Paulus 

and Stewart, 2020). Human METH users can suffer drug-induced agitation, anxiety, 

paranoia, and psychosis (Paulus and Stewart, 2020; Zhao et. al., 2020). METH users have 

presented to emergency rooms with strokes, seizures, renal and liver failure, cardiac 

arrythmias, extreme hyperthermia, or in comatose states (Perez et al., 1999; Turnipseed et 

al., 2003; McGee et al., 2004; Ho et al., 2009; Schep et al., 2010; Jones and Rayner, 2015). 

A meta-analysis has reported that METH users can suffer from neuropsychological 

impairments consisting of dysfunctions of decision making, information processing speed, 

language, and visuoconstructional abilities (Scott et al., 2007).

Importantly, some recent reports have documented a higher prevalence of Parkinosism in 

METH users (Callaghan et al., 2010; 2012; McNeely et al., 2012; Panenka et al., 2013; 

Curtin et al., 2015; Todd et al., 2016). For example, Callaghan et al. (2012) reported that 

METH abusers have a 75% higher risk of developing Parkinsonism than non-METH using 

individuals. Retrospective case-controlled studies have also found that prolonged use of 

METH was also associated with an increased risk for developping Parkinson’s disease (PD) 

(Garwood et. al., 2006; Curtin et al., 2015). Neurodegenerative changes consisting of loss of 

dopamine transporters (DAT), serotonin transporters (5-HTT), and decreased levels of 

dopamine (DA) and its metabolites have been detected in the brains of human METH users 

(Wilson et al., 1996; Worsley et al., 2000; Volkow et al., 2001; Sekine et al., 2003, 2006).

METH users also exhibit prominent gray matter reduction in the cortical (Berman et al., 

2008) and hippocampal (Thompson et. al., 2004; Hall et al., 2015) brain regions. Other 

investigators have reported higher striatal volume was observed in METH abusers 

(Thompson et al., 2004). Moreover, Tobias et al., (2010) reported that METH users exhibited 

decreased fractional anisotropy in the prefrontal white matter, the midline genu of the corpus 

callosum, and in the midcaudal superior corona radiata bilaterally. It is possible that some of 

the neuropathological changes observed in the brains of METH users might be secondary to 

the activation of microglial cells observed in the brains of some of these patients (Sekine et. 

al., 2008).
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4. Animal models of METH neurotoxicity

Starting from the 1970’s, various studies have been published to show that both acute and 

chronic injections of METH can cause damage to monoaminergic terminals and neuronal 

apoptosis (Seiden et. al., 1976; Ando et. al., 1985; Woolverton et al., 1989; Fukumura et. al., 

1998; Villemagne et. al., 1998; Harvey et. al., 2000a, 2000b; Ladenheim et al., 2000; 

Armstrong and Noguchi, 2004; Jayanthi et al., 2001, 2005; Truong et al., 2005; Deng et. al., 

2001, 2007; Melega et. al., 1997, 2008; Ares-Santos et. al., 2013; Schweppe et. al., 2020).

4.1. Studies in rodents

Injections of large METH doses induce degeneration of monoaminergic terminals in rodents 

(Fukumura et. al., 1998; Ladenheim et al., 2000; Armstrong and Noguchi, 2004; Jayanthi et 

al., 2001, 2005; Truong et al., 2005; Deng et. al., 2001, 2007; Ares-Santos et. al., 2013). 

These are characterized by longterm decreases in vesicular DA uptake and vesicular 

monoamine transporters (VMAT2) (Guilarte et al., 2003; Truong et al., 2005), striatal DA 

transporters (Fukumura et. al., 1998; Truong et al., 2005; Krasnova et. al., 2011), levels of 

tyrosine hydroxylase (TH) protein and activity (Hotchkiss and Gibb, 1980; Fukumura et. al., 

1998; Cappon et al., 2000; Krasnova et. al., 2011). Large doses of METH also negatively 

impact serotonerigc systems in the dorsal striatum where striatal serotonin (5-HT) levels 

(Fukumura et. al., 1998: Armstrong and Noguchi, 2004) and tryptophan hydroxylase (TPH) 

activity (Bakhit et al., 1981; Bakhit and Gibb, 1981) are reduced after injections of the drug. 

METH-induced abnormalities in 5-HT have also been reported in the nucleus accumbens 

(Nac), cortex, hippocampus, and hypothalamus (Hotchkiss and Gibb, 1980; Bakhit et al., 

1981; Bakhit and Gibb, 1981; Baldwin et al., 1993; Armstrong and Noguchi, 2004). A very 

recent paper by Schweppe et. al. (2020) reported that rats challenged with toxic doses of 

METH showed reduction in striatal and hippocampal DA, 5-HT, brain derived neurotrophic 

factor (BDNF), and TrkB even as long as 75 days after the drug injections. METH 

neurotoxicity is also associated with astrocytic and microglial activation (Fukumura et. al., 

1998; Guilarte et al., 2003).

Consistent with data obtained from rats, mice also suffer from METH-induced decreased 

levels of DA and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic 

acid (HVA), as well as reduced levels of VMAT2, DAT and TH activity in various brain 

regions including the dorsal striatum, cortex, hippocampus and the olfactory bulb 

(Ladenheim et al., 2000; Achat-Mendes et. al., 2005; Deng et. al., 2007; Fantegrossi et al., 

2008; Granado et. al., 2010; 2011a; 2011b; Ares-Santos et. al. 2012; Ares-Santos et. al., 

2013).

The neurotoxic effects of METH have also been assessed in rodent model of METH self-

administration (SA). Specifically, rats given long access to METH SA in order to mimic 

patterns of METH use in humans (Perez et al., 1999; Darke et al., 2008) exhibited persistent 

decreases in DA, DAT and TH but increased glial fibrillary acidic protein (GFAP) expression 

in the cortex and dorsal striatum and cortex (Krasnova et al., 2010). Similar to the report by 

Krasnova et al. (2010), McFadden et al. (2012) also observed persistent deficits in 

dopaminergic neuronal function consistent of decreased striatal DAT uptake, DAT 

concentrations, and increased GFAP using a SA paradigm of 8 h/day for 7 days (0.06 mg/
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infusion). Together, these two SA studies provide further evidence for the toxic effects of 

this drug.

4.2. Studies in primates

Rhesus monkeys injected with METH showed 70% loss of DA levels in the caudate, 33% 

loss of NE in the midbrain and 55% loss of NE in the frontal cortex (Seiden et. al., 1976). 

There were signficant decreases in DA and 5-HT level in various brain regions of nonhuman 

primates even 4 years after the injections of METH (Woolverton et al., 1989). Other groups 

of investigators have confirmed the effects of METH on the nonhuman primate brain. For 

example, Ando et al. (1985) reported a 32% loss of DA levels in the caudate nucleus and 

71% loss of 5-HT levels in the frontal cortex after METH. In addition, Harvey et al. (2000a, 

2000b) have provided evidence that METH injections can cause decreased levels TH, DAT, 

and VMAT2 in the nigrostriatal dopaminergic system. In vivo positron emission tomography 

(PET) studies in vervet monkeys also reported METH-induced reduced DA synthesis 

(Melega et. al., 1997, 2008). Furthermore, administration of METH to baboons exhibited 

reductions in striatal DAT which is associated with decreased level of DA (Villemagne et. 

al., 1998).

5. METH neurotoxicity, reactive oxygen species, and neuroinflammation

The pathways involved in causing METH neurotoxicity are varied and complex. They 

include the formation of reactive oxygen species including hydrogen peroxide, superoxide 

radicals, and hydroxyl radicals. The levels of some of these appear to be increased 

consequent to microglial cell activation and associated changes in proinflammatory factors 

in brain regions of interest.

5.1. Production of reactive oxygen species (ROS)

Oxidative stress plays an integral role in METH neurotoxicity. This occurs because METH 

administration leads to release of DA from vesicular pools followed by DA accumulation 

within monoaminergic terminals and DA release via DAT into the synaptic cleft (Chu et al, 

2008; Hedges et al., 2018). Increased DA levels lead to DA auto-oxidation in intraneuronal 

and extracellular spaces, quinone production, superoxide radicals, hydrogen peroxide, and 

hydroxyl radicals (Graham, 1978; Cadet and Brannock, 1998; Yamamoto and Zhu, 1998; 

LaVoie and Hastings, 1999). The role of superoxide radicals in METH neurotoxicity was 

documented in a series of studies that showed that transgenic mice that over-express 

superoxide dismutase, the enzyme that breaks down superoxide radicals (Lewandowski et 

al., 2019), were protected against injections of large doses of METH (Cadet et al., 1994; 

Hirata et al., 1996; Jayanthi et al., 1998). Reactive nitrogen species also participate in 

generating METH neurotoxicity. This occurs through the production of nitric oxide 

secondary to METH-induced increases in nitric oxide synthase (NOS) activity (Imam et al., 

2001). METH-induced ROS and RNS lead to lipid peroxidation and protein carbonyl 

formation in various brain regions and secondary damage to neuronal cell membrane 

(Jayanthi et al., 1998; Yamamoto and Zhu, 1998; Gluck et al., 2001). METH-induced 

impairment of blood-brain barrier (BBB) permeability may also occur via its pro-oxidant 
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effects via activation of NADPH oxidase (Ramirez et al., 2009; Park et al., 2012; 

Jumnongprakhon et al., 2016).

Moreover, human chronic METH users have been reported with increased levels of oxidative 

stress markers (4-hydroxynonenal and malondialdehyde) (Fitzmaurice et. al., 2006) along 

with decreased activity of phospholipid metabolic enzymes (Ross et. al., 2002) and 

antioxidant systems in their brain (Mirecki et al., 2004).

5.2. Participation of microglial cells in METH-induced neurotoxic events

METH exposure causes both microglial and astrocyte activation in the brain (Sekine et. al., 

2008, Krasnova et. al., 2010; McFadden et. al., 2012). This is associated with increased 

production and secretion of pro-inflammatory cytokines that can cause neurodegeneration 

(Xu et al., 2017; Tahmasebinia and Pourgholaminejad, 2017; Temmingh et al., 2020; 

Fukumura et al., 1998). Release of pro-inflammatory cytokines can then activate apoptotic 

signaling cascades in several model systems (Allagnat et al., 2012; Park et al., 2017; 

Butovsky and Weiner, 2018).

METH administration increases the expression of glial fibrillary acidic protein (GFAP) in 

various brain regions (Fukumura et. al., 1998; Guilarte et al., 2003; Krasnova et. al., 2010; 

McFadden et. al., 2012). METH also causes microglial activation in various brain regions 

(Goncalves et al., 2017; Gou et al., 2020; Sekine et al., 2008; Thomas et al., 2004; 2009). A 

role for microglial in the appearance of METH neurotoxicity is supported by reports that 

drugs such as MK-801 and dextromethorphan that block microglial activation can protect 

against the toxic effects of the drug (Asanuma et. al., 2003; Thomas and Kuhn, 2005). The 

sigma-1 receptor may also participate in mediating METH neurotoxicity via their effects on 

glial activation. Specifically, sigma receptor-1 antagonists such as BD1047 and SN79 that 

block glial activation and expression of cytokines have been shown to protect against 

METH-induced neurotoxicity (Kaushal et al., 2013; Robson et. al., 2013, 2014; Zhang et. 

al., 2015).

6. METH neurotoxicity and cell death mechanisms

Biochemical studies using a diversity of animal models have provided evidence for the 

participation of multiple mechanisms in METH-induced neuronal cell death. These include 

pathways regulated by mitochondrial and endoplasmic reticulum (ER) proteins, and 

involvement of some transcription factors.

6.1. Mitochondrial stress and METH neurotoxicity

Mitochondrial dysfunction plays a critical role in METH-induced neurotoxicity (Cadet et al., 

2005, 2007). Auto-oxidation of excessive cytosolic and extracellular DA produces DA 

quinone and other reactive oxygen species (ROS) (Cadet, 1988; Cadet and Brannock, 1998; 

Cadet and Lohr, 1987). Similar mechanisms appear to be involved in the clinical 

manifestations and basic neuropathology of other neurological and psychiatric disorders 

including schizophrenia and Parkinson’s disease (Cadet and Lohr, 1987; Evans, 1993; 

Perfeito et al., 2012). DA oxidation products can cause mitochondrial dysfunctions which 

include mitochondrial swelling, opening the permeability transition pore, and inhibition of 
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enzyme complex I (Berman and Hastings 1999; Jana et al. 2011; Khan et al. 2005). 

Evidence for a role for mitochondrial dysfunctions in METH neurotoxicity was provided in 

a series of studies that showed that METH injections can cause increased expression of pro-

death proteins, BAX and BID, concurrent with decreases in anti-apoptotic proteins, Bcl-2 

and Bcl-XL in the brains of rodents (Jayanthi et al., 2001; 2005; Deng et al., 2002). These 

changes are associated with release of cytochrome c, apoptosis inducing factor (AIF) and 

Smac/DIABLO from intra-mitochondrial spaces into the cytosol followed by induction of 

neuronal apoptosis (Jayanthi et al., 2001; 2004; Deng et al., 2002). Treatment with the 

antioxidant, melatonin, was able to attenuate these degenerative effects of METH 

(Wisessmith et al. 2009). A role for superoxide radicals in METH-induced cell death is also 

supported by the demonstration that METH-induced pathological changes were suppressed 

in copper-zinc superoxide dismutase transgenic mice (Deng and Cadet, 2000).

Of related interest, Brown et al. (2005) have reported that administration of high doses of 

METH can inhibit the enzymatic activity of mitochondrial complexes in the dorsal striatum 

via glutamate receptor- and peroxynitrite-mediated mechanisms. Sepehr et al. (2020) has 

also reported that METH can cause dysfunctions in the mitochondrial respiratory chain via a 

BDNF-TrkB-PGC-1α signaling pathway. This cascade is initiated when BDNF binds to its 

receptor TrkB and activates CREB signaling followed by increased expression of 

proliferator-activated gamma receptor coactivator 1-alpha (PGC-1α). PGC-1α, which is a 

key regulator of mitochondrial biogenesis (Fanibunda et., 2019) and of the mitochondrial 

uncoupling protein-2 (UCP-2) (Sepehr et al., 2020). Additionally, several in vivo and in vitro 
studies have documented disturbances in mitochondrial biogenesis consequent to METH 

injections; those include decreased mRNA expression of mitochondrial biogenesis-involved 

factors, PGC1α, NRF1 and TFAM (Beirami et al., 2018; Valian et al., 2017, 2019; 

Seyedhosseini et al., 2019). METH-induced mitochondrial dysfunctions might also occur via 

activation of protein kinase C-delta (PKCδ) (Dang et al., 2016; 2018; Nam et al., 2015; 

Nguyen et al., 2015; Shin et al., 2014; 2019) and its phosphorylation (Dang et al., 2018). 

Interactions between phosphorylated PKCδ and microsomal epoxide hydrolase (mEH) and 

between cleaved-PKCδ and mEH appear to also be involved in METH-induced cell death 

(Shin et al., 2019). It is also possible that METH-induced mitochondrial apoptotic signaling 

pathway might involve activation of the CCAAT-enhancer binding protein (C/EBPβ) (Qiao 

et al., 2014; Chen et al., 2016; Xu et al., 2018). For example, C/EBPβ can up-regulate the 

expression levels of insulin-like growth factor-binding protein 5 (IGFBP5) and p53-up-

regulated modulator of apoptosis (PUMA) (Qiao et al., 2014; Chen et al., 2016; Xu et al., 

2018) that eventually leads to downstream activation caspase cascade.

6.2. ER stress and METH neurotoxicity

The accumulated evidence suggests that METH-induced cell death can also occur via the 

activation of the endoplasmic reticulum (ER) stress (Krasnova and Cadet, 2009; Yu et al., 

2015; Yang et al., 2018). ER stress is mediated by three pathways initiated by protein kinase 

RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring transmembrane kinase/

endonuclease 1 (IRE1), and activating transcription factor (ATF) 6 (Khanna et al., 2021; 

Shacham et al., 2021; Siwecka et al., 2021; van Anken et al., 2021). ER stress occurs 

consequent to accumulation of unfolded proteins within the ER lumen followed by 
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disruption of the ER-associated protein degradation (ERAD) pathway, altered ER 

homeostasis, and neuronal apoptosis (Kim et. al., 2008; Hacker, 2017). Similar occurrences 

have been observed in the case of METH-induced neuronal death. Specifically, METH 

injections are accompanied by increased expression of several ER stress genes, including 

those that encode the 78-kDa glucose-regulated protein (GRP-78)/BiP, CCAAT/enhancer-

binding protein homologous protein (CHOP), and ATF4 (Jayanthi et al., 2005; Jayanthi et 

al., 2009; Hayashi et al., 2010; Beauvais et al., 2011; Takeichi et al., 2012; Cai et. al., 2016; 

Wen et al., 2019; Chen et. al., 2021). ER stress is accompanied by activation of the upstream 

ER-specific caspase, caspase-12 (Nakagawa et al. 2000; Szegezdi et al. 2003) followed by 

cleavage of the executioner caspase, caspase-3 (Jayanthi et al., 2004). Recent in vitro studies 

by Wongprayoon and Govitrapong (2017) have also documented the involvement of the ER 

pathway in METH-induced death of SH-SY5Y neuronal cells treated with toxic doses of 

METH. The death mechanism includes increased CHOP expression, spliced X-box binding 

protein 1 (XBP1), caspase-12, and caspase-3 (Wongprayoon and Govitrapong, 2017). It is 

important to note that METH-mediated ER stress has been shown to be dependent on the 

activation of the DA D1 receptor in the rat brain (Jayanthi et al. 2009; Cadet et al., 2010; 

Beauvais et al. 2011), thus suggesting the possibility of using similar agents to counteract 

the toxic effects of the drug in humans. Xiao et al. (2018) have also reported that toxic doses 

of METH can significantly up-regulate the expression of phosphorylated PERK and 

caspase-12 and these effects can be suppressed by silencing of cyclin-dependent kinase 

(CDK) 5, a kinase that specifically phosphorylates Tau protein (Hashiguchi et al., 2002). In 

addition, Liu et al. (2020) documented METH induced time and dose-dependent activation 

of the three ER stress cascades, PERK, IRE1α and ATF6 signaling pathways, in 

hippocampal neuronal cells (HT-22). METH-induced disruptions of ER functions are 

accompanied by altered ER calcium homeostasis (Chen et al., 2019). They found that 

secreted ER calcium-monitoring proteins (SERCaMPs), a marker of ER stress that is 

triggered by depletion of ER calcium (Henderson et al., 2014) was significantly increased by 

METH (Chen et al., 2019).

6.3. METH and the ubiquitin/proteasome proteolytic pathway

METH neurotoxicity appears to also involve dysfunctions of the ubiquitin/proteasome 

system (UPS), a system that degrades intracellular proteins is involved in regulation of a 

broad array of cellular processes that include regulation of transcription factors and 

intracellular quality control (Glickman and Ciechanover, 2002, Ciechanover, 2013; Tai and 

Schuman, 2008). Maintenance of UPS function is by release of ubiquitin from the 

polyubiquitin tail and is catalyzed by ubiquitin C-terminal hydrolase L1/PGP 9.5 (UCH-L1) 

(Glickman and Ciechanover 2002). In the nervous system, this system is important in the 

modulation of synaptic plasticity (Tai and Schuman, 2008) and in controlling mechanisms 

involved in neurodegenerative processes (Schmidt et al., 2021). These facts are consistent 

with the demonstration that toxic doses of METH alter (UCH-L1) protein levels (Liao et al., 

2005) accompanied by incomplete degradation of target proteins and accumulation of prion 

protein aggregates in DA-containing cells (Ferrucci et al., 2017). A proteomic analysis has 

also revealed that METH injections caused increased ubiquitin-conjugating enzyme E2N in 

various brain regions of rats (Li et al., 2008). Involvement of this system in METH 

neurotoxicity needs to be investigated further.
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6.4. Transcription factors and their involvement in METH neurotoxicity

Injections of toxic of METH have been shown to alter the expression of several transcription 

factors including immediate-early genes (IEGs) in various brain regions (Bisagno and Cadet, 

2019; Cadet et al., 2002; 2010) where METH-induced terminal degeneration and/or 

neuronal cell death have been observed (Deng et al., 2001; 2002; 2007; Jayanthi et al., 2004; 

2005). Some of these transcription factors include c-fos, fosB, Fra-2, Egr-1, Egr-2, and Egr3 

(Hirata et. al., 1998; Cadet et al., 2001; Thiriet et al., 2001; Jayanthi et al., 2005; Beauvais 

et. al., 2010; Cadet et al., 2010; McCoy et. al., 2011; Martin et. al., 2012). A role for c-fos in 

the METH-induced cell death was provided by Deng et al., (1999) who reported that 

METH-neurotoxicity was significantly exacerbated in heterozygous and homozygous c-fos 

knock-out mice, with the homozygous showing greater loss of striatal dopaminergic 

markers. The authors also showed c-fos knock-out mice exhibited more DNA fragmentation 

in nondopaminergic cells in the and dorsal striatum (Deng et al., 1999). Together, these 

observations suggest that c-fos induction after injections of toxic METH doses might occur 

to promote the induction of protective mechanisms such as the production of antioxidant 

enzymes or BDNF to attenuate METH neurotoxicity.

Further support for a role of IEGs in METH-induced cell death was provide by Jayanthi et 

al. (2005) who found that increased expression of expression of members of the Jun, Egr, 

and Nur77 subfamilies of transcription factors (TFs) occurred concurrently with increased 

markers of cell death in the rodent brain. They found, in addition, that these increases were 

accompanied increased expression of Fas ligand (FasL) mRNA which is known to be 

regulated by several IEG transcription factors. Moreover, METH neurotoxicity was 

accompanied by increased FasL protein expression in striatal GABAergic neurons that 

express enkephalin. There was also METH-induced cleavage of caspase-3 in FasL- and Fas-

containing neurons. Importantly, pre-injections of the dopamine D1 receptor antagonist, 

SCH23390, that block the METH-induced IEG and FasL responses also attenuated METH-

induced neuronal apoptosis.

7. Meth neurotoxicity and autophagy

Autophagy plays an important role in the maintenance of neuronal function (Yamamoto and 

Yue, 2014; Ariosa and Klionsky, 2016). Autophagic processes are highly conserved with 

multiple ordered sequences of events that are tightly regulated by autophagy-related proteins 

(Klionsky, 2000; Mizushima, 2007; Meijer and Codogno, 2004). The sequences are initiated 

via the formation of a phagophore that can be triggered by a diversity of cellular stressors 

that include food or energy deprivation and hyperthermia (Klionsky and Emr. 2000, Cuervo 

et al., 2004; Chu, 2008). This initial step is regulated by the phosphoinositide 3-kinase 

(PI3K)-Beclin-1-Atg14-Vps15 complex (Klionsky and Emr, 2000; Klionsky, 2007). A 

subsequent step involves the formation of the autophagosome, a process by which the 

phagophore expands and engulfs the cytosolic component controlled by autophagy-

associated genes (Atg) genes through Atg12-Atg5 and LC3 complexes (Sanchez-Martin and 

Komatsu, 2020). Ultimately, the fusion of autophagosomes and lysosomes leads to 

degradation of cytosolic contents (Gatica et al., 2018; Nakamura and Yoshimori, 2018). 

Autophagic mechanisms are thought to participate in molecular and biochemical pathways 
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that modulate neurodegenerative processes that constitute the substrates of diseases such as 

Alzheimer’s and Parkinson’s disease (Giorgi et al., 2021; Lu et al., 2020). It was therefore of 

interest to investigate the effects of METH on autophagic mechanisms.

METH-induced autophagic changes were initially reported by Larsen et al. (2002) who 

document the formation of autophagic granules upon exposure to the drug. Castino et al. 

(2008) also observed that METH can also cause autophagosome formation in a cell culture 

system. Of note, genetic inhibition of autophagy in rat dopaminergic has been reported to 

exacerbate METH-induced apoptosis (Lin et al. 2012), thus implicating autophagic 

mechanisms as protective factors against METH neurotoxicity. Overexpression of LC3-II 

(microtubule-associated light chain 3), an autophagy regulatory protein, was also shown to 

protect against METH-induced cell death (Lin et al. 2012). Those results are not consistent 

with those of other investigators who have shown that inhibition of autophagy via mTOR 

(negative regulator of autophagy) attenuated METH-induced cell death (Kongsuphol et al. 

2009; Li et al. 2012). Moreover, Xu et al. (2018) have intimated that autophagy may 

constitute an early response in a METH-induced cell death cascade. Xu et al (2018) injected 

high doses of METH and reported increased protein expression of autophagy markers, 

Beclin-1 and LC3-II, in the rat striatum (Xu et al., 2018). A recent study by Subu et al 

(2020) had also reported the observation that rats that self-administered large quantities of 

METH during a self-administration experiment exhibited significant alterations in markers 

of autophagy and neuronal apoptosis in their dorsal striatum.

Other investigators have also provided evidence for METH-induced autophagy. For 

example, Li et al (2016) also reported that METH exposure increased the expression of 

DNA damage-inducible transcript 4 (DDIT4) and upregulation of Beclin-1 and LC-II. Yang 

et al (2019) showed that large doses of METH can increase Beclin-1 expression in human 

neuroblastoma cells via the AKT- mTOR signaling pathway. Both AKT and DDIT4 are 

negative mTOR regulators that promote the formation of autophagosomes (Moore et al. 

2016; Miao et al., 2020; Wang et al., 2012). A recent study by Huang et al. (2019) also 

documented METH-induced increased expression of tribbles homolog 3 (Trib3), an 

inducible ER stress protein (Ohoka et al., 2005), that participates in autophagic mechanisms 

(Ord and Ord, 2017). Trib3 was shown to decrease p-Akt/p-mTOR interaction that resulted 

in increased expression of Beclin-1 and LC3-II (Huang et al., 2019).

Chaperone-mediated autophagy (CMA) (Dice, 2007) has also been reported after toxic 

METH doses (Sun et al. 2019). CMA is different from micro- or macroautophagy in that 

degradation can occur with vesicle formation (Dice, 2007). CMA degrades thirty percent of 

cytosolic proteins during prolonged nutrient deprivation (Dice, 2007). Molecular chaperones 

in the cytoplasm and within lysosomes are responsible for this degradation pathway. One of 

the critical CMA components is the lysosome-associated membrane protein (LAMP) type 

2A, a receptor located on the lysosomal membrane (Cuervo and Dice, 1996). LAMP-2A is 

the rate limiting step for CMA (Cuervo and Dice, 1996). Another protein of interest is the 

heat shock protein of 70kd (hsc70) which can form a complex with LAMP-2A (Dice, 2007). 

METH exposure was accompanied by time- and dose-dependent increases in LAMP-2A 

expression in human neuroblastoma cell lines, PC12 cells, and primary mice neurons (Sun et 

al., 2019). Interestingly, LAMP-2A silencing exacerbated METH-induced cell death (Sun et 

Jayanthi et al. Page 10

Exp Neurol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



al., 2019), suggesting that CMA might work as a protective mechanism in those in vitro 

models. Much more remains to be done to understand the potential role of CMA in METH-

induced neurotoxicity using in vivo models.

Interestingly, C/EBPβ, appears to be a critical effector of METH-induced autophagy via the 

activation of DDIT4/TSC2/mTOR signaling or Trib3/Parkin/alpha-synuclein mechanisms 

(Huang et al., 2019; Xu et al., 2018). A report by Li et al. (2017) has also suggested a role 

for glycogen synthase kinase3β (GSK3β) in METH-induced autophagy and 

neurodegeneration via the promotion of Tau and α-syn phosphorylation, α-syn 

accumulation, inhibition of lysosomal degradation, and consequent apoptotic cell death.

8. METH neurotoxicity and potential relevance to therapeutic approaches

METH users have been reported to suffer from cognitive impairments that can impact their 

activities of daily living and course of treatment when they seek treatment (Cadet and 

Bisagno, 2016). Importantly, there is a suggestion that recovery of cognitive functions can 

occur in conjunction with improvement in impulsivity and self-regulation after a 

psychological intervention with working memory training during in-patient treatment for 

methamphetamine use disorder (Brooks et. al., 2016). These observations are supported by 

pre-clinical studies that have reported improvement in cognitive functions after 

administration of pharmacological compounds such as ZSET1446, a T-type calcium channel 

activator (Ito et. al., 2007), silibinin, a natural polyphenolic flavonoid (Lu et. al., 2010), 3-

cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) a mGluR5 allosteric 

modulator (Reichel et. al., 2011) and modafinil, a dopamine uptake blocker (Kalechstein et. 

al., 2010; González et. al., 2014; Reichel et. al., 2014). The ameliorating effect of ZSET1446 

(azaindolizinone derivative, a T-type calcium channel activator) and modafinil (2-

[(diphenylmethyl) sulfinyl] acetamide) on METH-induced impairment of recognition 

memory is mediated via activation of ERK cascade (Ito et. al., 2007; González et. al., 2014). 

In addition to cognitive improvement, modafinil can also provide protection against METH-

induced cell death and neuroinflammation in the rodent models (Raineri et. al., 2012), it is a 

drug that might have substantial anti-neurotoxic effects in humans who are treated with it. 

Silibinin mediates its ameliorating effects by reducing dopamine and serotonin levels in the 

prefrontal cortex and hippocampus, respectively (Lu et. al., 2010). CDPPB, a positive 

allosteric modulator of mGluR5 receptors, improved METH-induced cognitive impairments 

via interactions with these receptors (Reichel et. al., 2011).

Pharmacological interventions that target ROS and RNS signaling cascades also hold great 

potential in alleviating METH-induced neurotoxicity. Specifically, selenium, a dietary 

antioxidant is known to reduce METH-induced ROS production (Kim et al., 1999; Imam et 

al., 1999). Another antioxidant, N-acetyl-L-cysteine, can also suppress METH-induced 

oxidative stress in both rodent (Zhang et al., 2012) and primate (Hashimoto et al., 2004) 

models. Moreover, inhibitors of nitric oxide synthase, (7-nitroindazole and AR-R17477AR), 

and a selective peroxynitrite scavenger, (5,10,15,20-tetrakis [2,4,6-trimethyl-3,5-

sulfonatophenyl] porphyrinato iron III (FeTPPS)), have been shown to reduce METH-

induced hyperthermia, peroxynitrite production, and METH-induced dopaminergic 

depletion (Imam et al., 2000; Sanchez et al., 2003). Although much remains to be done to 
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test whether these agents could improve cognitive functions in METH-treated animals, when 

taken together, these results suggest that the addition of anti-oxidative compounds may 

improve cognitive by reducing the neurotoxic effects of METH.

9. Conclusions

This review has discussed the evidence that has documented the toxic effects of METH in 

the central nervous system. These include degeneration of monoaminergic terminals and 

neuronal apoptosis. There is now evidence that METH administration is also accompanied 

by autophagic changes in the brain. It remains to be clearly determined if these autophagic 

changes are precursors of neuronal apoptosis or serve as attempts to protect the 

neurotoxicity of the drug. We have provided a schema (Figure 1) that illustrates the various 

biochemical cascades that have been shown to work as an ensemble to cause terminal 

damage and neuronal apoptosis in the mammalian brain. Although much more remains to be 

done to document if autophagy occurs in the brains of human METH users, a recent paper 

has reported that METH users exhibit increased Atg5 and LC3 in the pre-frontal cortical 

region (Khoshsirat et al., 2020). Nevertheless, because there is evidence that there might be 

pathobiological events in the brains of METH users who consume large quantities of the 

drug, it is essential that developers of pharmacological agents to treat METH use disorder 

take these toxic consequences into consideration.
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Figure 1. Methamphetamine neurotoxicity- ROS and neuroinflammation.
METH augments ROS and RNS levels that eventually lead to oxidative stress state. ROS in 

excessive concentrations can cause cellular damage to DNA, lipid membranes, proteins and 

other macromolecules. The end products of lipid peroxidation and protein carbonyl 

oxidation cause cytoskeleton disruption and DNA damage, such as double-strand DNA 

breaks. Moreover, the reactive species (ROS and RNS) triggers signaling pathways that lead 

to the over-activation of the major glial inflammatory characters: microglia and astrocytes. 

These glial cells are the mediators of neuroinflammatory response and ultimately leads to 

neurodegeneration.
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Figure 2. Methamphetamine neurotoxicity-cell death mechanisms.
Scheme summarizes insights into the various molecular and functional connections between 

the different METH-induced neuronal cell death mechanisms.
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Figure 3. Methamphetamine neurotoxicity-autophagy.
Schematic figure shows the signaling pathways that may be involved in METH-induced 

autophagy. METH is shown to facilitate both chaperone-mediated autophagy (CMA) and 

macro-autophagy. In both autophagic mechanisms, Beclin1 is the vital protein that 

associates with Bcl2 and promotes autophagy. METH-induced macro-autophagy is mediated 

via C/EBPβ by induction of C/EBPβ/DDIT4 /TSC2/mTOR signal axis or induction of C/

EBPβ/Trib3 /Parkin/α-Syn signal axis. For the METH-induced CMA, The KFERQ-like 

motif of a cargo protein is detected by the chaperone, HSC70. This complex binds to the 

lysosomal membrane protein lysosome-associated membrane protein type 2A (LAMP2A). 

Then, the assembled LAMP2A is translocated through the lysosomal membrane. Once 

inside the lysosomal lumen, the substrate protein is rapidly degraded by lysosomal proteases 

and the hsc70 chaperone complex is released from the lysosome and ready to bind to another 

substrate protein for CMA.
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Figure 4. Possible mechanisms of neurotoxicity produced by methamphetamine.
The depicted scheme provides a well- studied mechanistic outline in METH neurotoxicity; 

however, it mainly refers to the striatal synapses. Large doses of METH causes degeneration 

of DA terminals characterized by excessive DA release from the storage vesicles and causes 

perturbation in DA metabolism. Extracellular DA auto-oxidizes to produce reactive oxygen 

(O2.-, H2O2) and nitrogen (NO, ONOO-) species (ROS/RNS). METH exposure also causes 

increased activity of microglia and astrocytes. Reactive gliosis is associated with increased 

production of pro-inflammatory cytokines (TNFα; IL-1β) and ROS/RNS. This process 

initiates oxidative-stress mediated neuronal apoptotic cascade that includes mitochondrial 

stress, endoplasmic reticulum (ER) stress, ubiquitin-proteasome proteolysis, and 

neuroinflammation. In addition to affecting DA transmission, METH also exerts 

excitotoxicity via glutamate release that binds to glutamate receptors (GluR), triggers 

calcium influx, produces RNS and further oxidative stress-induced damage.
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Table 1.

Markers of Methamphetamine Toxicity

Alterations in the expression and balance of proinflammatory factors

Decreased levels of TH, DA, and DAT

Decreased levels of TPH, 5-HT, and 5-HTT

DA and 5-HT terminal degeneration

Neuronal Apoptosis

Neuronal Autophagy

Astrocytosis

Microgliosis
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