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Abstract
Recent studies have shown the ubiquity of pleiotropy for variants affecting human complex traits. These studies also show 
that rare variants tend to be less pleiotropic than common ones, suggesting that purifying natural selection acts against highly 
pleiotropic variants of large effect. Here, we investigate the mean frequency, effect size and recombination rate associated 
with pleiotropic variants, and focus particularly on whether highly pleiotropic variants are enriched in regions with putative 
strong background selection. We evaluate variants for 41 human traits using data from the NHGRI-EBI GWAS Catalog, as 
well as data from other three studies. Our results show that variants involving a higher degree of pleiotropy tend to be more 
common, have larger mean effect sizes, and contribute more to heritability than variants with a lower degree of pleiotropy. 
This is consistent with the fact that variants of large effect and frequency are more likely detected by GWAS. Using data 
from four different studies, we also show that more pleiotropic variants are enriched in genome regions with stronger back-
ground selection than less pleiotropic variants, suggesting that highly pleiotropic variants are subjected to strong purifying 
selection. From the above results, we hypothesized that a number of highly pleiotropic variants of low effect/frequency may 
pass undetected by GWAS.

Introduction

The analyses of thousands of genetic variants obtained 
in the last decades by Genome-Wide Association Studies 
(GWAS) have provided a great advance in the knowledge 
of the understanding of genetic variation, particularly for 
human traits (Visscher et al. 2017). One issue arising from 
these analyses is the ubiquity of pleiotropy, i.e., the obser-
vation that a genetic variant may affect more than one trait 
(Wright 1968; Kacser and Burns 1981; Stearns 2010; Paaby 
and Rockman 2013). Several recent studies have shown that 
a great proportion of the human genome is involved in pleio-
tropic effects (e.g., Wang et al. 2010; Sivakumaran et al. 
2011; Pickrell et al. 2016; Chesmore et al. 2018; Jordan 
et al. 2019; Watanabe et al. 2019; Shikov et al. 2020) and 
it has been suggested that complex traits are driven by an 

enormously large number of genes, implying that pleiotropy 
is the rule rather than the exception (Boyle et al. 2017). The 
latest meta-analysis on pleiotropic variants carried out by 
Shikov et al. (2020), and based on more than 500 complex 
traits, concludes that about 180 Mbs of the human genome 
are covered by pleiotropic loci and about 50% of SNPs are 
associated with more than one phenotype. Another recent 
study (Watanabe et al. 2019) suggests that this proportion 
is even larger (60%). Highly pleiotropic variants are gener-
ally associated with broadly expressed genes with ubiquitous 
functions, such as matrisome components, developmental 
and immunological system genes, and growth cell regulators 
(Shikov et al. 2020).

An observation made by Shikov et al. (2020) is that rare 
variants tend to be less pleiotropic than common ones. This 
result is coherent with the observation that natural selec-
tion against deleterious mutations has been shown to operate 
on complex trait variation (Gazal et al. 2018; Zeng et al. 
2018). Thus, if pleiotropic variants affecting human diseases 
tend to be deleterious, highly pleiotropic variants would be 
expected to be removed from the population or kept at low 
frequencies (Paaby and Rockman 2013). Shikov et al. (2020) 
also showed that more pleiotropic variants have higher gene 
expression than less pleiotropic ones, although they did not 
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compare the mean effect sizes of variants across different 
degrees of pleiotropy. A previous analysis of pleiotropy of 
human genes showed, however, a tendency for more pleio-
tropic variants to have larger effect sizes than less pleiotropic 
ones (Chesmore et al. 2018), an observation also made for 
other species (Wagner and Zhang 2011). Since the detection 
power of GWAS increases with the frequency and effect 
size of variants (Hill and Zhang 2012; Visscher et al. 2017), 
it would be expected that highly pleiotropic variants found 
by GWAS would tend to have substantial effect sizes and 
frequencies, explaining the latter results. Nevertheless, the 
observation of a higher frequency and also a higher effect 
size for highly pleiotropic variants seems to be contradictory 
with the hypothesis that highly pleiotropic loci are strongly 
affected by purifying selection. A way to ascertain the sup-
port for the purifying selection hypothesis is to investigate 
the degree of background selection associated with loci with 
different degrees of pleiotropy. This can be done by examin-
ing the mean value of the B statistic (McVicker et al. 2009) 
ascribed to the genomic regions where variants with differ-
ent degrees of pleiotropy are allocated. The B statistic indi-
cates the expected fraction of neutral diversity that remains 
at a given genomic site because of the effect of background 
selection (Charlesworth and Charlesworth 2010, Chap. 8). 
Under the purifying selection hypothesis, and for a constant 
recombination rate in a given genomic region, it would be 
expected that more pleiotropic variants in that region were 
associated with lower values of the B statistic than less pleio-
tropic ones, implying a larger effect of negative selection.

Here, we carried out an analysis of variants recovered 
from the GWAS Catalog for 41 human traits and diseases to 
investigate the mean frequency, effect size, recombination 
rate and intensity of background selection associated with 
variants with different degrees of pleiotropy. In addition, we 
investigated the intensity of background selection associated 
with the datasets of pleiotropic variants analyzed by Pickrell 
et al. (2016), Watanabe et al. (2019) and Shikov et al. (2020). 
Overall, the results suggest that more pleiotropic variants 
are located in regions with stronger background selection.

Methods

The analyses first reported in this paper were carried out 
on the NHGRI-EBI GWAS Catalog data (MacArthur et al. 
2017), previously analyzed by López-Cortegano and Cabal-
lero (2019) for a different purpose. Briefly, the GWAS Cata-
log was processed by filtering incomplete or low informative 
data and by clustering together traits with a highly overlap-
ping genetic background. All data manipulation, including 
statistical analyses, was carried out using the R language (R 
Core Team 2017).

We considered SNPs for which information on the 
mapped gene, the effect, reported as an odds ratio or beta-
coefficient, the frequency of the risk allele, and the reported 
p value, were available in the Catalog. For odds ratio traits, 
the corresponding variant effects for liability were estimated 
by the method of So et al. (2011). We limited our study to 
the most significant associations, disregarding SNPs with 
a significance level higher than the standard p = 5 × 10−8. 
Only one SNP per associated Catalog gene (that with the 
lowest p value) was considered, and the corresponding gene 
or intergenic name associated with that SNP was assumed to 
be a potential causal locus. The contribution to heritability 
from each locus was calculated as h2 = 2β2q(1 − q) where 
β is the locus estimated effect and q its frequency. For the 
sake of robustness, only traits with a wide and well-known 
genetic background composed by at least 30 unique genes 
detected were considered. In addition, we restricted the 
traits analyzed to those represented by at least three differ-
ent studies. More details of the procedure can be found in 
López-Cortegano and Caballero (2019). In total, the dataset 
analyzed was composed of autosomal loci corresponding 
to 41 human traits which can be classified in 10 functional 
domains (Supplemental Table S1).

The detected SNPs and associated loci were classified as 
pleiotropic of degree 1, 2, 3, etc. if they were associated with 
1 (non-pleiotropic), 2, 3, etc. traits. The average homozygous 
effect size, minor allele frequency (MAF) and contribution 
to heritability from each locus, were obtained for each plei-
otropy degree.

The value of the B statistic attached to each genomic 
position of the genome represents the expected reduction in 
nucleotide diversity at a neutral site due to purifying selec-
tion at other sites (McVicker et al. 2009). These authors 
made a systematic search for signatures of selection by ana-
lyzing the genomic distribution of human polymorphisms 
and sequence differences with other primate species. By 
applying a theoretical model of background selection (Hud-
son and Kaplan 1995; Nordborg et al. 1996) to conserved 
and neutral regions, they could calculate the value of this 
statistic along the human genome. A value of B = 1 indicates 
that no neutral diversity has been lost by selection, whereas 
a value of zero would indicate a maximal loss because of 
purifying selection. A reduction in neutral diversity for a 
given genomic region is a function of the intensity of puri-
fying selection and the rate of recombination, as the impact 
of selection on diversity is higher in low recombination 
regions (Charlesworth et al. 1993; Santiago and Caballero 
1998). The average B value across the autosomal genome is 
of about 0.74–0.81 (McVicker et al. 2009).

We investigated the relationship between the degree of 
pleiotropy and the mean intensity of background selec-
tion in our own data and in that obtained by Pickrell et al. 
(2016), Watanabe et al. (2019) and Shikov et al. (2020). 
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Pickrell et al. (2016) studied 42 human traits (using GWAS 
from different studies and their own one) and identified 
348 genomic regions with SNPs associated with more 
than 1 trait (available from their Supplementary Table 1). 
Watanabe et al. (2019) studied 236,638 SNPs from the UK 
Biobank (their Supplementary Table 12), 11,544 genes 
(their Supplementary Table 7) and 3,362 loci groups (of 
physically overlapping loci; their Supplementary Table 4) 
associated with 558 traits (grouped in 24 domains). 
Finally, using the UK Biobank data, Shikov et al. (2020) 
were able to identify 149,345 pleiotropic SNPs from which 
64,545 were regarded as high-confidence biologically plei-
otropic variants (their Additional Data 5). The pleiotropic 
variants were located in 1314 genomic regions along the 
human genome (their Table S1), encompassing about 180 
Mbs. These genomic regions were classified according to 
the median or maximal degree of pleiotropy of the variants 
encompassed within them.

We analyzed the relationship between the strength of 
background selection and the degree of pleiotropy at the 
level of genomic regions, genes or SNPs associated with 
them using the coefficient of simple linear regression 
(b) for the value of B on the degree of pleiotropy. Since, 
as mentioned above, the value of B depends both on the 
intensity of natural selection and the rate of recombination 
(RR), we also obtained the partial regression coefficients 
(b′) of B on the degree of pleiotropy and RR. These were 
obtained with the R command summary (lm(y ~ x1 + x2)), 
where y is the dependent variable (B) and x1 and x2 are the 
predictor variables (degree of pleiotropy and RR, respec-
tively). For genomic regions we averaged the B and RR 
values for all positions within each region. For genes, we 
averaged the corresponding values for all positions from 
the start to the end of the gene. Finally, for SNPs, the 
values of B for each SNP position were considered. All 
genomic regions, gene and SNP coordinates were fitted 
to the genome version GRCh37 (hg19), using the dbSNP 
database (Sherry et al. 2001) (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​
snp/​organ​isms/​archi​ve/​human_​9606_​b144_​GRCh3​7p13/​
VCF) for SNPs, and the RefSeq database (O’Leary et al. 
2016) (ftp://​ftp.​ncbi.​nlm.​nih.​gov/​refseq/​H_​sapie​ns/​annot​
ation/​GRCh37_​latest/​refseq_​ident​ifiers/​GRCh37_​lat-
est_​genom​ic.​gff.​gz) for genes. Recombination rates for 
each SNP, gene or genomic region fitted to the GRCh37 
coordinates were obtained from the human genetic map 
(Myers et al. 2005). Since many variants are detected in 
the MHC region, which is not representative of the rest of 
the genome in terms of recombination rate or B statistic 
due to its high diversity and linkage disequilibrium (Trah-
erne 2008), for this analysis, we discarded the SNPs, genes 
and genomic regions located in, or strongly linked to that 
region, removing data from 25 to 34 Mb of chromosome 6.

Results

The total number of pleiotropic loci found in our study 
was 629, which is a 23% of all loci analyzed (Table S1). 
Gastrointestinal, skeletal and cardiovascular func-
tional domains presented the highest proportions of 
pleiotropic loci when averaging traits (62, 61 and 60%, 
respectively), and the neurological/psychiatric domain, 
the lowest one (18%) (Supplementary Figure S1). As 
expected, the higher the pleiotropy degree, the lower 
the number of variants found, with the highest degree 
being 12 (Supplementary Fig. S2). The mean effect size 
steadily increased with the pleiotropy degree (Fig. 1a, 
regression coefficient b = 0.035, p < 2 × 10−16), and 
the same was observed for the standard deviation of 
effect sizes (Fig. 1b) (b = 0.008, p = 0.04). The MAF of 
variants gradually increased with the pleiotropy degree 
(Fig. 1c, b = 0.006, p < 2 × 10−4), and this, along with 
the increased effects sizes, accounted for a higher con-
tribution to heritability for the most pleiotropic classes 
(Fig. 1d, b = 3.15 × 10−4, p = 0.001).

The rate of recombination was almost invariable across 
the different degrees of pleiotropy, with a tendency to be 
positively correlated with the pleiotropy level, and only 
slightly negative for the data of Shikov et  al. (2020) 
(Fig. 2).

The relationship between the degree of pleiotropy and 
the strength of background selection (B statistic) is given 
in Fig. 3. The relationship was non-significant for our own 
data (Fig. 3a, partial regression of B on the degree of plei-
otropy of b′ = 0.010, p = 0.06) and for the data of Pickrell 
et al. (2016) (Fig. 3b, b′ = − 0.007, p = 0.2). However, for 
the two much larger datasets of Watanabe et al. (2019) 
(Fig.  3c, b′ = − 0.018, p < 2 × 10−16) and Shikov et  al. 
(2020) (Fig. 3d, b′ = − 0.022, p < 2 × 10−16), the relation-
ship was significantly negative and of similar magnitude. 
The results presented in Fig. 3 excluded MHC regions, 
however, when these were considered the results were 
similar, with partial regression of B on the degree of plei-
otropy of: b′ = 0.012 (p = 0.02), − 0.004 (p = 0.4), − 0.017 
(p < 2 × 10−16), − 0.013 (p < 2 × 10−16), respectively. The 
results of Watanabe et al. (2019) in Fig. 3c refer to the 
average B value of genomic regions considering domains, 
but the results were similar if traits (rather than domains) 
or genes or SNPs were considered instead (Fig. S3). Analo-
gously, the results of Shikov et al. (2020) in Fig. 3d refer 
to genomic regions regarding their maximal pleiotropic 
degree, but similar results were obtained when median 
pleiotropic degrees of each region were assumed, or if 
SNPs were considered instead (Fig. S4).

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/archive/human_9606_b144_GRCh37p13/VCF
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/archive/human_9606_b144_GRCh37p13/VCF
ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/archive/human_9606_b144_GRCh37p13/VCF
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh37_latest/refseq_identifiers/GRCh37_latest_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh37_latest/refseq_identifiers/GRCh37_latest_genomic.gff.gz
ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh37_latest/refseq_identifiers/GRCh37_latest_genomic.gff.gz
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Discussion

The results from our data show that about 23% of variants 
associated with 41 diseases and other human traits are pleio-
tropic, and that variants with higher degree of pleiotropy are 
more common and have average larger effect sizes than less 
pleiotropic or non-pleiotropic variants (Fig. 1). The propor-
tion of pleiotropic loci found is lower than that reported by 
Chesmore et al. (2018) (44%) and by Shikov et al. (2020) 
(49%), and much smaller than that reported by Watanabe et al. 
(2019) (60%). These differences, however, can be ascribed to 
a much lower number of traits considered in our study (41) 
with respect to those considered by Chesmore et al. (2018) 
(1094 traits), Watanabe et al. (2019) (558 traits) and by Shikov 
et al. (2020) (543 traits). In addition, as suggested by Shi-
kov et al. (2020), the large proportion of pleiotropic variants 
detected by Watanabe et al. (2019) could be explained by the 
use by these authors of sparsely defined trait domains.

In agreement with the results of Chesmore et al. (2018), 
we found a tendency for the average mean effect size of 
pleiotropic loci to increase with the degree of pleiotropy 
(Fig. 1a), which is also in agreement with other observations 

(Wagner and Zhang 2011). However, Chesmore et al. (2018) 
reported a decrease in the variance of effect sizes with the 
degree of pleiotropy whereas we observed an increase in 
the standard deviation (Fig. 1b). The discrepancy is due to 
a different way of calculation. Chesmore et al. (2018) cal-
culated the variance of the average values of the multiple 
effects ascribed to a pleiotropic locus. As they discussed, 
because the larger the degree of pleiotropy the larger the 
number of effect sizes averaged, the variance of the mean is 
decreased with the degree of pleiotropy because of the law 
of large numbers. In fact, doing the calculation of the vari-
ance in that way, we also obtained a decline in the standard 
deviation of effects within the degree of pleiotropy (Supple-
mental Fig. S5). In contrast, in our Fig. 1b, we obtained the 
standard deviation of effect sizes within pleiotropic loci, and 
then averaged those standard deviations over loci with the 
same pleiotropic class, observing an increase in the standard 
deviation with the degree of pleiotropy. Therefore, more 
pleiotropic loci have a higher disparity of effects on the 
multiple traits they affect than less pleiotropic loci.

Another difference between our results and those of Ches-
more et al. (2018) refers to the levels of pleiotropy found. 

Fig. 1   a Relationship between the estimated effect of variants and the 
degree of pleiotropy (b = 0.035, R2 = 0.07, F = 110.6, p < 2 × 10−16). 
b Relationship between the standard deviation of the effect sizes of 
pleiotropic variants and the degree of pleiotropy (b = 0.008, R2 = 0.35, 
F = 5.78, p = 0.04). c Relationship between the minor allele fre-

quency (MAF) of SNPs and the degree of pleiotropy (b = 0.006, 
R2 = 0.0002, F = 14.38, p = 0.0002). d Relationship between the herit-
ability contributed by the variants (h2) and the degree of pleiotropy 
(b = 3.15 × 10−4, R2 = 0.009, F = 10.16, p = 0.001). Simple regression 
lines are shown
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Whereas we found loci with a maximum of 12 (dichoto-
mous and quantitative traits) associated traits, Chesmore 
et al. (2018) investigated only dichotomous traits and found 
loci with a degree of pleiotropy up to 53. This difference 
can be again ascribed to the much larger number of traits 
considered by Chesmore et al. (2018) (more than 1000 ver-
sus 41). To have the highest possible robustness in the data, 
we grouped traits with similar genetic architecture, and we 
analyzed a very restricted set of traits, in particular, only 
traits for which at least three studies had been reported in 
the Catalog and for which at least 30 loci had been detected.

We found an increase in minor allele frequency with the 
degree of pleiotropy (Fig. 1c), in accordance with the obser-
vation of Shikov et al. (2020) that rare variants tend to be less 
pleiotropic than common ones. In agreement with this increase 
in frequency and effect sizes, the proportional contribution to 
heritability for each of the traits from more pleiotropic loci was 
found to be higher than that of less pleiotropic or non-pleio-
tropic ones (Fig. 1d). Thus, it appears that highly pleiotropic 
loci may contribute substantially to heritability. This obser-
vation is concordant with the idea of the ‘omnigenic’ model 

suggested by Boyle et al. (2017), for which most loci of the 
genome might contribute in one way or another to heritability, 
with genes of high effect size (possibly the most pleiotropic 
ones) at the center of the genomic network. To explain the 
larger frequency for more pleiotropic variants, Shikov et al. 
(2020) provided three possible explanations. First, that a lack 
of rare pleiotropic variants may be a consequence of a lack 
of statistical power for their detection. Second, that common 
variants may have spurious pleiotropy resulting from linkage 
disequilibrium with different causal variants. In fact, inferring 
pleiotropy from molecular markers is difficult if the linkage 
disequilibrium relationships between markers and causal vari-
ants are not known with precision (Gianola et al. 2015). And 
third, that natural purifying selection against highly pleiotropic 
deleterious variants of large effect size would result in segre-
gating pleiotropic variants with lower effect sizes and higher 
frequencies. As stated by Shikov et al. (2020), the fact that 
natural selection against deleterious mutations has been shown 
to operate on complex trait variation (Gazal et al. 2018; Zeng 
et al. 2018), would support the third explanation. However, the 
other two explanations may also play a role.

Fig. 2   Relationship between the recombination rate (RR in log10[cM/
Mb]) of each variant genomic position and the degree of pleiotropy. a 
Data from the dataset corresponding to Fig. 1 considering the average 
RR of genes (b = 0.032, R2 = 0.0009, F = 3.57, p = 0.06). b Data from 
Pickrell et al. (2016) considering the average RR of genomic regions 
(b = − 0.004, R2 = 0.0006, F = 0.19, p = 0.7). c Data from Watanabe 

et al. (2019) considering the average RR of genomic regions and the 
degree of pleiotropy of domains (b = 0.014, R2 = 0.010, F = 34.65, 
p = 4 × 10−9). d Data from Shikov et al. (2020) considering the aver-
age RR of genomic regions and the maximal degree of pleiotropy 
of domains (b = − 0.017, R2 = 0.01, F = 17.4, p = 3 × 10−5). Simple 
regression lines are shown
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We analyzed the relationship between the degree of plei-
otropy of variants and the strength of background selection 
attached to their positions. We found that, for the analysis 
with fewer traits (Pickrell et al. 2016, and our own study) 
with about 40 traits each, there was a non-significant rela-
tionship between B and the degree of pleiotropy (Fig. 3a, b). 
Nevertheless, some of the most pleiotropic loci found in our 
study (Table S2) were associated with low values of B, par-
ticularly gene GCKR (B = 0.099), which was also found as 
highly pleiotropic by Chesmore et al. (2018), thus denoting 
a high impact of background selection. For the larger data-
sets (Watanabe et al. 2019; Shikov et al. 2020) with many 
more traits (more than 500) and pleiotropic SNPs (about one 
hundred and fifty thousand), there was a consistent signifi-
cant and negative relationship between B and the degree of 
pleiotropy (Fig. 3c, d). The discrepancy between the non-
significant relationships found for the two first datasets and 
these ones can be that the latter are more comprehensive 

studies, but there may be other explanations. The results in 
Fig. 3 refer to different sources of data, considering the aver-
age B value of genes in the case of our own data, and that of 
genomic regions in the case of the other studies. However, 
for Watanabe et al. (2019) data, the trends were repeated 
when the average B was obtained from genes (Fig. S3c, d) as 
well as for individual SNPs (Fig. S3e, f). Moreover, for Shi-
kov et al. (2020) results, the trends were also similar if indi-
vidual SNPs were considered (Fig. S4c, d). These general 
tendencies are also shown in Supplemental Material Fig. S6, 
which shows the mean value of B for a range of pleiotropic 
degree classes for the main datasets available. Note that the 
data from Pickrell et al. (2016) and Shikov et al. (2020) do 
not have results for the non-pleiotropic class, which could 
contribute to the non-significant relationship found in the 
former. Therefore, the negative relationship found between 
B and the degree of pleiotropy is very robust. An additional 
source of difference between the datasets is that our results 

Fig. 3   Relationship between the average background selection sta-
tistic (B) of each variant genomic position and the degree of pleiot-
ropy. a Data from the dataset corresponding to Fig. 1 considering the 
average B value of genes (simple regression b = 0.015, R2 = 0.002, 
F = 6.25, p = 0.01; partial regression b′ = 0.010, R2 = 0.22, F = 362.7, 
p = 0.06). b Data from Pickrell et al. (2016) considering the average B 
value of genomic regions (simple regression b = − 0.009, R2 = 0.0002, 
F = 1.58, p = 0.2; partial regression b′ = − 0.007, R2 = 0.40, F = 109.6, 
p = 0.2). c Data from Watanabe et  al. (2019) considering the aver-
age B value of genomic regions and the degree of pleiotropy of 

domains (simple regression b = − 0.015, R2 = 0.09, F = 327.7, 
p < 2 × 10−16; partial regression b′ = − 0.018, R2 = 0.24, F = 534, 
p < 2 × 10−16). d Data from Shikov et al. (2020) considering the aver-
age B value of genomic regions and the maximal degree of pleiot-
ropy of domains (simple regression b = − 0.026, R2 = 0.06, F = 87.02, 
p < 2 × 10−16; partial regression b′ = − 0.022, R2 = 0.38, F = 400.5, 
p < 2 × 10−16). The partial regression coefficients of the value of B 
on the rate of recombination are b′ = 0.158, 0.423, 0.151 and 0.332 
for the four datasets of a–d, respectively, all of them significant with 
p < 2 × 10−16. Simple regression lines are shown
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arise from the GWAS Catalog whereas those from Watanabe 
et al. (2019) and Shikov et al. (2020) were obtained from the 
UK Biobank, and there could be differences between both 
sources of data, which remain to be disclosed.

Since the relationship between the rate of recombination 
and the degree of pleiotropy was nearly invariable (Fig. 2), 
the negative relationship between B and the degree of plei-
otropy indicates that the reduction of B with the degree of 
pleiotropy is not explained by a reduced recombination rate 
for highly pleiotropic regions. In any case, we obtained the 
partial regression of B on the degree of pleiotropy, which 
accounts for the effect of recombination rate. Thus, it can be 
concluded that more pleiotropic variants are associated with 
stronger purifying selection. Therefore, even though highly 
pleiotropic loci detected by GWAS seem to have larger effect 
sizes (Chesmore et al. 2018 and our Fig. 1a) and frequencies 
(Fig. 1c), they seem to be subjected to stronger selection 
than less pleiotropic ones. Variants with a large effect size 
and a common frequency are easier to detect by GWAS (see 
Supplementary Material Table S3 for an illustration of this), 
so this may explain the observations. In fact, the magnitude 
of pleiotropy is inevitably underestimated because of sam-
pling error and lack of power (Hill and Zhang 2012). In 
addition, the effect sizes refer to a quantitative trait that may 
be related with fitness to a higher or lower degree (Keightley 
and Hill 1990). It has been shown theoretically that variants 
with a large effect on a quantitative trait but a low corre-
lated effect on fitness can be those more easily detected by 
GWAS and also those contributing more to the heritability 
of the trait (Caballero et al. 2015). Finally, in regions of 
low recombination, a reduction of the effective population 
size is expected (Hudson and Kaplan 1995; Nordborg et al. 
1996; Santiago and Caballero 1998, 2016; Nicolaisen and 
Desai 2013; Caballero 2020, p. 106). This would imply a 
larger impact of genetic drift, and therefore, the possibility 
that deleterious alleles can reach higher frequencies than 
expected, as has been already shown for schizophrenia vari-
ants (Pardiñas et al. 2018). In summary, our results show 
that highly pleiotropic variants are associated with intense 
background selection, but those found by GWAS tend to 
have a larger effect and frequency than less pleiotropic vari-
ants. Thus, it may be hypothesized that an unknown number 
of highly pleiotropic variants of low effect/frequency may 
pass undetected by GWAS, explaining these results.

The study by Shikov et al. (2020) disclosed that protein-
level pleiotropy due to ubiquitously expressed genes is the 
most prevalent form of pleiotropy. This is coherent with 
the recognized implication of the general metabolic path-
ways in pleiotropic effects (Kacser and Burns 1981). It is 
then consistent with the view that ubiquitous and general 

function proteins must be constrained by purifying selec-
tion. Note, however, that the B statistic can also be affected 
by other selection effects such as hitchhiking of favorable 
alleles and biased gene conversion (McVicker et al. 2009), 
so that its value does not only describe negative selection. 
In addition, many pleiotropic effects are expected to act 
in the same direction of reducing fitness, but some can 
operate as antagonistic pleiotropy (Rodríguez et al. 2017), 
as found for psychiatric disorders (Muntané et al. 2021). 
Thus, it is necessary to further disentangle the selection 
forces involved in highly pleiotropic loci.
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