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Deep learning for pulmonary 
embolism detection on computed 
tomography pulmonary 
angiogram: a systematic review 
and meta‑analysis
Shelly Soffer1,2,3*, Eyal Klang3,4,5,6,7, Orit Shimon5,8, Yiftach Barash3,4,5, Noa Cahan9, 
Hayit Greenspana9 & Eli Konen4,5

Computed tomographic pulmonary angiography (CTPA) is the gold standard for pulmonary embolism 
(PE) diagnosis. However, this diagnosis is susceptible to misdiagnosis. In this study, we aimed to 
perform a systematic review of current literature applying deep learning for the diagnosis of PE 
on CTPA. MEDLINE/PUBMED were searched for studies that reported on the accuracy of deep 
learning algorithms for PE on CTPA. The risk of bias was evaluated using the QUADAS-2 tool. Pooled 
sensitivity and specificity were calculated. Summary receiver operating characteristic curves were 
plotted. Seven studies met our inclusion criteria. A total of 36,847 CTPA studies were analyzed. All 
studies were retrospective. Five studies provided enough data to calculate summary estimates. The 
pooled sensitivity and specificity for PE detection were 0.88 (95% CI 0.803–0.927) and 0.86 (95% CI 
0.756–0.924), respectively. Most studies had a high risk of bias. Our study suggests that deep learning 
models can detect PE on CTPA with satisfactory sensitivity and an acceptable number of false positive 
cases. Yet, these are only preliminary retrospective works, indicating the need for future research to 
determine the clinical impact of automated PE detection on patient care. Deep learning models are 
gradually being implemented in hospital systems, and it is important to understand the strengths and 
limitations of these algorithms.

Pulmonary embolism (PE) is associated with significant morbidity and mortality1,2. Prompt and accurate diag-
nosis allows for expediting treatment. This is critical as it could substantially reduce mortality and improve 
outcomes3.

Computed tomographic pulmonary angiography (CTPA) has become the gold standard diagnostic modal-
ity for PE4–6. CTPA is a non-invasive, widely available, and rapidly acquired modality. However, the diagnosis 
of PE in CTPA is time-consuming and requires radiologists’ expertise. As a result, the interpretation process is 
susceptible to errors and delayed diagnosis7,8.

In the past few years, artificial intelligence (AI) has made a significant impact on healthcare. Specifically, 
deep learning algorithms, which excel at pattern recognition, are revolutionizing medical imaging analysis9,10.

Deep learning technology presents an innovative approach to PE detection. In this review, we present a short 
description of AI fundamentals followed by a literature review evaluating studies that analyzed deep learning 
algorithms for PE on CTPA.
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Fundamentals of artificial intelligence
Deep learning.  AI is a broad term that encompasses a variety of techniques (Fig. 1)11. Deep learning is a 
subfield of AI which is based on neural networks (Fig. 2). These artificial networks are composed of multiple 
interconnecting neuron layers. Each neuron is essentially a single linear regression unit. The inputs for each 
neuron are the outputs of the neurons in the previous layer. The connections between the neurons are termed 
“weights”.

During training, input data is fed into the network, and the final output is calculated. The difference between 
the network output (the estimated label) and the true label allows for error estimation. By estimating the error 
of the model output, the algorithm can optimize the network by tweaking its weights. This process of network 
optimization is called backpropagation. By tweaking the weights, important network connections are reinforced, 
while unimportant connections are inhibited. In this way, the difference between the network outputs and the 
true labels is minimized and the network’s error decreases12,13.

Convolutional neural networks.  Convolutional neural networks (CNN) are the hallmark deep learning 
networks for image analysis. This algorithm was invented in the 90’ but made a major impact on the world in the 
2012 ImageNet challenge14. That work, termed “AlexNet”, is now the most ever cited scientific paper15.

Figure 1.   Artificial intelligence (AI) is an umbrella of terms encompassing machine learning and deep learning.

Figure 2.   Comparison between artificial and biologic neural networks. Neural networks are comprised of 
multiple interconnected layers. Data is fed to the network, and an output is produced. By comparing the 
network’s output to the desired true label, an error can be estimated. Based on the error, the algorithm optimizes 
connections between the layers. The connections between the neurons are termed “weights”. Ultimately, a tuned 
network is achieved.
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CNNs are specifically designed to process images. Each CNN layer contains many filters. Each filter is a small 
matrix of weights, similar to the general neural networks’ weights. The filters are repeatedly applied to image 
pixels. Since the filters are shared across the image, they recognize repeating patterns. Thus, CNNs are ideal for 
image analysis, as images are composed of repeating patterns. The shallow layers of the CNN recognize low-
level patterns including lines, circles, and other simple geometric patterns. The deeper layers gain a high-level 
understanding of the image such as context (i.e., “image with PE” vs. “image without PE”) (Fig. 3). In the past 
few years, CNNs made a dramatic change to medical image analysis16.

Computer vision.  Computer vision is an engineering field dedicated for analyzing images by using com-
puter algorithms such as CNN. Three main computer vision tasks include: classification, detection, and segmen-
tation (Fig. 4)9. Classification is the labeling of an entire image. Detection is the localization of an individual 
object in the image. Segmentation is pixel-wise delineation of the borders of an individual object in the image.

These three tasks can be understood through the analysis of CTPA with PE. The entire scan can be classified 
as either pathologic (with PE) or normal (no PE). We can further detect individual emboli. Lastly, we can seg-
ment the pixel-wise borders of the emboli (Fig. 4).

Methods
This review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines17.

Search strategy.  A comprehensive literature search was performed to identify studies evaluating the role of 
deep learning in detecting PE on CTPE. The search was conducted on February 20, 2021, using the MEDLINE/
PubMed databases. Search keywords included “pulmonary embolism” and “deep learning”. Details on complete 
search strategies are provided in Supplementary Material 1.

Inclusion criteria were studies that (1) evaluated a deep learning model for PE detection on CTPA, (2) were 
published in English, (3) were peer-reviewed original publications (4) and contained an outcome measure. We 
excluded non-computer vision articles, non-deep learning articles, and non-original articles. Abstracts were 
also excluded. Our search was supplemented by a manual search of references of included studies. The study is 
registered with PROSPERO (CRD42021237369).

Study selection.  Two reviewer authors (SS and EK) independently screened the titles and abstracts to 
determine whether the studies met the inclusion criteria. The full-text article was reviewed when the title met the 
inclusion criteria or when there was any uncertainty. Disagreements were adjudicated by a third reviewer (YB).

Data extraction.  Using a standardized data extraction sheet, the two reviewers (SS and EK) extracted data 
independently. Data included publication year, study design and location, number of patients, ethical state-
ments, inclusion and exclusion criteria, description of the study population, use of an online database, size of the 
database, use of an independent test dataset, whether cross-validation was performed, evaluation metrics, and 
performance results.

Quality assessment and risk of bias.  Quality was assessed by the adapted version of the Quality Assess-
ment of Diagnostic Accuracy Studies (QUADAS-2) criteria18. The studies were also evaluated using the modified 
Joanna Briggs Institute (JBI) Critical Appraisal checklist for analytical cross-sectional studies19,20.

Figure 3.   The architecture of Convolutional Neural Network (CNN). CNNs are networks specifically designed 
to process images. Many small filters compose each CNN layer. A filter is a small matrix of weights that is 
repeatedly applied to the image pixels. By sharing the filter across the image, repeating patterns are recognized. 
CNNs are ideal for image analysis since images are composed of repeating patterns. The shallow layers of the 
CNN recognize low-level patterns. The deeper layers gain a high-level understanding of the image.
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Data synthesis and analysis.  For the quantitative meta-analysis, we used the R Statistics package mada21, 
meta, and metaprop22. We listed the number of true positive, true negative, false positive, and false negative 
results per study. Thereafter, we calculated the pooled sensitivity, specificity, and the corresponding 95% CI using 
the random effect model. A coupled forest plot of sensitivity and specificity was created using RevMan (version 
5.3). Summary receiver operating characteristic (ROC) curves were calculated by the bivariate model of Reitsma 
et  al.23. Heterogeneity was visually checked and evaluated by using I2. Values of I2 > 50% were considered as 
significant heterogeneity24.

Results
Study selection and characteristics.  The initial literature search resulted in 275 articles. Seven studies 
met our inclusion criteria (Fig. 5). Studies were published between 2015 and 2020. A total of 36,847 radiographic 
images were analyzed. Table 1 summarizes the characteristics of the included studies. All the studies were retro-
spective. In the majority of the studies (n = 6, 86%), a board-certified radiologist, served as reference standard.

Descriptive summary of results.  Tajbakhsh et al. were the first to apply a CNN solution to detect PE25,26. 
Using 121 CTPA with 326 individual emboli, they achieved a sensitivity of 83% for detecting individual emboli 
at two false positives per scan. They have shown that a CNN-based solution outperforms classic machine learn-
ing techniques.

Huang et al. utilized a 3D CNN model to detect PE. They used the entire volumetric CTPA imaging data of 
1971 patients and achieved an AUROC of 0.8527. Subsequently, they improved their model by integrating imag-
ing data and clinical data from the electronic health record28. The multimodality model showed an AUROC of 
0.95, outperforming single modality models.

Liu et al. deployed CNN to detect and calculate the clot burden of PE on CTPA29. Using 878 CTPA with 646 
PE, they have shown a sensitivity of 94.6% and a specificity of 76.5%. Additionally, they displayed that the auto-
matic measurement of clot burden was highly correlated with traditional burden scores (Qanadli and Mastora 
scores).

Weikert et al. developed a CNN algorithm with a relatively large training dataset consisting of 28,000 CTPAs30. 
They achieved a sensitivity of 92.7% and a specificity of 95.5%. The authors have also performed a sub-analysis 

Figure 4.   Main computer vision tasks: classification, detection, and segmentation.
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Figure 5.   Flow diagram of the search and inclusion process.

Table 1.   A summary of the articles in the literature review that applied deep learning techniques for 
pulmonary embolism detection on computed tomographic pulmonary angiography.

Author Year Study design Database type Dataset size (n = studies) Images evaluated by Performance scores

Huang et al.27 2020 Retrospective Proprietary 1997 Board-certified radiologist
AUROC of 0.85
Sensitivity and specificity of 75% 
and 81%

Liu et al.29 2020 Retrospective Proprietary 878
Delineated by two residents 
reviewed by an experienced chest 
radiologist

AUC of 0.93
Sensitivity and specificity of 
94.6% and 76.5%

Huang et al.28 2020 Retrospective Proprietary 1837 Board-certified radiologist
AUROC of 0.95
Sensitivity and specificity of 
87.3% and 90.2%

Weikert et al.30 2019 Retrospective Proprietary 29,465 Board-certified radiologist Sensitivity and specificity of 
92.7% and 95.5%

Yang et al.40 2019 Retrospective Proprietary + PE challenge data 129 Board-certified radiologist Sensitivity of 75.4% at two false 
positives per volume

Rajan et al. (IBM)41 2019 Retrospective Proprietary 2420 Board-certified radiologists AUC of 0.94

Tajbakhsh et al.26 2019 Retrospective Proprietary + PE challenge data 121 N/A Sensitivity of 83% at two false 
positives per volume
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which revealed that exams containing central emboli had the highest detection rates with 95.7%, followed by 
segmental emboli with 93.3%. Sub-segmentally located emboli had the lowest detection rate with 85.7%.

Quality assessment.  According to the QUADAS-2 tool, five papers scored as high risk of bias in at least 
one category. Patient selection bias was evident in more than half of the papers, as most studies failed to describe 
their study population. Most papers also failed in data management as ethical approval was not specified. The 
objective assessment of the risk of bias is reported in Supplementary Table 1 and Table 2.

Meta‑analysis results.  Five studies provided enough data to calculate test accuracies. A pooled sensitivity 
of 0.88 (95% CI 0.803–0.927, I2 = 89.6%) per scan and a specificity of 0.86 (95% CI 0.756–0.924, I2 = 97.4%) per 
scan were shown. Figure 6 presents the sensitivity, specificity, and the bivariate summary ROC curve.

Discussion
Accurate and rapid diagnosis of PE is essential to improve prognosis. Previous research raised the concern 
that radiologists’ interpretation may be impaired by a lack of sensitivity for PE detection. It was demonstrated 
that the radiologists’ sensitivity for detecting PE ranges from 0.67 to 0.87 with a specificity of 0.89 to 0.9931–33. 
The presented deep learning models provide an automatic approach for identifying PE on CTPA with a pooled 
sensitivity of 0.88 and specificity of 0.86.

An effective AI system must have an optimal operating threshold that balances between sensitivity and 
specificity. Such systems can accelerate the diagnostic workflow without burdening the radiologist with false 
positive cases as a high number of false positives creates alarm fatigue34. For PE detection, it is apparent that a 
deep learning system can serve as a second reader for the immediate interpretation and prioritization of positive 
studies. Ultimately, an AI-based tool has the potential to reduce the time to PE diagnosis. Since timely diagnosis 
is critical, the integration of a triage model can enhance the quality of care. Liu la et al. demonstrated that a deep 
learning model could also flag patients with a worse prognosis according to clot burden or right ventricular 
dysfunction parameters29.

Figure 6.   (A) Sensitivity and Specificity of included studies (B) Bivariate summary ROC curves for the 
detection of pulmonary embolism on CTPA using deep learning.
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Early work in automated PE diagnosis was based on traditional machine learning techniques35–37. Commer-
cially available PE detection solutions based on machine learning were also developed38–40. Nonetheless, moderate 
success with a limited clinical application was achieved. These techniques were tested only on small cohorts. 
Additionally, even though they achieved clinically acceptable sensitivities, it was at the cost of an extremely high 
number of false positive cases. Indeed, existing applications were not widely utilized. Deep learning models 
obtained more promising results with high sensitivity at an acceptable false positive rate.

Although a significant improvement was attained with deep learning, these achievements are limited and are 
based on a small number of studies. Except for one research28, the studies did not leverage the abundant amount 
of tabular data on each patient, such as comorbidities and laboratory results. Moreover, all the reviewed studies 
were retrospective and were not tested in the clinical setting. A direct comparison between the deep learning 
algorithm and the radiologist performance was not carried out. Multicenter prospective studies are currently 
missing. It is crucial to evaluate whether an automatic PE detection system can improve the radiologist’s perfor-
mance, ultimately resulting in better clinical outcomes.

In the 2020 annual meeting of the Radiological Society of North America (RSNA), a competition was con-
ducted to detect PE in CTPA studies41. A large publicly available dataset that included 12,000 CT scans was cre-
ated for the challenge. These scans were provided by five international medical centers and were annotated by 80 
board-certified thoracic radiologists. It is expected that studies based on this public database will be published 
in the near future.

Several commercial companies also specialize in developing deep learning algorithms to flag and triage urgent 
PE on CTPA42. One company received FDA clearance for their AI tool42. In the near future, decision support 
systems for the detection of PE will be implemented as a second reader. Next, depending on the technology 
advancement, these systems are expected to replace some of the radiologist’s role. For example, in the future, the 
AI system may have the potential to filter the normal scans with high accuracy, thereby allowing the radiologist 
to focus on interpreting the abnormal and complicated cases.

Our review has several limitations. All of the reviewed studies were retrospective. The studies’ heterogeneity 
limited assessment of the pooled performance. Half of the studies were at high risk of bias. All studies were con-
ducted in an experimental setting only. Additional studies will be needed to confirm the usefulness of the tool.

In conclusion, deep learning models can detect PE on CTPA with satisfactory sensitivity and an acceptable 
number of false positive cases. Yet, these are only preliminary retrospective works, indicating the need for future 
research to determine the clinical impact of automated PE detection on patient care. Deep learning models are 
gradually being implemented in hospital systems, and it is important to understand the strengths and limita-
tions of these algorithms.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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