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GIANA allows computationally-efficient TCR
clustering and multi-disease repertoire
classification by isometric transformation
Hongyi Zhang1, Xiaowei Zhan2 & Bo Li 1,3✉

Similarity in T-cell receptor (TCR) sequences implies shared antigen specificity between

receptors, and could be used to discover novel therapeutic targets. However, existing

methods that cluster T-cell receptor sequences by similarity are computationally inefficient,

making them impractical to use on the ever-expanding datasets of the immune repertoire.

Here, we developed GIANA (Geometric Isometry-based TCR AligNment Algorithm) a

computationally efficient tool for this task that provides the same level of clustering speci-

ficity as TCRdist at 600 times its speed, and without sacrificing accuracy. GIANA also allows

the rapid query of large reference cohorts within minutes. Using GIANA to cluster large-scale

TCR datasets provides candidate disease-specific receptors, and provides a new solution to

repertoire classification. Querying unseen TCR-seq samples against an existing reference

differentiates samples from patients across various cohorts associated with cancer, infectious

and autoimmune disease. Our results demonstrate how GIANA could be used as the basis for

a TCR-based non-invasive multi-disease diagnostic platform.
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Adaptive immune repertoire is an important regulator of
diverse human diseases, and over 10,000 TCR repertoire
sequencing (TCR-seq) samples have been generated in

recent years. However, interpretation of TCR data has been
hindered by the scarcity of known antigen-specificities. Recent
studies demonstrated that similarity in the TCR hypervariable
complementarity-determining region 3 (CDR3) implicates
structural resemblance1,2 for antigen recognition. Therefore,
clustering of similar CDR3s has become an important way to
identify antigen-specific receptors.

In the past, a number of TCR clustering methods have been
developed to investigate antigen-specific T-cell responses during
disease progression or immunotherapy treatments3–5, such as
TCRdist1, iSMART4 and GLIPH2,6. It is speculated that inte-
grating large number of TCR-seq samples from multiple studies
will result in more insights into immune-disease interactions, and
create novel opportunities for prognosis and diagnosis7. However,
methods achieving high-clustering specificity requires pairwise
Smith–Waterman (SW) alignment (TCRdist and iSMART) on
both the CDR3 sequences and the TCR variable gene (TRBV)
alleles, which has quadratic computational complexity that
usually cannot scale up to the size of TCR repertoire samples
(≥100 K sequences). Motif-based clustering (GLIPH2) achieves
higher speed6, but has much lower specificity4. A recent method,
clusTCR, applied physiochemical features to numerically encode
CDR3 sequences and achieved faster computational speed. This
method, however, has omitted the TCR variable gene informa-
tion, and used the less stringent Hamming distance to replace the
SW alignment, which resulted in lower clustering purity8.
Therefore, none of the existing TCR clustering methods are sui-
table to analyze large cohorts of TCR-seq samples.

To address this challenge, we introduced Geometric Isometry-
based TCR AligNment Algorithm (GIANA), a mathematical
framework to transform the CDR3 sequences, which converted
the sequence alignment and clustering problem into a classic
nearest neighbor search in the high-dimensional Euclidean space.
This transformation significantly improved the computational
efficiency for TCR pairwise comparison and scaled up to 106 to
107 sequences. In this work, we demonstrated that by pooling
thousands of TCR repertoire samples, GIANA can identify novel
disease-associated TCRs and assign unseen samples into the
correct disease categories. Thus, our approach might open an
alternative avenue for an immune-based multi-disease diagnostic
platform.

Results
An isometric embedding framework for ultra-fast TCR align-
ment. GIANA began with an approximated solution to the iso-
metric embedding of BLOSUM62 matrix using multi-
dimensional scaling (MDS) (Fig. S1), which generated a
numeric vector for each of the 20 amino acids. Subsequently,
CDR3 strings were modeled as serial non-commuting linear
transformations on the MDS vectors and were represented as
coordinates in the high-dimensional space. The unitary trans-
formation matrix was an element of the 6-order cyclic group (G6),
which produced near-perfect linear correlations between the
Euclidean distances of a pair of strings and their
Smith–Waterman alignment scores (Fig. S2). At default, isometric
distance cutoff (-t) of 10, all TCR pairs with high
Smith–Waterman alignment scores were included in the down-
stream clusters. Fast, index-based nearest neighbor search and
recursive centroid grouping were then performed on the coor-
dinates to identify CDR3 pre-clusters, which were subsequently
filtered for matched TRBV alleles and high alignment scores
using a k-mer guided search table, to produce the final TCR
clusters as output (Fig. 1).

In parallel to G6 transformation, we also implemented a naïve
method with stacked MDS vectors as the coordinates of the input
CDR3 strings (GIANAsv), similar to a recent work8 (Fig. S3). We
developed a benchmark with 10 K, 20 K, …, 100 K TCRs from a
healthy donor’s TCR-seq sample9 and applied five competing
methods, GIANA, GIANAsv, iSMART4, TCRdist1 and GLIPH26

for speed and memory tests (Fig. 2a and Fig. S4). We excluded a
similar method, ALICE10, as it was optimized to find the most
variable clones in longitudinal data only. GIANA has the lowest
time cost throughout the benchmark, taking 23.9 s to process 100
K sequences, whereas TCRdist took 14,338 s. GIANAsv is slower
than GIANA by a factor of 2.2 (Table S1). This is expected
because stacked vector encoding resulted in higher dimensionality
of the isometric embedding space, and increased the time cost
during nearest neighbor search. Notably, GLIPH2 is the fastest
algorithm besides GIANA/GIANAsv, because it avoided pairwise
alignment through motif-guided search.

GIANA achieves higher accuracy in predicting antigen-specific
TCRs. As antigen-specificity is the most desirable feature of TCR
clustering, we next evaluated the clustering accuracy of all the
methods. GIANAsv was excluded from this analysis because it has

Fig. 1 Schematic illustration of GIANA. GIANA workflow. GIANA began with encoding of short CDR3 peptide sequences into numeric vectors through a
sequence of unitary transformations. The transformation involves an element of 6th order cyclic group. After encoding, each CDR3 sequence was projected
to high-dimensional Euclidean space, allowing fast nearest neighbor search for clustering. Follow-up filtering steps were performed to match the TRBV
gene alleles and remove pairs with low alignment scores.
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theoretically identical performance as GIANA except for computa-
tional efficiency. We collected 61,366 non-redundant known TCR/
antigen pairs from the public domain1,11–13, covering over 900 dif-
ferent epitopes from diverse pathogens. We first defined cluster
purity as previously described:14 the percentage of TCRs specific to
the most common epitope in a given cluster. A “pure cluster” is
defined to have a purity equal to 1. We defined “Pure cluster frac-
tion” as the percentage of pure clusters in the output (Fig. 2b and
Table S2). The fractions for GIANA (96%), iSMART (97%), and
TCRdist (97%) are similar, yet substantially lower for GLIPH2 (35%).
Pure cluster retention was defined as the total number of TCRs in all
the pure clusters divided by the number of all the testing TCRs, and
we confirmed that GIANA also has similar level of retention (27%) as
other methods, except for GLIPH2 (19%). For the three methods that
rely on Smith–Waterman alignment (GIANA, iSMART and
TCRdist), we further explored the impact of a range of alignment
score cutoffs (-S option in GIANA). We observed similar perfor-
mances for the three methods at stringent cutoffs (Fig. S5).

Pure cluster fraction and retention emphasized the clusters
with 100% purity, which are more frequently seen in smaller

clusters. Methods that produced larger clusters may have worse
performance due to impure clustering. Therefore, we also
measured normalized mutual information (NMI) between TCR
clusters and epitope specificity, using the same training dataset.
We observed similar levels of NMI across all the methods using
Smith–Waterman alignment, and GLIPH2 remained to be the
lowest (Fig. 2c).

Next, we investigated if GIANA is able to retrieve antigen-
specific TCRs from real, large, and noisy TCR-seq samples, using
TCRs with known antigen-specificity. From the above benchmark
antigen-specific TCRs, we selected those specific to three epitopes
expected to be missing in healthy individuals: the YAW and YLQ
epitopes15 from the recent outbreak of SARS-CoV-2 virus and the
FRD epitope16 from HIV-1 virus. 20% of these TCRs were mixed
with 100,000 TCRs from a healthy donor as testing data, and we
used the remaining non-overlapping 80% antigen-specific TCRs
as training data to recover the test sequences. Any sequence
clustered with the training data will be called as “positive.” True
positives are the 20% spiked-in antigen-specific TCRs, whereas
false positives are those from the healthy donor. For all three

Fig. 2 Performance evaluation and comparison of different methods. a Comparison of time complexity for five competing TCR clustering algorithms.
Speedup was calculated based on the time cost for the 100 K TCR sample. b Comparison of purity cluster fraction and retention of four methods. y-axis
shows the precision or sensitivity in percentage. c Normalized mutual information comparison of the four methods. d Sensitivity and Specificity of GIANA
when applied to large and noisy TCR-seq samples. x-axis is the cutoff for Smith–Waterman alignment score, a key parameter in GIANA, with maximum
4.0. Higher cutoff results in higher specificity at the cost of reduced sensitivity.
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epitopes, GIANA achieved over 99.99% specificity at 20–50%
sensitivity (Fig. 2d). Although GLIPH2 reached higher sensitivity,
its specificity is lower than GIANA (Fig. S6a). More importantly,
the positive prediction values (PPV) of GIANA reached over 60%
for all epitopes, while the PPVs of GLIPH2 for 2 out of the 3
epitopes were lower than 20% (Fig. S6b).

Ultra-fast sample query and TCR repertoire classification. The
high speed and specificity of GIANA motivated us to further
develop a query module to cluster new TCR samples with an
existing reference dataset, a function that is missing in all current
tools. We transformed reference and query TCRs into Euclidean
space with linear complexity and searched for the nearest
neighbors of each query sequence, which were processed into
TCR clusters and merged with the reference data (Fig. 3a). We
evaluated the speed of this approach using query and reference
datasets with different numbers of TCRs (Fig. 3b). As expected,
GIANA is computationally efficient as demonstrated by the fact
that it took 176 s to query 104 TCRs against 107 reference
sequences (Table S3).

Repertoire classification is an important task with immediate
applications to disease diagnosis and prognosis7. In the past, this
task has been approached by multiple instance learning17 or deep
learning18. We next explored if GIANA query can also be used to

classify TCR repertoires. First, we generated 3 reference datasets
with 20, 100 or 200 TCR-seq samples, evenly split into COVID-
19 patients and healthy controls (HC). An additional 154
COVID-19 and 120 HC samples were queried to each of the
references. For each query sample, we calculated the fraction of
TCRs co-clustered with COVID-19 reference patients. Interest-
ingly, this fraction is significantly higher for the COVID-19
patients in the query samples, with increasing separation from
query HCs as the size of reference data increases (Fig. 3c and
Fig. S7a). Using this fraction as a predictor, we observed
increasing Area Under the receiver operation Curve (AUC) for
reference with larger sample size (Fig. 3d). Notably, with 2 million
reference TCRs, the sensitivity (79%) and specificity (100%)
surpassed some existing test for COVID-1919, suggesting the
potential utilities of this approach in disease diagnosis. The fact
that the accuracy of repertoire classification improved with more
reference samples is likely due to that disease-specific TCRs are
usually shared at low frequencies20. Consequently, a larger
reference data will have higher clustering probability, smaller
dispersion and better precision. Indeed, we observed decreasing
coefficient of variance of COVID-19 fractions with more
reference samples (Fig. S7b).

We extended the above efforts by building a large reference
dataset containing 10 million TCRs, which consisted of

Fig. 3 Fast query of previously generated reference TCR clustering data for accurate repertoire classification. a Illustration of fast GIANA query based
on isometric transformation. GIANA performs nearest neighbor search of each query TCR against the reference coordinates, selects closely located
neighbors in the Euclidean space, and merges with reference TCR clusters. Dashed arrows implicate search directions. b Time complexity evaluation of
GIANA query module using reference/query data with different number of TCRs. c Degree of separation of query COVID-19 patients from healthy controls
by clustering against the reference datasets. The number of TCRs of the reference data was shown as x-axis labels. Two sample t-test was performed using
the COVID-19 fractions estimated from the query data to obtain the t-statistics. All p-values were significant at the level of 2.2 × 10−16. d ROC curves using
COVID-19 fraction as the single predictor. The numbers of COVID-19 and HC samples were labeled in figure title, with each sample containing 10 K TCR
sequences. Shaded area labeled the 95% confidence interval of the ROC curves, which were estimated from 2,000 stratified bootstraps.
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1,213 samples from cancer, COVID-19 and multiple-sclerosis
(MS) patients and HCs9,21–34 (Table S4). First, we applied
GIANA to perform antigen-specific clustering of all 10M TCRs
and investigated the similarity of different repertoire samples
measured by the level of shared TCR clusters. We observed clear
separations of most cancer patients from healthy donors and MS
patients. Interestingly, lung cancer and COVID-19 patients
together formed a separate cluster (Fig. 4a). It is known that
local inflammatory conditions, such as viral infection or cancer,
could release tissue-resident T cells into the circulation35, a likely
cause for TCR repertoire sharing. Our findings further suggested
that in the lung tissue, the magnitude of T cell egress might be
high enough to transcend disease types. However, currently it is
not feasible to experimentally validate this observation due to the
lack of paired α chain information.

A multi-disease detection platform through ultra-large-scale
TCR clustering and query. The ultra-large-scale clustering by
GIANA also allowed us to inspect disease-specific vs. tissue-
specific TCRs. We divided the TCR clusters in the lung cancer
and COVID-19 patients into three categories: (i) COVID-19
specific; (ii) lung cancer specific; (iii) shared between the two
diseases. We observed significantly higher clonal frequency of
category (i) vs. (iii) for COVID-19 patients, whereas there is no
difference between category (ii) and (iii) for the lung cancer
patients (Fig. S8a). TCR frequencies were matched within same
cohort to avoid batch effect, and thus, the higher abundance of
COVID-19-specific TCRs is likely caused by an immune response
to SARS-CoV-2. Indeed, only COVID-19-specific TCRs under-
went dynamic regulation after viral infection, which peaked
within the first 2 weeks post-exposure and decreased afterwards.
In contrast, clonal abundance of shared TCRs were unaffected by
the timeline after SARS-CoV-2 infection (Fig. S8b). In conclusion,
clustering on large TCR repertoire samples might reveal shared
disease-specific TCRs, which may provide a finer solution to
repertoire classification.

Therefore, we tested if clustered TCRs can be used as markers
to assign repertoire samples into multiple diseases, by

implementing a leave-one-out validation approach. Specifically,
for a given sample, we calculated the fractions of TCRs co-
clustered with cancer, COVID-19, MS patients or healthy
controls in the reference cohort, excluding the sample itself. This
method yielded four class fractions for each sample, which added
up to 1. We used the HC fraction to separate patients from
healthy donors and observed near perfect accuracies for all three
diseases (Fig. 4b). To differentiate a pair of diseases, we used the
differences between the two corresponding fractions as the
predictor, which also led to high (≥93%) AUC values. The ability
to distinguish lung cancer from COVID-19 was not contradictory
to the apparent grouping of the two diseases (Fig. 4a) because
within-disease similarity was still higher (Fig. S9). However, as
most of the diseases were derived from only one study, it raised
the concern that the predictability might be contributed by
unknown cohort-specific batch effects.

To test out this possibility, we investigated if GIANA can
predict the disease labels of unseen samples from independent
cohorts. We applied GIANA to query 267 new TCR-seq samples
of the three disease categories and 153 HC samples9,18,25,36–39

(Table S5) against the reference dataset. All samples were derived
from peripheral blood. We used the same approach to calculate
the fractions of TCRs co-clustered with reference cancer, COVID-
19, MS, or HC sequences. Without any model fitting, this simple
approach can already distinguish each sample category from the
others (Fig. 5a). HC fractions distinguish all 3 diseases at over
91% accuracy, whereas pairwise separation between diseases all
reached above 87% AUCs (Fig. 5b). Since the query samples were
derived from studies not included in the reference data, the high
AUCs were unlikely caused by unknown batch or cohort-specific
effects and thus could reflect the real predictability for the three
types of diseases.

Discussion
In summary, GIANA is a fast TCR clustering algorithm that
efficiently handles tens of millions of sequences. It achieved the
same level of accuracy as the best existing methods and was able
to retrieve TCRs specific to known antigens with high accuracy.

Fig. 4 Disease-specific grouping of TCR repertoire samples via ultra-large-scale clustering. a Graphic representation for the similarities of the TCR-seq
samples based on TCR co-clustering. Sample-wise count-sharing matrix was computed from the original TCR clustering results of the 1,213 reference
samples. Spearman correlation matrix was calculated based on counts of co-clustered TCRs, with pairs having a correlation value ≤0.4 set to be zero. The
resulting sparse matrix was used to generate the graph. Nodes with fewer than two connections were removed to visualize the sample groups. b ROC
curves using disease fractions calculated from co-clustered TCRs. AUC values were labeled at the bottom right of each panel. 95% confidence intervals
were calculated using 2,000 stratified bootstraps. Disease abbreviations: GBM for glioblastoma multiforme; RCC for renal clear cell carcinoma; MS for
multiple sclerosis.
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The ultra-large-scale TCR clustering and fast query of novel
samples also enabled reference-based repertoire classification. To
date, GIANA can also analyze single cell RNA-seq data with TCR
regions solved, and it is possible to query TCRs from the scRNA-
seq data against the large database of TCR repertoire samples in
the public domain to gain new insights over shared antigen-
specificity. With minimum modifications, GIANA is applicable to
cluster or query B-cell receptor sequencing data as well. Fur-
thermore, the mathematical framework to perform isometric
embedding may provide an alternative solution to the classic
short DNA or protein sequence alignment problems in the future.

Unsupervised TCR clustering is a fundamental analysis of
immune repertoire data. In the ideal scenario, all TCRs specific to
the same epitope should be included in the same cluster. How-
ever, this is not feasible for sequence similarity or motif-based
clustering approach, due to the putative diversity in TCR
sequences of shared specificity1. Such diversity is caused by the
distinct docking strategies of T-cell receptors. For example, TCRs

specific to the influenza GIL epitope usually contain the classic
RSS/RSA motif in the CDR3 region, yet a related study40 reported
that LGGW motif also elicits strong binding to GIL from a dif-
ferent direction. Such structural variation cannot be captured by
simple Smith–Waterman alignment or motif grouping. Conse-
quently, CDR3s with dissimilar motifs will be fragmented into
smaller clusters despite their shared specificity, which is a com-
mon limitation to the current methods.

There are several limitations in our study: first, unlike GLIPH2,
HLA alleles were not considered in GIANA, as such data is
unavailable in most current studies. With HLA typing included,
the accuracy of TCR clustering and query methods is expected to
improve. Second, GIANA does not support gap alignment, as the
current isometric encoding framework only applies to sequences
with the same length. However, it has similar level of clustering
accuracy as the methods that consider gaps, such as TCRdist. This
is because allowing gaps will reduce clustering specificity and
compromise the prediction accuracy4. Third, in this work, we

Fig. 5 Reference-based multiple disease classification of unseen TCR repertoire samples. a Violin plot showing the distribution of class fractions of
cancer, COVID-19, multiple sclerosis (MS) patients and healthy controls (HC). Cancer fraction was calculated as the proportion of query TCRs clustered
with reference TCRs from the cancer patients. Other class fractions were defined in the same way. Sample size: HC: n= 153, COVID-19: n= 193, Cancer: n
= 62, MS: n= 6. b ROC curves using disease class fractions as single predictor for pairwise separation of the four disease classes. The fraction was the
percentage of TCRs co-clustered with a given class of samples in the reference dataset. AUC values were labeled at the bottom right of each panel. 95%
confidence intervals were calculated using 2,000 stratified bootstraps.
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simply used the TCR fractions to assign disease classes. With
more data, this effort can be improved by machine learning
models to optimize the prediction accuracy. Fourth, we compared
all cancer patients with other diseases together but were not able
to differentiate cancer localizations. We anticipate the power to
separate cancer types with enough relevant TCR-seq samples as
the reference. Finally, although the current method already
achieved high accuracy of repertoire classification, the diagnostic
value of this platform requires further validation with pro-
spectively collected patient samples.

As demonstrated in autoimmune and infectious diseases,
antigen-specific public TCRs shared at low frequencies are
potentially important biomarkers20,41,42, which can be detected
by comparing large amount of TCRs from thousands of indivi-
duals. Methods have been developed to individually detect
cancer17,18, COVID-1920, or multiple sclerosis43 using immune
repertoire, but none has been able to simultaneously diagnose and
separate different diseases. In contrast, our effort could be
developed into a unified platform to diagnose infectious disease,
autoimmune disorders and cancer. Such a platform has been
proposed in the literature7, and in this work, we provided a
prototype to achieve this goal.

We believe this is potentially a significant advance because:
first, disease diagnosis is mainly symptom-driven for decades,
with each disease requiring a distinct set of signatures obtained
from diverse clinical assays, such as radioactive imaging, liquid
biopsy, invasive endoscopy, surgery, etc. The feasibility of using
the immune system as a single biomarker to indicate multiple
diseases could shift the paradigm from symptom-driven to
immune-response-driven, which provides a universal solution to
many immune-related disorders. Additionally, differential diag-
nosis is usually a clinical challenge, and adding more diseases to
the platform will further reduce the diagnostic specificity. We
provided a solution to this problem by showing that the platform
can increase its prediction accuracy by the inclusion of more
TCR-seq samples. Further, as immune responses are usually
ahead of any measurable symptoms, this platform has the
potential to detect diseases at its early stages, where most diseases
are curable or easy to manage. We have already demonstrated this
fact for cancer diagnosis18, and the principle of immune regula-
tion also applies to autoimmune disorders, such as multiple
sclerosis. Finally, since this platform only requires a small amount
of blood to perform targeted V(D)J capture, it can serve as a non-
invasive test at low cost. Together, we anticipate GIANA to be
widely used to find antigen-specific TCR clusters, to retrieve
sequences specific to known pathogens, such as SARS-CoV-2,
and to facilitate disease diagnosis with the fast-growing body of
TCR data in cancer, immunology and clinical studies.

Methods
TCR-seq data collection. All TCR repertoire sequencing samples were accessed
via immuneACCESS of Adaptive Biotechnology, which currently hosts the largest
database of TCR-seq samples, all profiled using the immunoSEQ platform.
Antigen-specific TCR and the matching antigens were pooled from the VDJdb12,
the Immune Epitope Database and Analysis Resource (IEDB), and previous
literature1,2. TCRs specific to more than one epitope were removed to avoid
conflicts.

GIANA method description
Mathematical framework for isometric embedding of CDR3 sequences. The goal is to
find a numeric representation (also the coordinates in high-dimensional space) x of
any short peptide sequence s, such that, for si and sj , the Euclidean distance
between the two coordinates xi and xj: kxi � xjk, is perfectly correlated to the
sequence similarity score measured by putative evolutionary substitution matrix.
We refer this problem as “isometric embedding of short sequences”. This concept is
introduced to solve the numeric encoding problem of the CDR3 sequences, typi-
cally with lengths ranging from 12 to 17 amino acids. In this section, we presented
the process of finding the mathematical transformation of a given CDR3 sequence

that approximately satisfied isometry. First, we found an approximately isometric
embedding for the BLOSUM62 matrix. The problem is defined as below:

Let amino acid Ai be represented by βi , a numeric vector in real space Rr . The
dimension of the real space r is determined by the rank of the Euclidean Distance
Matrix, or EDM. In this scenario, let M denote the dissimilarity matrix derived by
BLOSUM62: M ¼ 4� BLOSUM62, and the diagonal values of M are set 0.
Isometry indicates that

kβi � βjk ¼ Mij ð1Þ
In 1974, C. L. Morgan, in his work “Embedding Metric Spaces in Euclidean

Space”44 proved that the solution to this problem exists if, and only if the EDM is
flat, and the embedding space has dimension no greater than n, where n is the
dimension of EDM. Unfortunately, BLOSUM62 matrix is not even an EDM, since
it does not satisfy the triangular rule:

Mik þMkj ≥Mij; for8i; j; k ð2Þ
Therefore, there does not exist an exact isometric embedding of BLOSUM62.

However, Multidimensional Scaling (MDS) provides an approximate solution,
which applies to the cases where M is not an EDM. We used MDS to derive the
embedding vectors βi . The transformed distance matrix M has rank r ¼ 13. With
classic MDS, the maximum dimension for the embedding space is 13. We applied
the non-metric MDS45 calculation using the sklearn package in Python and could
explore dimensionality higher than 13. To maximize the embedding isometry, we
first selected 2,300 training TCRs of length 14 from a previously described TCGA
dataset4 and calculated the pairwise SW alignment scores. We applied the MDS to
obtain isometric embedding vectors of different dimensions, ranging from 13 to 19.
For each length, we calculated the Euclidean coordinates of the CDR3 sequences as
described in the GIANA method and compared the pairwise distance with SW
scores. The maximum score was observed with dimension 16 (Spearman’s ρ=
−0.973, Figure S1). This representation achieves 87% similarity to the BLOSUM
matrix:

kβi � βjk � Mij ð3Þ
Next, we introduce a numeric encoding scheme, such that each amino acid is

considered as an “operator”, parable to the concept in quantum physics. In general,
operator A is a mathematical transformation to an existing wave function ϕ. The
operation can be applied to wave functions denoted by the Dirac bracket: A|ϕ>.
One example is the angular moment operators LX, Ly, Lz. Here, we define the
operator for amino acid i to be Ai , which applies to a numeric vector x in the
following way:

Aix :¼ Ω ´ ðx þ βiÞ ð4Þ
Here Ω is a matrix that needs to be determined. This definition emphasizes the

ordering of letters in a sequence as operators are non-commuting: AiAj≠AjAi if i≠j.
A CDR3 sequence is then serial linear operations on some initial vector, β0. To
simply calculation, we always let β0 ¼ 0. Therefore, after the operation on the
rightmost amino acid, the coordinates become:

Aiβ0 :¼ Ω ´ ðβi þ 0Þ ¼ Ω ´ βi ð5Þ
Below we use several cases to illustrate the desirable qualities of Ω.
Case 1: Single Mismatch
We begin with the simple case where two amino acid sequences are off by one

amino acid. For example, sequence s1 ¼ AkAi , and sequence s2 ¼ AkAj . Their
numeric encoding vectors can be calculated as below:

s1 ¼ AkAi

s2 ¼ AkAj

x1 ¼ Ω ´ ðΩ ´ βi þ βkÞ

x2 ¼ Ω ´ ðΩ ´ βj þ βkÞ
x1 and x2 are the encoding vectors of s1and s2. The Euclidean distance between

s1 and s2 can be calculated by:

kx1 � x2k ¼ δTδ;whereδ ¼ x1 � x2

¼ ðΩ2ðβi � βjÞÞ
T ðΩ2ðβi � βjÞÞ

¼ ðβi � βjÞTΩTΩTΩΩðβi � βjÞ
ð6Þ

We hope the above value is equal to the distance between amino acid Ai and
amino acid Aj , as this is the only mismatch. Thus:

ðβi � βjÞTΩTΩTΩΩðβi � βjÞ ¼ ðβi � βjÞT ðβi � βjÞ � Mij

Without losing generality, we let ΩTΩ ¼ I, i.e. Ω is a unitary matrix. It can be
easily shown that longer sequences with one mismatch follow the same
argument above.

Case 2: Two Consecutive Mismatches
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Now we define s1 ¼ AiAj and s2 ¼ AtAk . It can be shown that the distance
between the embedding vectors x1 and x2 is:

kx1 � x2k ¼ ðΩ2ðβj � βkÞ þΩðβi � βtÞÞ
T ðΩ2ðβj � βkÞ þΩðβi � βtÞÞ

¼ ðβj � βkÞT ðβj � βkÞ þ ðβi � βtÞT ðβi � βtÞ � 2ðβi � βtÞTΩðβj � βkÞ
� Mjk þMit � 2ðβi � βtÞTΩðβj � βkÞ

ð7Þ

Ideally, we want the third term to be zero for 8i; j; t; k. One solution is to let Ω
be a rotation in R2r , by imposing a perpendicular rotation from the first r
dimensional space to the complement space. A simple realization is:

Ω2 ¼
0 I

I 0

� �
ð8Þ

where I is the r-dimensional identity matrix, and 0 is an r-dimension zero matrix.
In fact, the Ω defined this way is a representation of order 2 cyclic group G2. G2 has
only two elements: e and g, with g2 ¼ e. This notation is useful when we make
extension to the scenario with multiple consecutive mismatches. The βi will be
extended to R2r accordingly, with the first r dimensions filled with the values
derived from the MDS embedding and the remaining dimensions filled with a
vector of zeros:

β2ri ¼ βi
0

� �
ð9Þ

Here, 0 is a vector of zeros with dimension r. The new vector satisfies:

β2r
T

i Ω2β
2r
j ¼ βTi ; 0

T
� � 0 I

I 0

� �
βj
0

� �
¼ βTi ; 0

T
� � 0

βj

 !
¼ 0

Case 3: Multiple Consecutive Mismatches
It can be proven that for a sequence si ¼ Aik

Aik�1
¼Ai1

; k≥ 3, its encoding
vector can be written as:

xi ¼ ∑
k

l¼1
Ωlβil ; l ¼ 1; 2; ¼ ; k

Let’s consider another sequence sj ¼ Ajk
Ajk�1

¼Aj1
:

xj ¼ ∑
k

l¼1
Ωlβjl l ¼ 1; 2; ¼ ; k

The distance of xi and xj is:

kxi � xjk ¼ ∑
k

l¼1
ðβil � βjl Þ

T ðβil � βjl Þ � 2 ∑
k

u¼2
∑
K

1≤ v<u
ðβiu � βju Þ

T ðΩuÞT ðΩvÞðβiv � βjv Þ

ð10Þ
In the ideal scenario, all the terms in the double ∑ are 0, and the distance between
si and sj is simply ∑k

l¼1Mil jl
. This requires:

ðβiu � βju Þ
TΩu�vðβiv � βjv Þ ð11Þ

is 0 for 8u; v; k. Or, generally: xTΩu�vy ¼ 0 for 8x; y 2 Rr . There is no solution for
such an Ω in Rr , but similar to Case 2, we may increase the dimensionality of the
embedding space to kr. In this way, one can always construct Ω from n order cyclic
group Gn, which is an Abel group. However, increased dimensionality will increase
the computational complexity in the encoding step by a factor of OðkÞ. Also, even
with the exact solution, the distance calculated by MDS embedding does not
perfectly align with BLOSUM62 scores. Therefore, there is a trade-off to increase
dimensionality. In practice, we set k to be 6. This is a reasonable number
considering the median length of T cell CDR3 sequences is 14, with the first 4 and
last 1 amino acids almost invariant. To construct the corresponding matrix, we first
derive a representation of the element in G3 by:

Ω3 ¼
0 0 I

I 0 0

0 I 0

0
B@

1
CA ð12Þ

Both G2 and G3 are normal subgroups of G6, with G6 ¼ G2 � G3. Therefore,
from Ω2 and Ω3 we can easily construct Ω6:

Ω6 ¼
0 0 Ω2

Ω2 0 0

0 Ω2 0

0
B@

1
CA ð13Þ

Here 0 is a zero matrix with dimension 2r. Accordingly, the MDS embedding
vectors become:

β6ri ¼ ðβTi ; 0T ; 0T ; 0T ; 0T ; 0T Þ
T ð14Þ

With this representation, the terms in the double ∑ in Eq.(10) are 0 when
u� v < 6. So what happens when �v ≥ 6, i.e. the two strings have more than 6
consecutive mismatches, if we apply Ω6 as the transformation matrix? It will
introduce unwanted variance to the final distance only when u� v ¼ 6n, where n
is an integer. We name u� v ≠ 6n as the Non-Identity Condition (NIC).
Depending on the vectors on each side of the matrix, the addition can be either

positive or negative. However, when comparing CDR3 sequences with more than 6
mismatches, it is usually not important what the exact distance between them is.
This is because only the sequences with highest similarities will be selected as
antigen-specific TCR clusters, and at the desirable cutoff of the alignment score, the
number of mismatches between two CDR3 sequences is usually smaller than 3.

Case 4: Non-consecutive Mismatches.
Without losing generality, we assume that the two sequences of interest, si and

sj , both with length k, differ at the first and last positions, such that: si ¼
Aik

Aik�1
¼Ai2

Ai1
; k≥ 3 and sj ¼ Ajk

Aik�1
¼Ai2

Aj1
; k≥ 3. The isometric coordinates

after transformation are:

xi ¼ ∑
k

l¼1
Ωlβil ; l ¼ 1; 2; ¼ ; k

xj ¼ ∑
k�1

l¼2
Ωlβjl þΩkβjk þΩβj1

Their distance can be calculated:

kxi � xjk ¼ ðβi1 � βj1 Þ
T ðβi1 � βj1 Þ þ ðβik � βjk Þ

T ðβik � βjk Þ � 2ðβi1 � βj1 Þ
T ðΩÞT ðΩkÞðβik � βjk Þ

ð15Þ
This is similar to Case 3, where we handle multiple consecutive mismatches,

except that the number of cross terms is smaller, which can be written as:

�2ðβi1 � βj1 Þ
T ðΩk�1Þðβik � βjk Þ

When Ω is selected as Ω6, similar to Case 3, the cross term is always 0 as long as
NIC is observed. However, if NIC is violated, i.e. the two mismatches are exactly six
amino acids apart, the cross term becomes non-zero. We need to evaluate the
impact of this term to the final outcome. First, if the cross term remains negative
(with probability 1/2), the estimated isometric distance will be smaller than the
exact value, which will not affect the outcome, as we will apply the stringent
Smith–Waterman alignment to ensure high sequence similarity (section 3). It can
be shown that, for CDR3s with length 16, with first 3 and last 2 clipped, the chance
of having two mismatches exactly 6 amino acids apart is 5

ð112 Þ
¼ 0:091, which is the

maximum among all the lengths. Therefore, violation of NIC will affect at most
0.091/2= 4.6% of the comparisons with two mismatches. When this happens,
somewhat similar sequences will have larger distance and might be excluded from
the downstream clustering. To mitigate this effect, we applied a relatively large
default isometric distance cutoff (-t 10) to be inclusive. The current choice of
parameterization is a balance between clustering accuracy and computation speed.

Nearest neighbor centroid clustering. The approximate isometric embedding of
CDR3 sequences allows efficient search of their nearest neighbors (NN) in the
Euclidean space for fast clustering. We used a python package Facebook AI
Similarity Search, or faiss46, to perform fast indexed-NN search. To find the nearest
neighbor of one of the N numeric vectors in Rr , the time complexity of faiss is O
(rlog(N)).

We used the following strategy to divide the coordinates of CDR3s (x) into
neighboring clusters. Before clustering, identical CDR3s were grouped together.
First, for each unique sequence xi; i ¼ 1; 2; ¼ ;N , we found its nearest neighbor
xj; j ¼ 1; 2; ¼ ;N; j≠i. If the distance between xi and xj was within a user-defined
cutoff (-t option, thr), the two points were merged as a new point, with the centroid
xiþxj
2 as the new coordinate. If the distance exceeded the cutoff, both points were

removed from iteration. There would be two types of removed points: (1) point
containing only one CDR3 sequence; (2) point as a centroid of multiple CDR3s. A
CDR3 pre-cluster was recorded for each of the second type of points. The above
steps were repeated until the number of points reached to zero or did not further
decrease. CDR3s with different lengths were separately clustered. All pre-clusters
were kept for further filtering.

K-mer guided fast Smith–Waterman alignment with TCR variable gene matching.
CDR3s from a pre-cluster are usually highly similar, but they may not qualify as
antigen-specific groups because (1) sequences may not be similar enough due to
imperfect isometric embedding; (2) TCR variable (TRBV) gene information was
not taken into consideration. We therefore performed a filtering step to select
antigen-specific CDR3 clusters based on Smith–Waterman alignment, and TRBV
gene matching.

The size (m) of pre-clusters can be large, and direct pairwise comparison will
result in quadratic complexity O(m2). We first applied the TRBV information to
reduce cluster size. Specifically, we used a pre-calculated matrix1 of alignment
scores between a pair of TRBV alleles. For each pair of CDR3 sequences in the pre-
cluster, we compared their TRBV alleles. If the score was above a user-defined (-G
option, thr_v), an edge was added between the two sequences. We ran depth-first
search (dfs) on the final graph to generate isolated subgraphs, with each subgraph a
new pre-cluster. This step will split the original pre-cluster into several
smaller ones.

Next, we used a k-mer approach to perform Smith–Waterman alignment. For
each CDR3 sequence, we divided it into consecutive 5-mers. A k-mer dictionary
was built to store all the sequences, with keys being unique 5-mers, and the values
being the CDR3s that contain the given 5-mer. We allowed one mismatch in the
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5-mer when building the dictionary. For example, sequence CASSGVTEAFF is
indexed under both SSGVT and SSVAT. In this way, CDR3 sequences were
connected into a graph via shared k-mers. For each edge in this graph, we ran
Smith–Waterman alignment with BLOSUM62 substitution matrix and calculated
the alignment score. If the score is below a user-defined cutoff (-S option, thr_s),
the edge will be removed. The actual complexity of this step can vary from O(m) to
O(m2). The worse scenario is reached when every pair of CDR3s in a pre-cluster
share similar k-mer motifs. We then ran dfs on the final graph to generate the final
CDR3 clusters and report them as the final output.

Query of new TCR-seq samples against existing reference. After the generation
of TCR clusters of an input dataset, GIANA can perform query of additional TCRs
to this data (the reference). In the query mode, GIANA requires the input of the
query file(s), the original reference data, and the clustered reference data. First, the
original reference and query TCRs were converted into isometric coordinates. Fast
nearest neighbor search by faiss was then implemented, but limited to the query
TCRs. TCRs with distances smaller than a user-defined cutoff (-t option, thr) were
exported into a separate file (tmp_query.txt). This file contains all the TCRs that
could possibly cluster with the query sequences. GIANA clustering was subse-
quently performed on this file to generate the TCR clusters satisfying the stringent
cutoffs for Smith–Waterman alignment. The query TCR clusters were then merged
with the reference clusters in the following way: for each query cluster, if any of the
sequence came from an existing cluster in the reference data, the two clusters will
be merged. This step is to ensure the inclusion of all the neighboring TCRs in the
reference data. Under two conditions when a query cluster did not contain any
sequence in the reference cluster: (1) all TCRs in the query cluster were similar, but
private to the query sample; (2) query TCR was similar to some very rare reference
TCRs, which were not clustered with any other reference samples in the original
clustering. Following either condition, the query cluster was included in the final
output.

We evaluated the time cost of the query mode by generating reference data
containing 200 K, 1M, 2M, 6M, and 10M TCRs. We scanned different sizes of the
query data, including 10 K, 20 K, 30 K, 40 K, and 50 K TCRs. Each query file was
clustered against each of the reference data using a MacBook Pro computer with
3.5 GHz Dual-Core Intel Core i7 processor, and 16GB 2133MHz LPDDR3
memory. Elapsed time was estimated using the time module of python.

GIANA with stacked-vector encoding (GIANAsv). After MDS embedding of the
20 amino acids, the easiest way to obtain an isometric representation of a
CDR3 string: s ¼ A1A2 ¼Ak ; k≥ 5, is to construct a “stacked vector”, i.e. to con-
catenate the embedding vectors βi; i ¼ 1; 2; ¼ ; k, in the same order. This
approach is referred as GIANAsv. The stacked vector representation is

x ¼ ðβT1 ; βT2 ; ¼ ; βTk Þ
T
. It is easy to prove that this representation satisfies all the

desirable qualities of the three cases discussed in the above section. Theoretically,
when focusing only on sequences with six or fewer mismatches, the two approaches
are identical. When CDR3s have more than six mismatches, GIANAsv is more
accurate, but this scenario is not relevant to this context. The disadvantage of
GIANAsv is that the dimension rGIANAsv of the embedding vector is larger than
that of GIANA (rGIANA). For GIANA, rGIANA � 6 ´ 16 ¼ 96. For GIANAsv,
rGIANAsv varies with different CDR3 length (typically 12–17 amino acids), which
can be 2–3 times larger than rGIANA. Increased dimensionality results in higher
memory burden and longer computational time for faiss.

Computational complexity comparison of GIANA, GIANAsv, iSMART,
GLIPH2, and TCRdist. Other published TCR clustering methods were downloaded
to compare with GIANA, including iSMART, GLIPH2 and TCRdist. We excluded
the original version of GLIPH2 from this comparison, as GLIPH2 is an improved
version with higher computational efficacy and covering all the functionalities of
GLIPH. We used the TCR repertoire sequencing data of a healthy donor of a
previous study9, HIP13900, to test the performances. TCR clones were ordered
based on their abundance, and the top 10 K, 20 K, …, 100 K sequences were
selected. All five methods were applied to each of the subsamples. GIANA, GIA-
NAsv, iSMART, and GLIPH2 were implemented using the default parameters.
TCRdist does not provide clustering, and only pairwise distances were calculated
under the default setting. All methods were run on a MacBook Pro computer with
3.5 GHz Dual-Core Intel Core i7 processor, and 16GB 2133MHz LPDDR3
memory. All methods were applied using a single thread on CPU. When clustering
the reference data of 10 million sequences, we implemented GIANA on the dataset
using a high-performance computing (HPC) super cluster, with 128 G memory
allocation and 8 CPU nodes. Links to the software compared in this work are
listed below:

iSMART: https://github.com/s175573/DeepCAT/blob/master/iSMARTm.py
TCRdist: https://github.com/phbradley/tcr-dist
GLIPH2: http://50.255.35.37:8080/tools

Estimation of clustering antigen-specificity of GIANA, iSMART, GLIPH2, and
TCRdist. TCRs specific to known epitopes were collected from the Immune Epi-
tope Database and Analysis Resource (IEDB)11, the VDJdb online browser12, and
recent literature1,13. We kept only TCRβ CDR3 sequences, TRBV genes, and their

associated antigens. After removal of redundant or incomplete sequences, we
obtained a total of 61,366 CDR3s, covering ~900 epitopes from diverse pathogens.
All four methods were applied to the dataset to perform antigen-specific clustering
using their default parameters. For TCRdist, we wrote the R code to perform
depth-first search on the sequence pairs with distances smaller than 11. To date, the
time complexity calculation for TCRdist in the previous section did not include the
depth-first search to find TCR clusters. This cutoff of 11 has balanced sensitivity
and specificity, comparable to that of iSMART. Choosing a larger cutoff will
increase the total number of clustered TCRs, at the cost of lower specificity of each
cluster.

In this work, we first defined the clusters with all the TCRs specific to the same
antigen as “pure clusters”. Pure cluster retention was defined as the total number of
TCRs contained in all the pure clusters divided by the total number of sequences
(60,700 after removal of epitopes with only 1 TCR):

Retention ¼ #TCRs in all pure clusters
#Total TCRs

ð16Þ

We also defined pure cluster fraction as the number of pure clusters divided by
the number of total clusters:

Fraction ¼ #Pure clusters
#Total clusters

ð17Þ

Normalized mutual information (NMI) is defined as twice the mutual
information between a TCR cluster and antigen specificity divided by the sum of
their entropies. Some CDR3s may occur in multiple clusters in GLIPH2 output. We
calculated the NMI for each TCR cluster and took the averaged value. Although
clusters were not independent due to recurrent TCRs, this approach is
asymptotically unbiased with bounded variance under the weak law of large
numbers. The same approach was used for NMI calculation for all the methods.

Performance evaluation of antigen-specific TCR identification in TCR-seq
data. We performed in silico mixing experiments to assess the performance of
GIANA in finding TCRs specific to known antigens. We selected three antigens
that are unlikely exposed to healthy donors: the YAW and YLQ epitopes from the
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)15 and the FRD
epitope from the Human Immunodeficiency Virus-1 (HIV-1)16. TCRs specific to
each epitope were selected, with redundancy removed. For each antigen, we ran-
domly sampled 20% of TCRs (testing data) and mixed them with the 100 K
sequences from healthy donor HIP13900. There was no overlap between the
remaining 80% of antigen-specific TCRs (training data) and the testing data. The
mixed sample was considered to be a pseudo-patient carrying the corresponding
pathogen. We combined the mixed sample with the training data and applied
GIANA with Smith–Waterman alignment score cutoff (thr_s) ranging from 3.0 to
4.0 (0.1 increment). For each epitope and parameter setting, we ran 20 times of in
silico mixing to capture the variations in the data.

From the resulting data, we evaluated the prediction performance. We selected
the TCR clusters with at least one TCR from the training data. All the TCRs in
these clusters, excluding training data, were positive calls. All TCRs that were not
co-clustered with any training TCR were negative calls. True-positive calls were
defined as sequences labeled as “testing data”, whereas true-negative calls were
sequences from the original 100 K TCRs of the healthy donor. Specificity was
defined as the number of true-negative calls divided by 100 K. Sensitivity was
defined as the number of true-positive calls divided by the total number of
testing TCRs.

Reference-based TCR repertoire classification. To test the feasibility of reper-
toire classification using TCR clustering, we combined 10, 50, and 100 COVID-19
samples20 (Table S4) with 10, 50, and 100 healthy controls9 to generate 3 reference
data with 20, 100, and 200 sample. Each sample contained 10 K TCRs, selected by
ranking the clonal abundance. Query samples contained 154 COVID-19 patients20

and 120 HCs9. There was no overlap between query and reference samples. We
generated the TCR clusters for each query sample using GIANA. For each sample,
we first removed TCR clusters with more than 100 samples, as these TCRs were
likely generated from small-world connections and not informative to disease
specificity6. For the remaining clusters, we calculated the fraction of reference
TCRs contributed by the COVID-19 patients and used this quantity as the
predictor.

In the multiple disease classification task, we first combined 712 cancer, 311
COVID-19, 25 multiple sclerosis (MS) patients, and 100 HC samples and produced
a reference data of 10M TCRs. We collected another 62 cancer, 193 COVID-19, 12
MS, and 153 HC samples to make the query, assuming the disease labels were
unknown. Same analysis was performed for each query cluster file to estimate the
fractions of each disease category, including HC. We used these fractions to predict
diseases and performed the ROC analysis. Specifically, we used HC fractions for all
the comparisons with HC samples. As an exploratory approach, for pairwise
separation of the 3 diseases, we always used the difference between the two disease
fractions. For example, when predicting cancer from MS patients, we used Cancer
Fraction-MS Fraction as the predictor.
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Statistical analysis. We used the pROC47 package of the R programming
language48 to generate the ROC curves and estimate the AUC values, with 95%
confidence intervals computed by 2,000 stratified bootstrap replicates, imple-
mented using the ci.auc function in the pROC package. t-statistic of Fig. 3c was
produced using the t.test function, to perform two sample t-test using the COVID-
19 fractions to separate the COVID-19 and HC query samples. Normalized mutual
information (NMI) of a method was calculated as the averaged NMI of all the
clusters predicted by the method and the true antigen labels. NMI will be max-
imized if all TCRs in a cluster are specific to only one antigen. Figure 4a was
generated using the igraph49 package. Heatmap with annotated values was pro-
duced using heatmap.2 function in the gplots package. For all the boxplots dis-
played in the figures, the middle line defines the median value, with borders of the
boxes indicating the 25% (Q1) and 75% (Q3) quartiles of the data. Lower and
upper whiskers corresponded to Q1 – 1.5IQR and Q3+ 1.5IQR, where IQR is short
for inter-quartile range.

Software and package version information. R and packages: R: 3.5.1, pROC:
1.13.0, igraph: 1.2.4.2, gplots: 3.0.1.1

Python and modules: Python: 3.7.3, numpy: 1.18.1, faiss: 1.5.1, pandas: 0.25.3,
sklearn: 0.22.1, biopython: 1.76

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The associated TCR-seq datasets, as well as metadata of the related samples are available
at Zenodo50. Accession links of the original TCR-seq datasets are provided in Tables S4
and 5. Immune Epitope Database was accessed via: http://www.iedb.org/home_v3.php.
VDJdb was accessed via: https://vdjdb.cdr3.net.

Code availability
GIANA and GIANAsv source codes, R code to run GIANA visualization tree, and
training datasets are available at: https://github.com/s175573/GIANA51
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