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Objectives: To assist with planning hospital resources, including critical care (CC) beds, for managing patients with COVID-19.

Methods: An individual simulation was implemented in Microsoft Excel using a discretely integrated condition event
simulation. Expected daily cases presented to the emergency department were modeled in terms of transitions to and from
ward and CC and to discharge or death. The duration of stay in each location was selected from trajectory-specific
distributions. Daily ward and CC bed occupancy and the number of discharges according to care needs were forecast for
the period of interest. Face validity was ascertained by local experts and, for the case study, by comparing forecasts with
actual data.

Results: To illustrate the use of the model, a case study was developed for Guy’s and St Thomas’ Trust. They provided inputs
for January 2020 to early April 2020, and local observed case numbers were fit to provide estimates of emergency department
arrivals. A peak demand of 467 ward and 135 CC beds was forecast, with diminishing numbers through July. The model
tended to predict higher occupancy in Level 1 than what was eventually observed, but the timing of peaks was quite close,
especially for CC, where the model predicted at least 120 beds would be occupied from April 9, 2020, to April 17, 2020,
compared with April 7, 2020, to April 19, 2020, in reality. The care needs on discharge varied greatly from day to day.

Conclusions: The DICE simulation of hospital trajectories of patients with COVID-19 provides forecasts of resources needed
with only a few local inputs. This should help planners understand their expected resource needs.
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Introduction

Faced with the potential for many admissions for COVID-19,
hospitals worldwide have sought to anticipate their needs for
critical care (CC) beds, related equipment, and staffing. Given the
lack of knowledge of this disease,1-5 it was deemed necessary early
in the pandemic to resort to the use of some form of predictive
model,6,7 formal or informal, capable of forecasting the demand
for resources as the epidemic evolved.8 Although various epide-
miologic models have been developed,9-12 these address the likely
course of the epidemic at a national or regional level13-20—a level
of aggregation that is not helpful for individual hospitals. Even
when the predictions were for a city,15,21,22 these remained too
broad to reflect the needs of an individual institution. In a
particular center, the pattern of arrivals and the mix of the pop-
ulation from its catchment population might not reflect that of the
larger area.23 Nosocomial infections and tertiary referrals may add
further to a hospital’s case load.
15/$36.00 - see front matter Copyright ª 2021, ISPOR–The Professional So
Apart from the possible differences in the epidemic between a
hospital’s catchment area and the broader region, specialty ser-
vices may vary locally, and these will affect the demand for re-
sources. To anticipate bottlenecks in delivery, any predictive
modeling has to sufficiently adjust to each center’s circumstances.
This requires a model capable of simulating in detail the course of
patients according to a particular hospital’s practices. Because
most centers do not have the capability to develop these simula-
tions on their own, a tool that may be used by many hospitals to
model patient flow during the COVID-19 pandemic can be of
benefit. Such a tool must allow the customization of inputs to
produce suitable estimates that hospital teams can reliably use to
make decisions regarding expanding capacity, providing care for
patients with other illnesses, requests for external support, and so
on. Given the substantial uncertainty surrounding a novel virus
epidemic, the model must allow for consideration of many sce-
narios. Because the epidemic changes as it progresses and is
modified by imposition and withdrawal of mitigation measures,
ciety for Health Economics and Outcomes Research. Published by Elsevier Inc.
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the model must be capable of incorporating new data as they
become available and its structure must remain flexible and
adaptable.

In this article, we describe the development of a model that
meets these requirements. It was created at the request of an
English National Health Service (NHS) Foundation Trust (Guy’s
and St Thomas’ Trust [GSTT]). As is common for individual hos-
pitals, they faced extreme time constraints that required a model
able to produce results within days. The intent was to make the
model available to other hospitals nationally and internationally,
and thus, it had to be constructed using widely available spread-
sheet software and be capable of simulating the trajectories at an
adequate level of detail; it needed to be extremely flexible and
easily and quickly adaptable because the data and needs were
rapidly changing. This article focuses on the design and struc-
turing of the simulation of hospital resource use, from arrival in
the emergency department (ED) to discharge or death. A separate
article, which deals with the local epidemiologic predictions, is in
development. These details, though important to the full imple-
mentation of the forecasts, are not covered here because the
simulation of hospital trajectories is not bound to any specific way
of deriving the epidemiologic estimates and users can incorporate
to the model what seems logical for their own context by
replacing the existing estimates. To illustrate how the simulation
works, a case study was presented using the inputs provided by
GSTT in early April 2020.

Methods

Discretely Integrated Condition Event Simulation

The model was designed and implemented using a discretely
integrated condition event (DICE) simulation.22 This allowed the
model to be entirely specified and run in Microsoft Excel
(Microsoft Corporation, Redmond, WA), a widely available and
familiar spreadsheet application, with no need for specialized
software.24 By the same token, DICE models are easily understood
and readily modified.25 Using DICE allowed us to develop the
model in less than 1 week and to modify the model on a daily
basis as understanding of the pandemic and the hospital’s cir-
cumstances changed.

DICE simulation has been described in detail elsewhere—
additional information, templates, training materials, and the DICE
engine are freely available at https://dice.impact-hta.eu/. DICE is
an approach to designing and structuring a simulation by sepa-
rating the information to be processed from the changes that are
forecast to happen. The information is stored in a table of uniquely
named Conditions (names italicized here), and the changes are
specified in Events (named with no spaces, capitalized, and bol-
ded here). Each change is expressed in text that respects Excel
syntax but without the “=” sign. A small macro reads the tables
and processes them row by row, successively inserting an “=” sign
to activate each expression in turn. Because all elements of the
model are tabulated with no programming or hidden parts, a DICE
model is very transparent, readily understood, and easily modified
by editing the text expressions or adding or deleting rows in the
tables. DICE has been used by health technology assessment
agencies, including the English National Institute for Health and
Care Excellence26 and the French Haute Autorité de Santé,27 and
further developed as part of the Impact HTA Horizon 2020 project
(https://www.impact-hta.eu/).

Model Design

To address the complexities of the hospital trajectories, the
model was specified as an individual simulation,28 where the
movements between wards and into and out of hospital were
considered as events that happened on particular days (Fig. 1).
Although the pathways were not particular to patients with
COVID-19, the model focused on COVID-19–related admissions
and not arrivals to the ED for other indications.

For each individual patient, the simulation assigned a calendar
day on which that patient presented to the ED based on the dis-
tribution of arrival times that was obtained from the fits to local
data (for the GSTT case study, the data and fits are provided in
Appendix 1 in Supplemental Materials found at https://doi.org/1
0.1016/j.jval.2021.05.023). This arrival happened at the Start
event, and the patient was then admitted either to the ward (at
event AdmitL1) or to CC (AdmitCC). While in CC, a patient may
have had a tracheostomy (Trach), required renal replacement
therapy (RRT), or died (DieCC). Survivors were transferred to the
ward (TransferL1) and then may be discharged or died in the
ward (Discharge). On DieCC, Discharge, or end of the specified
calendar period of predictions, Endwas triggered. This terminated
the replication and reported those results.

Admission to either Level 1 (L1) or CC was determined in Start
by applying a probability (stored in condition pEDtoL1) using a
random number. Depending on the decision, the corresponding
event was triggered. In the same way, it was determined in
AdmitL1 whether the patient would be transferred to CC. If
transferred, the timing of transfer was assigned based on a draw
from a distribution describing the length of stay (LOS) on the ward
before transfer. If no transfer would occur, the time until discharge
or death was drawn from the corresponding LOS distribution. On
admission to CC, the model determined whether the patient
would die in CC and if so when. If not, then the day of transfer to
L1 was selected from the relevant distribution. A tracheostomy
may be performed if the LOS in CC met local standards. The need
for RRT was determined based on its frequency (stored in pRRT).
On TransferL1, the remaining LOS was assigned from the corre-
sponding distribution. At Discharge, the destination (home, home
with care, community care, nursing home) was chosen according
to the proportions observed locally. At every event, its calendar
time of occurrence was recorded.

All information processed by the model was contained in 47
conditions (Table 1), 9 event times, and 8 outputs (Table 2).
Among the conditions, 4 were dynamic (values could change
during simulation) and track what was happening to the patient.
These were processed during the execution. Of the remainder, 21
were static (values did not change during simulation) and re-
flected user inputs that covered the time horizon and start date for
the simulation, the parameters of the various equations that
controlled model flow, and the probabilities that operated at
junctures; 6 pertained to model control and the rest were random
numbers that helped individualize the course of each patient.

The distributions of LOS at various points according to the
pathway could be specified using various distributions (expo-
nential, Weibull, log-logistic) based on the observed local data. If a
user did not have the data or expertise to fit their own LOS dis-
tributions, they needed to only specify the median and inter-
quartile range of their local LOS, and the model would
automatically refit the distributions on an empirical basis.

The model recorded the dates of all changes in location of care
and reported these for each patient. The output was then pro-
cessed to accumulate the numbers of patients in each location of
care on any given day, and these were compared with the capacity
limits for each location as set by the user to determine whether
they were exceeded. If exceeded, the date and amount beyond
capacity were recorded. This approach was implemented because
the hospital team believed that all hospitals have means to expand
their capacity and implementing queues was less useful and not
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Figure 1. Schematic of the DICE COVID-19 hospital management model. Events are represented by the boxes and arrows indicate
possible pathways.

CC indicates critical care; COVID-19, coronavirus disease 2019; DICE, discretely integrated condition event; L1, Level 1; LOS, length of stay.
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realistic. The impact of expanding had repercussions on the ability
of a hospital to deliver elective hospital care. Knowing when
reserve capacities would be required also allowed the hospital to
cancel appointments, cancel surgeries, and otherwise prepare.

Validation

The model was validated as far as possible in accordance with
published guidelines.29 Face validity of the model was established
by the expert clinicians on the team, who ensured that the
modeled pathways corresponded to the clinical reality. Verifica-
tion of the implementation was performed by an independent
modeler following a standard protocol. Predictive validity was
more difficult to establish because of a lack of data. Forecasts were
provided to the hospital team, and anecdotally, they reported back
that these were reasonably accurate, but no detailed data were
provided back to the modeling team. Given the continued
pandemic pressures, even to this date, the data required for
detailed predictive validation have not been made available to us.
Nevertheless, it was possible to compare predictions of the timing
and duration of peak resource requirements.

Uncertainty

A model such as this one bears 3 types of uncertainty.30 The
use of random numbers to select values from distributions and to
determine trajectories creates stochastic uncertainty. This can be
addressed in DICE by setting the number of replications to be done
based on stability analyses. To do so, one or more outputs must be
designated as the ones for which stability will be measured. The
time until the peak CC demand and the level of the peak were of
most interest for this model. The assumptions made in the model
implementation create structural uncertainty. In DICE, this is
handled by specifying alternative scenarios. For this model, sce-
narios could be specified covering any of the inputs or combina-
tions. Finally, parameter uncertainty arises from the statistical
uncertainty surrounding many of the inputs. The uncertainty table
in a DICE model allows the analyst to specify the parameters that
bear statistical uncertainty and their distributions. Both deter-
ministic and probabilistic analyses can be run on these parame-
ters. In this model, uncertainty analyses could be specified for the
probabilities that control the trajectories and for the LOSs in each
ward. Other parameters such as those pertaining to mortality can
also be included.

Case Study

This work was undertaken by the team at the London School of
Economics and Political Science in collaboration with GSTT to
assist with planning resource allocation during the initial
pandemic surge of COVID-19. This NHS Foundation Trust has a bed
capacity of 1277 beds, including 1090 general and acute beds, 75
maternity beds, and 112 CC ICU beds (see https://www.cqc.org.uk/
sites/default/files/new_reports/AAAE1480.pdf) and, annually,
deals with approximately 2.6 million patient contacts of varying
case mix, 95 000 of whom are treated as inpatients (see
https://www.guysandstthomas.nhs.uk/about-us/who-we-are/facts-
figures.aspx). The Emergency Department and Urgent Care Centre
at GSTT is one of the busiest in the NHS, with 240 000 patient
encounters per annum, predominately drawn from South London
and of widely varying individual characteristics. GSTT was able to
expand bed capacity based on surge principles for a conventional
response where a hospital’s CC resources should expand imme-
diately by 20% above baseline, followed by capacity expansion of
at least 200% above baseline to meet demands using local,
regional, national, and international resources.31

The GSTT teammade several specifications on Thursday, March
26, 2020, defining a model to characterize their own setting
(Table 3). To meet these specifications in the time allowed and
with the data provided, the initial design for the model considered
the wards as compartments and simulated the transfers among
them. This cohort model was functional the following Wednesday,
April 1, 2020. Eventually, this early cohort model was found to be
insufficient to handle the heterogeneity in management, de-
pendencies of transfer probabilities on LOSs, and more complex
pathways. Therefore, it was converted to the individual simulation
reported here.

The case load data for the case study were obtained for Lam-
beth and Southwark, the primary catchment populations for the
GSTT hospitals. These are inner London boroughs with a popula-
tion of 644 864, approximately 43% of them in the black, Asian,
and minority ethnic category of racial identification and toward
the poorest in the United Kingdom. Lambeth is categorized as the
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Table 1. Conditions in the COVID-19 DICE simulation.

Name Initial level for GSTT Description

Dynamic
Date StartDate Current date in simulation
StartDay changing Starting day selected for each patient
AdmitTo changing Admission location (1 = CC, 2 = L1) for each patient
DischDest changing Destination for each live discharge

Static
TimeHorizon 100 User-specified number of days to run simulation
StartDate March 23, 2020 User-specified calendar date for start of simulation
pEDtoL1 0.96* Probability of transfer from ED to L
pL1toCC 0.22* Probability of transfer from L1 to CC
pDieCC 0.3* Fraction of patients who will die in CC
pSurvL1 0.85* Fraction of patients who will die in L1
pRRT 0.3* Fraction of patients in CC who require RRT
pHome 0.15* Cumulative proportion of discharges home
pHomewCare 0.575* Cumulative proportion of discharges home with care
pCommBed 0.9575* Cumulative proportion of discharges to community care bed
pCareHome 0.9915* Cumulative proportion of discharges to care home
BetaWillGoCC 1 Beta parameter for Weibull LOS in L1 before transfer to CC
LambdaWillGoCC 0.69314718 Lambda parameter for Weibull LOS in L1 before transfer to CC
BetaL1 1.4150375 Beta parameter for Weibull LOS in L1 only
LambdaL1 0.31889391 Lambda parameter for Weibull LOS in L1 only
BetaDieCC 1 Beta parameter for Weibull LOS before death in CC
LambdaDieCC 0.11552453 Lambda parameter for Weibull LOS before death in CC
BetaLiveCC 1 Beta parameter for Weibull LOS in CC before transfer to L1
LambdaLiveCC 0.1732868 Lambda parameter for Weibull LOS in CC before transfer to L1
BetaL1post 0.77760758 Beta parameter for Weibull LOS in L1 after transfer from CC
LambdaL1post 0.05675878 Lambda parameter for Weibull LOS in L1 after transfer from CC

Model control
NextEventTime 0 System, stores the time of the next event
NextEvent 1 System, stores the index number of the next event
Time 0 System, the current model time, in days
WillGoCC Changing Flag indicating whether patient will transfer from L1 to CC
WillDieCC Changing Flag indicating whether patient will die in CC
DieInL1 Changing Flag indicating whether patient will die in L1

Dynamic conditions may change value during the simulation; static conditions retain their initial value during an iteration, but these may change for scenarios and
uncertainty analyses (random number conditions not listed).
CC indicates critical care; COVID-19, coronavirus disease 2019; DICE, discretely integrated condition event; ED, emergency department; GSTT, Guy’s and St Thomas’ Trust;
L1, Level 1; LOS, length of stay.
*Source: GSTT provided the initial values for their location.
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22nd most deprived and Southwark as the 44th most deprived of
326 local English authorities.

The daily cases presenting to the ED in the Lambeth and
Southwark catchment area for GSTT were obtained from Public
Health England (tabulated in Appendix 1 in Supplemental Mate-
rials found at https://doi.org/10.1016/j.jval.2021.05.023). Given the
time constraints, flexible fractional polynomials were fit to the
data (statistics in Appendix 1 in Supplemental Materials found at
https://doi.org/10.1016/j.jval.2021.05.023), and a quadratic distri-
bution was chosen as the simplest reasonable fit. Much later, a full
dynamic transmission compartmental epidemiologic model was
developed and fit to the data for many locations worldwide. Those
fits (not reported here) can also be implemented in the DICE
simulation using a separate module to generate the cases. Indeed,
the DICE simulator can accept any user-defined way of generating
the cases provided that the user’s equations produce estimates of
the daily number of cases expected during the period of interest.
The DICE model reported here uses these estimates for its purpose
of predicting hospital flows once a patient arrives at hospital.

For the LOS distributions, the GSTT team provided the median
and interquartile range for each ward, by pathway (eg, separately
for patients going to a ward first then to CC from those going
directly to CC). The model estimates the corresponding Weibull
parameters. A Weibull distribution was chosen because it allows
for the longer tail expected by the hospital and encompasses the
simpler exponential distribution as a special case. Indeed, in some
cases, the fitted shape parameter was 1, indicating that the dis-
tribution reduced to exponential.

Analyses for the GSTT case study involved 80 replications (peak
CC demand stabilized after 71 replications), with the average
across replications taken as the estimate. For GSTT, the local data
showed a steady rise in cases with a peak occurring between
March 30, 2020, and April 1, 2020. The peak in the fits to these
data coincided with those days with a 7-day moving average in
this catchment area of 12.7 new COVID-19 cases per 100 000
people, whereas the quadratic fit predicted a rate of 12.4. Based on
the fits to the observed data and GSTT’s LOS distributions and
probabilities at particular junctures, the DICE model estimated
GSTT’s expected daily bed occupancy in L1 and CC (Fig. 2A). The
model tended to predict higher occupancy than what was even-
tually observed (eg, for the first 7 days of April, the model pre-
dicted average ward daily occupancy of 344.9 than an actual
average of 325.1). The timing of peaks was quite close, however.
For CC, for example, the model predicted more than 120 beds
would be needed between April 9, 2020, and April 17, 2020, than
from April 7, 2020, to April 19, 2020 in reality. Bed occupancy was
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Table 2. Events in the COVID-19 DICE simulation and outputs recorded.

Name Initial time Description

Start Changing Specific to each patient

DieCC Changing When patient will die, if death occurs in CC

AdmitCC Changing Depends on the start date for each patient and admission destination

AdmitL1 Changing Depends on the start date for each patient and admission destination

TransferL1 Changing Depends on survival in CC

Tracheostomy Changing At least 14 days into CC stay

RRT Changing Depends on risk and LOS in CC

Discharge Changing Selected from LOS distribution

End TimeHorizon Duration of simulation set by analyst

Output Recorded at Description

rAdmitL1 AdmitL1 Date of first admission to ward for each patient

rAdmitCC AdmitCC Date of first admission to CC for each patient

rTransferL1 TransferL1 Date of transfer to ward from CC for each patient

rRRT RRT Date of initiating RRT for each patient

rTrach Trach Date of performing tracheostomy for each patient

rDischarge Discharge Date of discharge or death from L1 for each patient

rDischDest Discharge Location of care upon discharge

RepNum System Replication number if model rerun multiple times

CC indicates critical care; COVID-19, coronavirus disease 2019; DICE, discretely integrated condition event; L1, Level 1; LOS, length of stay; RRT, renal replacement
therapy.
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forecast to persist long after the case influx diminished to near
0 because of the longer tails in the LOS projections. The predicted
number of deaths varied considerably from day to day, as did live
discharges by destination (Fig. 2B), but the curves roughly fol-
lowed those of bed occupancy.
Discussion

This model simulates the within-hospital course of patients
with COVID-19 presenting to a hospital ED. It was created in close
collaboration with clinical and operational leaders at the hospital
level for GSTT and is functional to support local planning during
any further surges. The objective was to aid bed utilization ca-
pacity planning under circumstances where it was unclear given
original informal projections, whether capacity would be suffi-
cient to meet demand.

The model developed was specified entirely in a small set of
Excel tables that characterized complex patient flows in a simple
yet accurate manner. It was executed by a standard, freely avail-
able DICEmacro (downloadable from https://www.impact-hta.eu/),
which can be used with any DICE model. DICE eases exposition of
local circumstances by using readily accessed software and
simplifying the expertise required to undertake the modeling by
specifying complex patient flows through tabulated conditions
and events. These only require the user to add local data to an
input template. Additional complexity of patient flows (eg, to a
step-down unit) or of resource use (eg, extracorporeal membrane
oxygenation) can be incorporated through further specification of
conditions and events where data exist.

The model can be downloaded and adapted by any user to
their local hospital by modifying any of the small set of inputs.
Local practices can be accommodated by changing the probabili-
ties that control movement between wards, RRT, and
tracheostomy. These can be obtained from the locally observed
frequencies. Other resource use can be added to each ward,
including staff requirements, by incorporating additional rows in
the corresponding event tables. If the user has access to an
epidemiologic forecasting model for new cases per day, this can be
coupled to the hospital resource use module. Alternatively, fore-
casts can be made by fitting local observed case data.

The model itself has a few limitations. At the time the model
was constructed, heterogeneity in hospital trajectories according
to patient characteristics was not well understood and is, thus, not
incorporated. As the determinants of course and outcome become
clearer, they can be included in the model by adding patient
profiles with these characteristics (a built-in feature of DICE) and
deriving the affected condition values based on these. For
example, if age and comorbidities affect the probability of going to
CC and the case-fatality rates, then profiles covering the local age
range and comorbidity distributions can be specified. These would
be used to adjust the CC probability and the lambda parameter of
the death equation.

The version of the model reported here does not include in-
terventions such as extracorporeal membrane oxygenation or
medications used to treat COVID-19 or its complications. As these
emerge and their effects become clearer, they can be added to the
care in the appropriate wards. Although it was not the purpose of
the model to compare treatments for COVID-19, the simulation
can accommodate these comparisons if a user provides informa-
tion on the effects of a treatment on LOS or the various proba-
bilities. DICE automatically reruns the model for each specified
intervention, changing only those conditions that are affected by
treatment. Incorporating the costs requires adding the relevant
inputs (eg, cost of treatment, per diem costs in ward and CC) and
specifying corresponding outputs (eg, treatment cost, hospital
cost, total cost), which are accrued at the appropriate events.
Estimating quality-adjusted life-years would require adding

https://www.impact-hta.eu/


Figure 2. Daily bed occupancy and predicted discharges predicted b

CC indicates critical care; ICU, intensive care unit; L1, Level 1.

Table 3. Specifications for the model.

� Patients present to the ED at a given rate, which may change over
time.

� From ED, patients may go home (with or without care), to L1 care
(general ward), to L2 or L3 CC, or may die.

� No patients remain in ED overnight.
� From L1 care, patients may go home (with or without care), to CC,

or die.
� From CC, patients may go to L1 care or die (no direct discharges).
� At each level of care, there are capacity constraints:

B Capacity in CC increases in 6 phases. Each phase is activated
when previous capacity is reached.

B Activation of next phase capacity occurs overnight.
B Discharges requiring additional care at home or in a facility

also face capacity constraints.
� Staffing requirements are by level of care and per bed or patient.
� A particular Trust is defined by:

B Case influx from its catchment population and possible
transfers

B Its capacities at each level and phase
B Its clinical practices
B The occupancies at the start of the simulation

CC indicates critical care; ED, emergency department; L1, Level 1; L2, Level 2; L3,
Level 3.
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utilities to the inputs and projecting the course of patients after
discharge—including consideration of any long-term conse-
quences of COVID-19 infection and their impact on quality-
adjusted life-years.

Although the model includes occupancy of beds by patients
with other non-COVID diagnoses, these were not actively modeled
(kept static) because the clinical team was unable to specify their
trajectories during the pandemic. Given its flexibility, the model
can incorporate their dynamic management if this information
becomes available.

The application of this model to a specific hospital may be
constrained by the availability and quality of data for that hospital.
At GSTT, they could access electronic patient records. Even with
these tools, however, it was difficult to obtain accurate data on
ward occupancy. Across the United Kingdom, electronic recording
varies, with many hospitals still using paper records. The predic-
tive distribution of arrival dates for new cases and their cumula-
tive volume were obtained by fitting local data for the catchment
population of GSTT. The in-hospital trajectories were simulated
based on the experience at GSTT. Ideally, the user has estimates of
the median LOS and interquartile range in their ward and CC to
model local flows. If lacking local data, a hospital wishing to use
the model can run plausible scenarios using the default inputs and
y the model.
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calibrate these to the specific information available (eg, death rate,
range of LOS).

The COVID-19 pandemic has prompted a profusion of mathe-
matical modeling,14,32-45 but the vast majority of these models
focus on the epidemiology46-55 and the impact of mitigation
measures.11,56-64 A few models have sought to inform hospital
resource use planning,9,65-68 but these also largely focus on the
impact on the capacity of mitigation scenarios at a regional or
national level69-71—they do not attempt to model the actual pa-
tient trajectories. Despite some attempts to localize projections to
specific hospitals,72,73 many of the inputs were obtained from the
early publications addressing the epidemics in China and Italy, and
they model patient flow in relatively simple terms. The simulation
reported here was based on fully local inputs and models the
trajectories in detail. Moreover, it is very flexible and can be
modified to accommodate other institutions’ practices and data.
Conclusion

It is possible to simulate the hospital and discharge course of
patients with COVID-19 using a DICE simulation defined by con-
ditions and event specified in Excel tables and executed by a
simple macro. Additional details of the patient flows and resource
use can be incorporated through additional conditions and events
if local data and expertise allow. The predictions are useful for
resource capacity planning and preparedness. A health authority
needs to only rely on a small amount of local data to specify a few
inputs to adapt the model to their context and aid their under-
standing of how their own patient flows will affect their ability to
match uncertain demands being placed on their capacity. This
modeling will be increasingly valuable as the pandemic progresses
and should be considered as new waves emerge to ensure
appropriate planning of in-hospital resources to deliver safe,
timely, and resilient healthcare services.
Supplemental Material

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.jval.2021.05.023.
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