Table 3.
DC | RF | LASSO | Xgboost | GBDT | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Accuracy | Sensitivity | Specificity | F1-score | AUC | Accuracy | Sensitivity | Specificity | F1-score | AUC | Accuracy | Sensitivity | Specificity | F1-score | AUC | Accuracy | Sensitivity | Specificity | F1-score | AUC | Accuracy | Sensitivity | Specificity | F1-score | |
LDA | 0.907 | 0.858 | 0.797 | 0.912 | 0.832 | 0.915 | 0.917 | 0.847 | 0.971 | 0.890 | 0.901 | 0.867 | 0.763 | 0.955 | 0.832 | 0.947 | 0.917 | 0.817 | 1.000 | 0.894 | 0.918 | 0.875 | 0.810 | 0.929 | 0.850 |
SVM | 0.853 | 0.700 | 0.633 | 0.757 | 0.653 | 0.972 | 0.725 | 0.430 | 0.971 | 0.542 | 0.777 | 0.642 | 0.267 | 0.957 | 0.365 | 0.946 | 0.833 | 0.650 | 0.986 | 0.764 | 0.966 | 0.908 | 0.817 | 0.986 | 0.886 |
RF | 0.997 | 0.983 | 0.980 | 0.986 | 0.980 | 0.994 | 0.975 | 0.960 | 0.986 | 0.969 | 0.975 | 0.950 | 0.947 | 0.952 | 0.948 | 0.997 | 0.992 | 0.980 | 1.000 | 0.989 | 0.989 | 0.992 | 0.980 | 1.000 | 0.989 |
Adaboost | 0.990 | 0.967 | 0.960 | 0.967 | 0.961 | 0.990 | 0.967 | 0.960 | 0.967 | 0.961 | 0.976 | 0.975 | 1.000 | 0.952 | 0.977 | 0.990 | 0.975 | 0.940 | 1.000 | 0.964 | 0.990 | 0.975 | 0.943 | 1.000 | 0.966 |
KNN | 0.959 | 0.925 | 0.870 | 0.971 | 0.908 | 0.983 | 0.967 | 0.967 | 0.971 | 0.964 | 0.760 | 0.675 | 0.647 | 0.700 | 0.634 | 0.932 | 0.925 | 0.890 | 0.957 | 0.912 | 0.969 | 0.975 | 0.940 | 1.000 | 0.967 |
GaussianNB | 0.973 | 0.942 | 0.893 | 0.986 | 0.928 | 0.973 | 0.775 | 0.523 | 0.986 | 0.654 | 0.986 | 0.975 | 0.963 | 0.986 | 0.971 | 0.926 | 0.633 | 0.223 | 0.971 | 0.292 | 0.926 | 0.608 | 0.167 | 0.971 | 0.209 |
LR | 0.862 | 0.692 | 0.613 | 0.757 | 0.633 | 0.946 | 0.708 | 0.393 | 0.971 | 0.492 | 0.743 | 0.675 | 0.360 | 0.940 | 0.458 | 0.935 | 0.708 | 0.377 | 0.986 | 0.502 | 0.909 | 0.625 | 0.170 | 1.000 | 0.276 |
GBDT | 0.989 | 0.975 | 0.980 | 0.969 | 0.972 | 0.979 | 0.983 | 0.980 | 0.986 | 0.980 | 0.976 | 0.975 | 1.000 | 0.952 | 0.977 | 0.993 | 0.983 | 0.980 | 0.986 | 0.980 | 0.983 | 0.983 | 0.980 | 0.983 | 0.981 |
DT | 0.975 | 0.975 | 0.980 | 0.969 | 0.972 | 0.983 | 0.983 | 0.980 | 0.986 | 0.980 | 0.976 | 0.975 | 1.000 | 0.952 | 0.977 | 0.990 | 0.992 | 0.980 | 1.000 | 0.989 | 0.982 | 0.983 | 0.980 | 0.983 | 0.981 |
DC, distance correlation; RF, random forest; LASSO, least absolute shrinkage and selection operator; Xgboost, eXtreme gradient boosting; GBDT, gradient boosting decision tree; LDA, linear discriminant analysis; SVM, support vector machine; KNN, k-nearest neighbor; LR, logistic regression; DT, decision tree; AUC, area under curve.