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Abstract

Background: Previous research has highlighted the role of stress in substance misuse and addiction, particularly for relapse
risk. Mobile health interventions that incorporate real-time monitoring of physiological markers of stress offer promise for
delivering tailored interventions to individuals during high-risk states of heightened stress to prevent alcohol relapse. Before such
interventions can be developed, measurements of these processes in ambulatory, real-world settings are needed.

Objective: This research is a proof-of-concept study to establish the feasibility of using a wearable sensor device to continuously
monitor stress in an ambulatory setting. Toward that end, we first aimed to examine the quality of 2 continuously monitored
physiological signals—electrodermal activity (EDA) and heart rate variability (HRV)—and show that the data follow standard
quality measures according to the literature. Next, we examined the associations between the statistical features extracted from
the EDA and HRV signals and self-reported outcomes.

Methods: Participants (N=11; female: n=10) were asked to wear an Empatica E4 wearable sensor for continuous unobtrusive
physiological signal collection for up to 14 days. During the same time frame, participants responded to a daily diary study using
ecological momentary assessment of self-reported stress, emotions, alcohol-related cravings, pain, and discomfort via a web-based
survey, which was conducted 4 times daily. Participants also participated in structured interviews throughout the study to assess
daily alcohol use and to validate self-reported and physiological stress markers. In the analysis, we first used existing artifact
detection methods and physiological signal processing approaches to assess the quality of the physiological data. Next, we
examined the descriptive statistics for self-reported outcomes. Finally, we investigated the associations between the features of
physiological signals and self-reported outcomes.

Results: We determined that 87.86% (1,032,265/1,174,898) of the EDA signals were clean. A comparison of the frequency of
skin conductance responses per minute with previous research confirmed that the physiological signals collected in the ambulatory
setting were successful. The results also indicated that the statistical features of the EDA and HRV measures were significantly
correlated with the self-reported outcomes, including the number of stressful events marked on the sensor device, positive and
negative emotions, and experienced pain and discomfort.

Conclusions: The results demonstrated that the physiological data collected via an Empatica E4 wearable sensor device were
consistent with previous literature in terms of the quality of the data and that features of these physiological signals were significantly
associated with several self-reported outcomes among a sample of adults diagnosed with alcohol use disorder. These results
suggest that ambulatory assessment of stress is feasible and can be used to develop tailored mobile health interventions to enhance
sustained recovery from alcohol use disorder.

JMIR Form Res 2021 | vol. 5 | iss. 7 | e27891 | p. 1https://formative.jmir.org/2021/7/e27891
(page number not for citation purposes)

Alinia et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

mailto:michael.cleveland@wsu.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Form Res 2021;5(7):e27891) doi: 10.2196/27891

KEYWORDS

alcohol relapse prevention; stress markers; alcohol consumption; electrodermal activity; heart rate variability; emotion; mobile
phone

Introduction

Background
A well-established literature describes the important role of
stress in addiction and the risk of relapse. For example,
laboratory studies have shown that acute stressors increase
drug-seeking behaviors in animals [1] and that physiological
stress responses in laboratory situations predict relapse among
humans [2]. There is also considerable overlap in the neural
circuitry affected by stress and substance use [1]. Thus, the
associations among cravings, negative emotions, and substance
use have been described by a negative reinforcement model
whereby the combination of craving, withdrawal-induced
negative effect, and a dysregulated reward system during
abstinence leads to increased vulnerability to relapse [1]. This
model suggests that the ability to automatically detect moments
of stress in real-world settings and deliver just-in-time tailored
interventions can provide a powerful tool to prevent relapse,
especially during the early stages of recovery when relapse risk
is highest [3].

A common approach to monitoring stress is to analyze
physiological signals, such as electroencephalography, blood
volume pulse (BVP), heart rate variability (HRV), galvanic skin
response, electrodermal activity (EDA), and electromyography
[4-6]. In this study, we focus on assessing the quality of the
measured EDA and HRV values as biomarkers of stress in
human participants. These 2 signals have been identified as the
most useful physiological signals for detecting stress in real-life,
ambulatory settings [7]. EDA is one of the most direct methods
for measuring the activation of the sympathetic nervous system
induced by physical demands and mental stress. EDA measures
the variation in the electrical conductance of the skin in response
to sweat gland activity. The sympathetic nervous system controls
sweat gland activity. If the sympathetic branch of the autonomic
nervous system (ANS) is activated by physical demands or
mental stress, the number of active sweat gland activity
increases, which, in turn, increases skin conductance. Thus,
higher levels of EDA are associated with increased levels of
stress [8].

HRV refers to the variability of the time interval between
consecutive heartbeats in individuals and can be computed from
BVP signal readings. Previous research has established HRV
as an objective measure of individual differences in emotional
responses. In particular, HRV provides information about the
flexibility of the ANS, the ease with which an individual can
transition between high and low arousal states [9]. In general,
higher HRV (or greater variability between the heartbeats) can
mean that either the body has a strong ability to tolerate a current
state of heightened stress or the body is recovering from
previous accumulated stress. At rest, a higher HRV generally
indicates a healthier state that shows greater resilience and
flexibility in the ANS. In active states, relatively lower HRV

might demonstrate better health conditions in individuals, as
the heart adjusts to the increased demand [10].

To date, most research studies that have used physiological
signals to detect stress have been conducted in controlled
laboratory settings [7,11]. This research has demonstrated that
multiple physiological signals and derived features can
accurately detect induced stress using a variety of stimuli, such
as Stroop color tests, mental arithmetic, or public speaking
challenges [4]. One advantage of stress detection in these
controlled environments is that most often, the ground truth of
the condition is known (ie, stressed vs not stressed). However,
induced stress in artificial laboratory settings may lack external
assessment and thus may not represent the stress experienced
by individuals in their daily lives [12]. As a result, recent efforts
have used wearable sensors to provide continuous, ambulatory
monitoring of stress in uncontrolled, real-world settings [7,11].
However, the potential of this nascent research is characterized
by a number of challenges that limit its application. Among
these gaps, most research has focused on the ambulatory
assessment of stress among healthy adults; very little research
has been conducted among clinical populations, such as adults
diagnosed with alcohol use disorder (AUD). Furthermore,
although previous research suggests that including additional
information about the context of a stressful event can improve
stress detection in ambulatory settings, this is not commonly
achieved.

Objectives
To address these gaps, this study used a multimodal approach
to investigate the associations between 2 physiological signals
(EDA and HRV) and self-reported outcomes, including alcohol
use, heightened stress, positive and negative emotions,
alcohol-related cravings, pain, and discomfort, among adults
seeking treatment for AUD during a 2-week uncontrolled data
collection. Specifically, the aims of this study are 3-fold: (1) to
assess the quality of the physiological signals collected from
an unobtrusive wearable sensor device, (2) to examine the
associations between EDA and self-reported outcomes, and (3)
to examine the associations between HRV and self-reported
outcomes.

Methods

Participants and Procedures
A convenience sample of 11 participants (10 females) was
recruited from adults seeking care at a mental health facility in
a Western state in the United States. Potential participants were
identified from 2 points in the consort flow of a larger study
examining the effectiveness of contingency management
treatment among adults with co-occurring serious mental illness
and moderate to severe AUD. First, we recruited participants
among those who did not meet the primary inclusion criteria of
the larger study: Diagnostic and Statistical Manual of Mental
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Disorders, fifth edition (DSM-5) diagnosis of a serious mental
illness or DSM-5 diagnosis of moderate to severe AUD.
Participants were also identified from among those who did not
meet the secondary eligibility criteria, after an induction phase
and before randomization to the contingency management
conditions. These individuals either failed to achieve an average
urine ethyl glucuronide level that indicated recent heavy
drinking (>349 ng/mL) or failed to attend at least one study visit
during the last week of the 4-week induction phase.

Participants in this study met the following inclusion criteria:
(1) aged 18-65 years and (2) self-reported consumption of 4 or
more standard drinks on 5 or more occasions in the past 60 days.
Participants were also required to own a smartphone with a data
plan that allowed them to respond to the ecological momentary
assessment (EMA) survey (described in the following section).
Exclusion criteria included (1) current DSM-5 diagnosis of a
severe drug use disorder, (2) inability to demonstrate
competency to provide consent on the MacArthur Competence
Assessment Tool for Clinical Research, (3) risk of medically
dangerous alcohol withdrawal (ie, seizure within the last 12
months and concern by participant or clinician regarding a
potentially dangerous withdrawal), (4) previous diagnosis of
dementia, and (5) determination (by the principal investigator
of the larger study) that participation would be medically or
psychiatrically unsafe.

Data Collection
This study included 3 components: (1) a daily diary study using
EMAs of self-reported emotions, cravings, and stress via a
web-based survey, prompted 4 times daily; (2) a wearable sensor
device (Empatica E4 wristband) that captured continuous
physiological markers of stress, including heart rate (HR), skin
temperature, bodily movement, HRV, and skin conductance;
and (3) structured qualitative interviews to assess daily alcohol
use, using a timeline follow-back calendar, and to validate
self-reported and physiological markers of stress.

Measures

Continuous Monitoring of Physiological Stress
Each participant was asked to wear an Empatica E4 wristband
to record continuous, real-time physiological measures of stress
in their daily lives (Figure 1). The noninvasive E4 wristband is
a wearable physiological sensor device that provides
high-quality data that indicate arousal of the ANS (ie, stress).
The E4 contains 4 sensors: (1) photoplethysmography to provide
BVP, from which HR, HRV, interbeat interval (IBI), and other
cardiovascular features may be derived; (2) EDA, used to
measure sympathetic nervous system arousal and to derive
features related to stress, engagement, and excitement; (3) a
3-axis accelerometer to capture motion-based activity; and (4)
an infrared thermopile, used to measure skin temperature.
Physiological data from these sensors were stored in the onboard
memory of the E4 and downloaded by the research staff at each
follow-up visit. The E4 weighs 40 g (1.41 oz) and is worn like
a wristwatch, and all the sensors are embedded in the device.
The E4 also includes a push-button interface that allows for
data annotation. Previous research has assessed the validity of
physiological signals recorded by an Empatica E4 device, such
as EDA, HRV, and IBI, against the standard clinical ground
truth [13,14]. Moreover, previous studies indicate that E4 is
among the most commonly used physiological sensor devices
in scientific research and validate its usefulness in detecting
atrial fibrillation [15] and emotional arousal and stress [16,17].

The study staff provided instructions about proper handling and
wear of the E4 wristband during a scheduled meeting after the
individuals agreed to participate in the study. For example,
participants were instructed to remove the wristband each night
while sleeping and at other times during which the device may
be damaged (eg, in the shower or bath) and to wear the device
on the same wrist throughout the study. The training session
also included instructions on how to use the stress event marker
button on the E4 wristband. Participants were asked to press
this button any time they felt more stressed, overwhelmed, or
anxious than usual. These tag markers were summed for each
participant to provide a daily tally of the number of perceived
stress events.

Figure 1. Empatica E4 sensor.
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EMA-Based Survey
Data collection for the EMA component was performed using
a mobile phone–based survey. The survey assessed the
perceptions of positive and negative emotions, alcohol-related
cravings, and experiences of pain and discomfort. Participants
responded to 4 timed signals throughout the day that
corresponded to early morning (waking), noon, late afternoon,
and bedtime for up to 14 consecutive days.

The measurement of alcohol-related cravings was derived from
previous research [18,19] and included 3 items: (1) “[since last
assessment], the idea of using alcohol has intruded upon my
thoughts;” (2) “[since last assessment], I have missed the feeling
alcohol can give me;” and (3) “[since last assessment], I have
thought about how satisfying alcohol can be.” Response options
included a 5-point scale, ranging from 1 (strongly disagree) to
5 (strongly agree). An aggregate measure of alcohol-related
cravings was created by averaging the 3 items in each of the 4
assessments. An average daily alcohol-related craving score
was then created for each participant for each day of the study.

Positive and negative emotions were assessed using items drawn
from the extended version of the Positive and Negative Affect
Scale (PANAS) [20]. Negative affect was assessed by asking,
“[Since last  assessment],  have you felt
[irritable/lonely/sad/guilty/ashamed/anxious/stressed]?”
Similarly, participants reported their positive affect using the
following terms: warmhearted, enthusiastic, affectionate,
relaxed, calm, happy, joyful, and loving. Responses for each
item were assessed on a 5-point scale, ranging from 1 (not at
all) to 5 (extremely). Aggregate measures of daily negative and
positive affect were created by first averaging across the
respective items in each of the 4 assessments. Next, average
positive and negative emotion scores were created for each
participant on each day of the study.

Measurement of pain and discomfort was assessed with 2 items:
(1) “[since last assessment], have you felt any physical
discomfort?” and (2) “[since last assessment], have you felt any
physical pain?” Five response options included 1=nonexistent,
2=slight, 3=moderate, 4=intense, and 5=unbearable. Average
pain and discomfort scores were created for each participant on
each day of the study.

Qualitative Debriefing Interview
Throughout the study, participants attended up to 6 short
follow-up sessions to meet with study staff on an
every-other-day basis (eg, Monday, Wednesday, and Friday).
During the follow-up sessions, the study staff ascertained
whether the participants were experiencing any problems or
difficulties with either the wearable wristband device or
completing the EMA surveys on their cell phones. The follow-up
sessions also included administration of a timeline follow-back
measure of recent alcohol use [21]. In this procedure,
participants were first presented with a chart of the US Standard
Drink definition and then asked to indicate the number of drinks
consumed on each calendar day since the previous assessment.
At each follow-up visit, participants exchanged their current E4

wristband device for a fully charged device with available
onboard memory for new data collection.

Statistical Analysis

Overview
We conducted a series of statistical analyses in 4 steps. First,
we assessed the quality of the physiological signals, EDA and
BVP. As described in the following sections, we used the
recommended tools and procedures of the Empatica 4 guidelines
to remove artifacts and extract features of the EDA and BVP
signals for use in further analyses. Empatica E4 assesses the
HR and IBI from the BVP signal using a proprietary algorithm
[22]. Second, we examined descriptive statistics, including
interitem correlations among patient-reported outcomes,
aggregated at the day level. In the final 2 steps, we investigated
the associations of the EDA signal (step 3) and the HRV signal
(step 4) with the day-level self-reported outcomes.

EDA Quality Assessment
Physiological signals such as EDA are prone to noise and
artifacts, especially when acquired in uncontrolled real-life
scenarios. Therefore, we preprocessed the EDA signal to remove
the most common artifacts, including environmental, sensor
motion, and muscle movement artifacts. We used EDA Explorer
public scripts to perform automatic artifact and noise detection
[23]. During the process, a high-pass filter was first applied to
smooth the raw EDA signals and remove low-frequency noise.
Then, a multiclass classifier labeled the signal as clean, noisy,
or questionable. The accelerometer and temperature data as well
as the EDA were used in this process. Further analyses were
performed using only the clean parts of the signal.

Trough-to-peak (TTP) and continuous decomposition analysis
(CDA) are 2 commonly used analyses to assess the quality of
EDA signals. We performed these analyses using the LedaLab
toolbox (MATLAB program [MathWorks] suggested by the
Empatica Manual for signal processing). In the TTP analysis,
we set the sample rate to 1 Hz and the minimum amplitude
threshold to 0.01 µS. In the CDA analysis, the EDA signal was
decomposed into phasic and tonic components to increase the
temporal precision. LedaLab provides information on the
number of skin conductance responses (SCRs) and the SCR
onset for each TTP and CDA analysis of the EDA signal. We
downsampled the data from 4 Hz to 1 Hz and then computed
the average SCRs per minute for all 11 participants to compare
the results of the CDA and TTP analysis with previous research
by plotting the frequency of the SCRs per minute [24].

The next step was to extract the features that captured the
patterns in the EDA signal. The EDA peak detection analysis
provides a set of features corresponding to each EDA peak. We
used EDA Explorer public scripts to detect the EDA peaks [23].
Previous studies have shown that peaks from EDA signals
correlate with emotional arousal in humans. As shown in Figure
2, the values at apex, rise time, decay time, amplitude, and SCR
width are standard features that can be extracted from the peaks
of the EDA signal. Table 1 lists the features extracted from the
EDA peaks.
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Figure 2. An example of an electrodermal activity peak. EDA: electrodermal activity; SCR: skin conductance response.

Table 1. Description of the features that are extracted from the electrodermal activity peaks.

DescriptionFeature

The EDA value at apex of the peakEDAa

Time (microseconds) taken by the EDA peak to reach its maximum valueRise time

The maximumMaximum derivative

The amplitudeAmplitude

Time (microseconds) taken by the signal to drop from the apex to the minimum of the peakDecay time

The width of the peak (number of the samples)Skin conductance response width

2D area under the EDA peak curveAUCb

aEDA: electrodermal activity.
bAUC: area under the curve.

HR Quality Assessment
Measuring HR is a routine part of a clinical examination. The
resting HR (RHR) of individuals reflects their overall health.
We measured the RHR of the participant using IBI derived from
the photoplethysmography sensor to identify any irregularities
in the HR data. We note that the IBI data for this study were
provided by Empatica and represent the time in milliseconds
between two successive heartbeats (the R-R interval). This
proprietary algorithm [22] removed incorrect peaks because of
noise and artifacts in the BVP signal. Using the IBI sequence
provided by Empatica, we extracted statistical features from the
HR, including the mean value of the HR (MHR), minimum
value of the HR (MNHR), maximum value of the HR (MXHR),
and SD of the HR signal during the study.

Time domain analysis and frequency domain analysis are 2
standard methods for investigating HRV. In the time domain
analysis, HRV measures were directly extracted from the IBI
or RR interval signals. Frequency domain analysis extracts HRV
measures from the power spectrum of the Fourier transform of
the RR interval signals. In this study, we focus on the time
domain HRV measures, including the mean of the RR interval
(MRR), the SD of the RR interval (STDRR), the root mean
square successive differences of the RR intervals (RMSSDs),
and the coefficient of variance of the RR intervals (CVRR)
[25,26].
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Results

Demographics
The mean age of the participants was 40.27 years (SD 3.66;
range 27-60 years). The majority of the sample was White,
non-Hispanic (n=9). One participant identified as White,
Hispanic, and one participant identified as American Indian or
Alaskan Native. Of the 11 participants, 10 (91%) identified as
female, and 1 (9%) participant identified as male.

Data Set Quality Assessment
Previous research suggests that the collected physiological
signals must maintain a number of quality measures to be
considered valid for data analysis. For this research, we
examined the quality of the collected data across several
dimensions, including (1) the number of clean signals after
artifact removal, (2) the distribution of the SCR values, using
TTP and CDA analyses, and (3) the distribution of the HRV
values. On the basis of the results of artifact detection, out of
1,174,898 EDA signal measurements, 1,032,265 (87.86%),
108,208 (9.21%), and 34,424 (2.93%) collected in total from
all the participants were clean, noisy, and questionable,
respectively. In both the TTP and CDA analyses, the EDA data
were downsampled to a sampling rate of 1 Hz, and a minimum
amplitude threshold of 0.01 µS was considered.

As expected, in both analyses, the SCRs per minute were
positively skewed with most SCR values near or at 0.0 per
minute. The results from the TTP analysis show a peak at 0

SCRs per minute, with a continuous decrease of up to 17.5 SCRs
per minute. The results from the CDA analysis show a peak at
0 SCRs per minute, followed by a sharp decline at 1 SCRs per
minute and later by a small increase from 15.0 to 17.5 SCRs.
Thus, our data demonstrated results similar to those of a previous
study that used the same analyses on 8 participants to assess
the quality of EDA and HRV data collected with the E4 [24].

Table 2 reports the distribution of the HR averaged across low,
normal, and high ranges separately for each participant. All the
participants except participant 11 experienced similar
distribution of HR during the data collection period. Among
these 10 participants, 1.11% (59,982/5,399,250) of the study
data were in the low range of 40-59 beats per minute (bpm),
82.76% (4,468,337/5,399,250) were in the normal range of
60-100 bpm, and 16.01% (4,468,337/5,399,250) were in the
high range, above 100 bpm. However, for participant 11, only
44.87% (310,876/692,901) of the experienced HRs were in the
normal range of 60-100 bpm, whereas more than half
(379,119/692,901, 54.71%) of the HRs were in the high range
of 101-200 bpm. On the basis of these results, we conclude that
all the participants except participant 11 demonstrated normal
HR distribution.

Table 3 reports the means and SDs for the HR features,
including mean value the heart rate (MHR), MXHR, MNHR,
and SD of the heart rate (STDHR) signal of the participants
during the data collection. Likewise, Table 4 shows means and
SDs for the heart variability measures for each participant during
the entire data collection period.

Table 2. Total numbers and percentages of participants’ heart rate (bpm) across low, normal, and high ranges during the study period.

High (101-200 bpm), n (%)Normal (60-100 bpm), n (%)Low (40–59 bpma), n (%)Total, NSubject

108,267 (26.91)290,316 (72.17)3626 (0.91)402,257Participant 1

100,146 (13.99)605,916 (84.65)9599 (1.34)715,794Participant 2

84,554 (17.87)386,090 (81.58)2601 (0.55)473,283Participant 3

50,999 (8.41)533,903 (88.01)15,592 (2.57)606,614Participant 4

181,685 (24.6)555,673 (75.25)953 (0.13)738,475Participant 5

84,276 (12.95)551,797 (84.78)14,739 (2.26)650,860Participant 6

75,801 (22.29)263,814 (77.58)399 (0.12)340,036Participant 7

41,496 (10.67)340,905 (87.67)6394 (1.64)388,833Participant 8

64,213 (11.99)467,507 (87.33)3592 (0.67)535,352Participant 9

72,789 (13.29)472,416 (86.25)2487 (0.45)547,746Participant 10

379,119 (54.71)310,876 (44.87)2164 (0.31)692,901Participant 11

abpm: beats per minute.
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Table 3. Means and SDs for the statistical features extracted from the heart rate signal.

SD of the heart rate, mean
(SD)

Maximum value of the heart
rate, mean (SD)

Minimum value of the heart
rate, mean (SD)

Mean value of the heart rate,
mean (SD)

Subject

10.21 (1.74)167.32 (17.9)51.17 (19.27)104.72 (9.81)Participant 1

12.1 (2.86)186.11 (14.61)45.08 (5.01)87.05 (6.15)Participant 2

11.28 (3.15)182.97 (14.71)51.26 (6.18)88.83 (5.29)Participant 3

9.21 (2.90)159.71 (27.55)35.64 (6.15)71.27 (6.15)Participant 4

9.85 (2.27)171.66 (21.96)45.92 (11.18)86.3 (8.03)Participant 5

14.97 (3.94)185.45 (12.29)37.40 (4.73)74.11 (7.88)Participant 6

11.72 (2.91)168.99 (19.72)45.48 (5.06)91.07 (7.84)Participant 7

10.37 (2.23)180.56 (12.34)38.53 (4.52)78.54 (9.48)Participant 8

9.87 (1.54)169.47 (30.22)48.22 (4.28)79.04 (6.88)Participant 9

12.54 (0.98)166.88 (13.08)42.88 (5.47)84.79 (3.38)Participant 10

22.53 (8.45)180.7 (29.88)44.29 (9.58)95.19 (8.14)Participant 11

Table 4. Means and SDs for the statistical features extracted from the heart rate variability measures.

Covariance of all the RR
intervals, mean (SD)

Covariance of SD,
mean (SD)

Root mean square,
mean (SD)

SD of the RR interval,
mean (SD)

Mean value of all of the RR
intervals, mean (SD)

Subject

0.10 (0.02)0.11 (0.02)0.06 (0.01)0.06 (0.01)0.58 (0.05)Participant 1

0.13 (0.02)0.10 (0.02)0.07 (0.02)0.00 (0.02)0.70 (0.05)Participant 2

0.12 (0.02)0.11 (0.03)0.07 (0.02)0.08 (0.02)0.69 (0.04)Participant 3

0.12 (0.03)0.08 (0.02)0.07 (0.01)0.10 (0.01)0.86 (0.07)Participant 4

0.11 (0.02)0.10 (0.03)0.07 (0.01)0.08 (0.01)0.71 (0.06)Participant 5

0.15 (0.05)0.13 (0.03)0.11 (0.02)0.13 (0.03)0.84 (0.08)Participant 6

0.13 (0.03)0.10 (0.03)0.07 (0.02)0.09 (0.02)0.68 (0.06)Participant 7

0.12 (0.03)0.11 (0.01)0.09 (0.02)0.10 (0.02)0.78 (0.10)Participant 8

0.12 (0.01)0.09 (0.02)0.07 (0.01)0.09 (0.01)0.78 (0.08)Participant 9

0.14 (0.01)0.13 (0.02)0.09 (0.01)0.10 (0.01)0.72 (0.03)Participant 10

0.19 (0.06)0.13 (0.02)0.09 (0.01)0.13 (0.01)0.68 (0.05)Participant 11

Self-reported Outcomes: Descriptive Statistics and
Bivariate Correlations
Table 5 reports the descriptive statistics for the self-reported
outcomes, computed at the daily level, including mean, SD,
median, minimum and maximum, and 1st and 3rd quartiles.
Overall, the participants reported a mean of 3 stressful events

each day (SD 2.9), with a range of 0-17 stressful moments per
day. Participants reported consuming between 0 and 18 servings
of alcohol daily, with a mean of 2.8 servings per day (SD 5.2).
Mean values for self-reported alcohol cravings, positive and
negative emotions, and pain and discomfort ranged from 2.2-2.9,
with values ranging between 1 and 5.

Table 5. Descriptive statistics of the self-reported outcomes.

3rd quartile1st quartileMaximumMinimumMedianMean (SD)Self-reported outcomes

3.5117023 (2.9)Stress events

3.00.018.00.00.02.8 (5.2)Alcohol use

3.52.34.81.03.02.9 (0.9)Alcohol cravings

2.92.13.91.32.52.5 (0.6)Positive emotion

2.91.52.91.02.52.3 (0.8)Negative emotion

3.01.05.01.02.32.3 (1.0)Discomfort

3.01.05.01.02.52.2 (1.1)Pain
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Table 6 shows the results of the correlation analysis of the
self-reported outcome variables. The intersection of a pair of
outcomes on the left side of the diagonal displays the correlation
coefficient, indicating the strength of the relationship between
them. As seen in Table 6, the number of stress events was
significantly and positively associated with self-reported
negative mood (r=0.21; P=.002) and pain (r=0.18; P=.006).
Self-reported alcohol use was significantly and positively
correlated with self-reported cravings (r=0.46; P<.001) and
negatively correlated with self-reported negative mood,

discomfort, and pain, with coefficient correlation values of
−0.38, −0.44, and −0.45, respectively (all P values <.001).
Self-reported alcohol-related cravings were also negatively
correlated with days characterized by pain (r=−0.20; P=.005)
and discomfort (r=−0.25; P=.007). Participant self-reports of
discomfort and pain were significantly and positively correlated
(r=0.93; P<.001). Each of these 2 measures was also
significantly and positively correlated with participant
self-reports of negative mood, with coefficient correlation values
of 0.49 and 0.48 (both P values <.001)

Table 6. Bivariate correlation coefficient values of the self-reported outcomes.

PainDiscomfortNegative emotionPositive emotionAlcohol cravingsAlcohol useStress eventsSelf-reported outcomes.

———————aStress events

——————−0.11Alcohol use

—————0.46−0.001Alcohol cravings

————−0.160.0010.07Positive emotion

———−0.150.02−0.380.21Negative emotion

——0.49−0.02−0.20−0.440.04Discomfort

—0.930.48−0.05−0.25−0.450.18Pain

aNot applicable.

Correlations Among EDA and Patient-Reported
Outcomes
Table 7 shows the Spearman correlation coefficients between
the EDA features and the daily aggregated self-reported
outcomes. As seen in the table, the number of stress events was
positively associated with the amplitude (r=0.26; P=.005) and
counts (r=0.27; P=.003) of the EDA peaks. In contrast, the
number of stress events was negatively correlated with the decay
time (r=−0.20; P=.03), SCR width (r=−0.34; P<.001), and area
under the curve (r=−0.32; P<.001) of the EDA peaks. These
results suggest that participants experienced more and higher
peaks in the EDA signal on days characterized by more stress

and that the peaks in the EDA signal tended to drop more
rapidly—and were narrower—during more stressful days.
Among the other self-reported outcomes, the number of alcohol
drinks was positively associated with the decay time of the EDA
peaks (r=0.18; P=.08). Daily averages of positive mood were
positively associated with EDA rise time (r=0.23; P=.02),
amplitude (r=0.20; P=.06), and decay time (r=0.17; P=.09).
Rise time (r=0.28; P=.005) and amplitude (r=0.41; P<.001)
were also positively associated with aggregate levels of
self-reported negative mood. In contrast, the decay time of the
EDA signal was negatively correlated with the daily levels of
discomfort (r=−0.18; P=.08) and pain (r=−0.22; P=.03).
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Table 7. Spearman correlation coefficients between the daily electrodermal activity features and the daily self-reported outcomes.

Self-reported outcomeFeature

PainDiscomfortNegative emotionPositive emotionCravingsAlcoholStress

−0.07−0.060.17−0.140.01−0.03−0.09Electrodermal activity

−0.12−0.120.28b0.23a0.10−0.060.11Rise time

−0.07−0.070.110.090.160.010.04Maximum derivative

0.010.010.41d0.20c0.16−0.020.26bAmplitude

−0.22a−0.18c−0.100.17c0.120.18c−0.20aDecay time

−0.14−0.120.02−0.010.150.06−0.34dSkin conductance response width

−0.08−0.070.050.010.170.04−0.32dArea under the curve

0.100.100.090.090.090.050.27bCounts

aSignificance code .05.
bSignificance code .01.
cSignificance code .10.
dSignificance code .001.

Correlations Among HRV and Self-reported Outcomes
Table 8 displays the Spearman correlation coefficients for the
associations between HRV measures and self-reported outcomes.
With the exception of the RMSSD and covariance of SD
(CVSD), all the HRV features were positively associated with
the number of stress reported at the daily level: MRR (r=0.22;
P=.02), STDRR (r=0.22; P=.02), CVRR (r=0.27; P=.004),
MHR (r=0.28; P=.002), and STDHR (r=0.21; P=.02). Similarly,
almost all the HRV features were positively correlated with
aggregate levels of self-reported positive mood: MRR (r=0.26,
P=.01), STDRR (r=0.21; P=.04), RMSSD (r=0.26; P=.01),

CVSD (r=0.24; P=.02), CVRR (r=0.20, P=.049), and MHR
(r=0.26; P=.009). All but one of the HRV features was positively
correlated with aggregate levels of self-reported negative mood:
MRR (r=0.18; P=.08), STDRR (r=0.22; P=.03), CVSD (r=0.22;
P=.03), CVRR (r=0.29; P=.005), MHR (r=0.33; P=.001), and
STDHR (r=0.32; P=.002). The MRR was negatively associated
with aggregated levels of self-reported discomfort (r=−0.21;
P=.04) and pain (r=−0.18; P=.08). The MHR was also
negatively associated with aggregated levels of self-reported
discomfort (r=−0.22; P=.003) and pain (r=−0.20; P=.05). No
significant associations were found between HRV features and
self-reported alcohol use or alcohol-related cravings.

Table 8. Spearman correlation coefficients between the daily heart rate variability measures and the daily self-reported outcomes.

Self-reported outcomeFeature

PainDiscomfortNegativePositiveCravingsAlcoholStress

−0.18b−0.21a0.18b0.26a0.00−0.070.22aMean value of all the RR intervals

−0.06−0.060.22a0.21a0.04−0.070.22aSD of the RR interval

−0.12−0.100.150.26a0.02−0.040.08Root mean squared SD

−0.13−0.100.22a0.24a0.050.000.12Covariance of SD

−0.08−0.080.29c0.20a0.04−0.050.27cCovariance of all the RR intervals

−0.20b−0.22a0.33d0.26c0.030.010.28cMean value of heart rate

−0.07−0.070.32c0.140.04−0.020.21aSD of the heart rate

aSignificance code .05.
bSignificance code .10.
cSignificance code .01.
dSignificance code .001.
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Discussion

Principal Findings
The overall goal of this study is to examine the feasibility of
using 2 physiological markers of stress, EDA and HRV, obtained
from an unobtrusive wristband device in an ambulatory setting,
as a first step toward developing mobile health (mHealth)
interventions to help prevent alcohol relapse. To achieve this
goal, we first assessed the quality of the continuous monitoring
of physiological signals using an Empatica E4 wearable sensor
device. We determined that 87.88% (1,032,265/1,174,898) of
the EDA signals were clean, whereas only 9.21%
(108,208/1,174,898) of the EDA signals could be considered
noise. A comparison of the distribution of the EDA SCRs also
demonstrated high correspondence between our study and
previous studies that used similar techniques [24]. We also noted
that the distribution of HR signals for 10 of the 11 participants
was within a typical distribution. On the basis of these results,
we can conclude that physiological data met the established
quality criteria.

In the next steps, we examined associations between features
of the EDA and HRV signals with a number of self-reported
outcomes, including daily tallies of stress events and alcoholic
drinks as well as aggregated levels of alcohol-related cravings,
positive and negative moods, and experiences of pain and
discomfort. In total, 2 features of the EDA signal (amplitude
and peak counts) were positively associated with the number
of stress events reported each day, whereas 3 features (decay
time, SCR width, and area under the curve) were negatively
associated with daily tallies of stress events. These results were
as expected and suggest that participants experienced more and
higher EDA peaks on days of heightened stress and that the
EDA signal varied more rapidly during more stressful intervals.
The results also showed that some (but not all) EDA features
were positively associated with self-reported positive and
negative emotions. In general, EDA features were not
significantly correlated with the daily use of alcohol or
alcohol-related cravings or with experiences of pain or
discomfort.

However, almost all HRV features were significantly and
positively associated with daily tallies of stress events. These
results were as expected and indicated that participants
experienced greater HRV on days characterized by higher levels
of stress. Nearly all HRV features were also significantly and
positively associated with the aggregate levels of positive and
negative emotions. Thus, the results suggest an increased
recovery ability of the participants in stressful situations or when
feeling excessive positive or negative moods. Similar to the

findings for the EDA features, HRV features were generally
not significantly associated with daily use of alcohol or
alcohol-related cravings or experiences of pain or discomfort.

Limitations
This study was designed to establish the feasibility of assessing
physiological data in an ambulatory setting to inform the
development of a future mHealth intervention. Thus, the major
limitation of this pilot study is the small sample size, which
limited our ability to test hypotheses regarding associations
between physiological signals and self-reported outcomes with
full statistical power. Future studies that include larger and more
representative samples are needed to replicate our findings. We
also note that our analyses did not account for demographic
characteristics of the participants, such as age, personality
characteristics, race, or gender. Future work that examines how
these and other demographic characteristics might play a role
in these processes is needed.

We further acknowledge that although the uncontrolled nature
of the data collection in ambulatory settings was a strength of
this study, this may have introduced some subjective bias into
the assessment of stress events. Future research in ambulatory
settings should also consider how HRV is affected by sleep and
circadian processes [27] as well as by exercise or simple
ambulatory activities [28] such as walking, which our analyses
did not take into account. Finally, one reason for the lack of
strong associations among the physiological signals and some
of the self-reported outcomes may be attributed to the
single-level correlation analyses used in this study. This
approach did not take into account the nested nature of the data:
4 prompts each day, nested within multiple days, and nested
within 11 participants. More sophisticated multilevel modeling
of these associations that takes such clustering into account
might provide additional insights about within-person
associations as well as between-person differences in these
effects.

Conclusions
We investigated the associations of physiological signals, EDA
and HRV, with self-reported outcomes among adults diagnosed
with AUD in a 14-day uncontrolled data collection. The results
demonstrated that the physiological data collected via an
Empatica E4 wearable sensor device were useful and that
features of these physiological signals were significantly
associated with several self-reported outcomes, including
identification of stress events, daily use of alcohol, negative
and positive emotions, and pain and discomfort. Future research
is needed to further validate these findings to develop tailored
mHealth interventions to enhance sustained recovery from AUD.
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