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SUMMARY

Glucocorticoids (GCs) are widely used as anti-inflammatory drugs, but their long-term use has 

severe metabolic side effects. Here, by treating multiple individual adipose stem cell-derived 

adipocytes and induced pluripotent stem cell-derived hepatocytes with the potent GC, 

dexamethasone (Dex), we uncovered cell-type-specific and individual-specific GC-dependent 
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transcriptomes and glucocorticoid receptor (GR) cistromes. Individual-specific GR binding could 

be traced to single nucleotide polymorphisms (SNPs) that altered the binding motifs of GR or its 

cooperating factors. We also discovered another set of genetic variants that modulated Dex 

response through affecting chromatin accessibility or chromatin architecture. Several SNPs that 

altered Dex-regulated GR binding and gene expression controlled Dex-driven metabolic 

perturbations. Remarkably, these genetic variations were highly associated with increases in serum 

glucose, lipids, and body mass in subjects on GC therapy. Knowledge of the genetic variants that 

predispose individuals to metabolic side effects allows for a precision medicine approach to the 

use of clinically-relevant GCs.

In Brief:

Applying functional genomics to individual stem cell-derived adipocytes and hepatocytes Hu and 

colleagues reveal natural genetic variations that modulate and determine the metabolic side effects 

of a clinically-relevant glucocorticoid.

INTRODUCTION

Glucocorticoids (GCs) are steroid hormones that play an important role in regulating diverse 

physiologic processes including energy homeostasis and the immune response (Patel et al., 

2014; Sacta et al., 2016). Clinically-relevant GCs are highly effective and widely prescribed 

for the treatment of severe inflammation, but their use causes many metabolic side effects 

(Barnes, 2011; Desmet and De Bosscher, 2017). GCs function by targeting the 

glucocorticoid receptor (GR) in multiple tissues, including adipose and liver (Sacta et al., 

2016). Excess GCs cause a severe pathology referred to as Cushing’s syndrome, which 

refers to a constellation of central obesity with variable hyperglycemia, dyslipidemia and 

hepatic steatosis (Mazziotti et al., 2011). GCs exert complex effects on lipid metabolism in 

adipose tissues, generating glycerol and fatty acids, which provide substrate and energy for 

hepatic gluconeogenesis (Chen et al., 1999; Yu et al., 2010). GCs also directly regulate 

lipogenic gene expression by working with other factors, such as insulin (Gathercole et al., 

2011). In the liver, GC-activated GR has been shown to bind the promoter regions of PCK1 
and G6PC, whose protein products catalyze the rate-limiting and final step of 

gluconeogenesis, respectively (Imai et al., 1993; She et al., 2000). This enhances hepatic 

glucose production, leading to diabetes in individuals treated with GCs (Brenner et al., 2020; 

Desmet and De Bosscher, 2017). GCs also augment insulin-stimulated lipogenesis and 

reduce lipolysis in the liver, contributing to hypertriglyceridemia and hepatic steatosis 

observed in people with Cushing’s disease and those undergoing exogenous GC therapy 

(Dolinsky et al., 2004; Rockall et al., 2003; Sholter and Armstrong, 2000).

In addition to the use of GCs to treat inflammatory conditions, such as rheumatoid arthritis, 

systemic lupus erythematosus and inflammatory bowel disease, they are frequently included 

in chemotherapeutic regimens (Pufall, 2015). Moreover, the powerful GR ligand 

dexamethasone (Dex) is now widely used to treat people with advanced COVID-19 (Group 

et al., 2020); yet metabolic dysfunction increases the risk and severity of COVID infection 

(Zhu et al., 2020). Thus, a better understanding of the underlying mechanisms of GC 
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response in the liver and adipose tissue at the individual-specific level could help precision 

medicine approach to guide therapy and minimize unwanted side effects.

Precision medicine holds great promise for disease prevention and treatment, since 

individuals differ in their genetics, epigenetics and environment (Costantino et al., 2018; 

Shastry, 2002). Genetic variations in the form of single nucleotide polymorphisms (SNPs) 

are statistically associated with complex diseases and modulate the individual’s response to 

drugs, pathogen and other environmental stimuli (Groner and Brown, 2017; Lee et al., 2014; 

Matsa et al., 2016). The majority of SNPs identified by genome-wide association studies 

(GWASs) are located in non-coding regions of the genome and are thus likely to serve as 

regulatory regions that affect the openness of chromatin and the genomic binding of 

sequence-specific transcription factors (TFs) that regulate nearby gene expression, or 

modulate distal gene expression through affecting chromatin architecture (Deplancke et al., 

2016; Waszak et al., 2015). There is a great interest in developing appropriate research 

platforms to study how genetic variants modulate drug responses, considering the timing, 

cost, availability and safety of treatment with a given medication (Visscher et al., 2017). 

Individual-specific stem cell-derived cell types provide a useful platform for studying the 

individual response to drugs (Hu et al., 2019; Matsa et al., 2016).

Here, we focused on individual stem cell-derived adipocytes and hepatocytes, the cell types 

responsible for much of the metabolic toxicity of GC therapy, to determine how genetic 

variations modulate human responses to Dex. We found that individual-derived adipocytes 

and hepatocytes show cell type-specific GR genomic occupancy and Dex responses, some of 

which are also individual-specific. Genetic variations transform DNA recognition motifs for 

GR or its cooperating TFs, or alter chromatin accessibility and/or architecture that result in 

the individual-specific drug response. Remarkably, genetic variations controlling the Dex-

responsiveness of genes crucial for hepatocyte or adipocyte metabolism proved to be 

powerful predictors of metabolic disturbances in individuals receiving GC therapy.

RESULTS

Individual-specific response to Dex in human stem cell-derived adipocytes and 
hepatocytes

To better understand the mechanism by which Dex produces adverse metabolic effects in 

people treated with the drug, we generated adipocytes from human adipose stem cells 

(hASCs) and hepatocytes from human induced pluripotent stem cells (hiPSCs). Specifically, 

we isolated ASCs from the subcutaneous abdominal adipose tissue of healthy subjects 

undergoing elective abdominoplasty (Shan et al., 2017). Mature adipocytes were generated 

from hASCs in well-defined adipogenic differentiation medium for 2 weeks as previously 

described (Hu et al., 2019), cultured in maintenance medium for 1 week and then incubated 

with 1.5% BSA medium for an additional 2 days to wash out the potential influence of Dex 

that was included in the adipogenic and maintenance medium (Figure 1A). Eight individual 

adipocytes showing similar adipogenic differentiation efficiency according to the 

morphology and adipocyte maker genes expression were used to model the Dex response 

(Figures S1A, S1B and S1C). Meanwhile, we also successfully induced eleven hiPSC lines 

to differentiate into hepatocyte-like cells (HLCs) in a step-wise manner as previously 
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described but omitting hydrocortisone in the maturation stage (Figure 1B) (Pashos et al., 

2017). Hepatocyte marker genes Albumin (ALB) and HNF4 were expressed at comparable 

levels in all eleven hiPSC-derived HLCs based on immunostaining and western blot analysis 

(Figures S1D and S1E). Thus we have generated multiple individual-specific adipocytes and 

HLCs with similar properties from human stem cells as models to study Dex responses.

We first examined hASC-derived adipocytes treated with Dex for 24 hrs beginning at day 24 

(Figure 1A). Reassuringly, three biological replicates of adipocytes from each individual 

treated with DMSO or Dex generally clustered together (Figures S1F and S1G). The 

transcriptomes showed larger inter-individual variation while replicates from the same 

individual were more highly correlated than that from different individuals (Figure S1H), 

adding confidence to our ability to detect individual-specific drug responses. Indeed, we 

found 696 genes that were regulated by Dex in all eight individual adipocytes (329 

upregulated, 367 downregulated) (Figure S2A). Gene ontology (GO) and Gene Set 

Enrichment Analysis (GSEA) showed that, as expected, the genes commonly regulated by 

Dex were enriched for pathways including response to glucocorticoid, lipid biosynthetic 

processes and insulin signaling pathways (Figures 1C and S2B). For example, the classic 

GR-target gene FKBP5 was commonly induced by Dex while UCP2 was commonly 

repressed by Dex (Figures S2C and S2D). Intriguingly, besides the 696 commonly regulated 

genes, we also identified 1494 genes that were specifically responsive to Dex in adipocytes 

from only one individual (Figures 1D and S2E), which was not due to the variation of basal 

gene expression (Figure S2F). Moreover, there were 2466 genes that respond to Dex in 

adipocytes from multiple individuals. Subject A8 had the greatest number of individual-

specific Dex-responsive genes (Figures 1D and S2G). Of note, two metabolic genes PCSK1 
and GPD2 were uniquely induced or repressed by Dex in a individual-specific manner 

(Figure 1E). Gene ontology analysis revealed that fatty acid biosythesis pathway and other 

metabolic pathways were enriched in individual A2- and A8-specific responsive genes 

(Figures 1F and 1G). In contrast, we also noted that there were many genes unresponsive to 

Dex treatment in adipocytes derived from only one of the eight individuals (Figures S2H and 

S2I). These individual-specific responses were not attributable to differential GR (NR3C1) 

expression (Figure S2J). These data indicate that individual-derived adipocytes with 

different genetic backgrounds exhibit variable responses to Dex.

Exogenous GC administration in results in hyperglycemia in humans, largely due to 

uncontrolled hepatic gluconeogenesis (Desmet and De Bosscher, 2017). To test how 

hepatocytes derived from different iPSCs respond to Dex, we treated the iPSC-derived HLCs 

for 24 hrs (Figure 1B). Principle Component Analysis (PCA) revealed that biological 

replicates from the same individual and the same treatment condition nearly always 

clustered together (Figures S3A and S3B). Consistently, inter-individual variations were 

larger than that of replicates from the same individual (Figure S3C). 138 genes that were 

commonly regulated in all eleven HLCs were, as expected, enriched in pathways reflecting 

cellular response to lipid, response to steroid hormone, and glucose homeostasis (Figures 

1H, S3D and S3E). For example, angiopoietin-like 4 (ANGPTL4), which regulates glucose 

homeostasis (Gusarova et al., 2018), was induced by Dex in all eleven HLCs (Figure S3F). 

The eleven individual HLCs exhibited a individual-specific response to Dex (Figure S3G), 

which was not due to variation in basal gene expression (Figure S3H). We were particularly 
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interested in genes that responded to Dex in only one of eleven HLCs (Figures 1I and S3I), 

such as the two lipid metabolic genes Apolipoprotein C2 (APOC2) and Carnitine 

Palmitoyltransferase 1C (CPT1C) that were uniquely induced in H7 or repressed in H2 by 

Dex treatment, respectively (Figure 1J). Gene ontology analysis revealed that many lipid 

metabolic pathways were enriched in individual H7- and H8-specific responsive genes 

(Figures 1K and 1L). Conversely, a few genes were not responsive to Dex in HLCs from 

only one of the eleven individuals, such as Carbamoyl-Phosphate Synthase 1 (CPS1) 

(Figures S3J and S3K). These individual-specific responses were not attributable to 

differential GR (NR3C1) expression (Figure S3L). Furthermore, to examine if the 24hrs Dex 

treatment will induce indirect targets, secondary/tertiary responses, we picked some top 

Dex-responsive genes and examined their responses to Dex at different treatment times. The 

data showed that most genes responded to Dex similarly at 6h and 24h treatment, although 

some genes such as FKBP5 and MAOA exhibited attenuated or enhanced Dex responses 

upon prolonged Dex treatment, respectively (Figure S3M). Overall, these studies reveal the 

two cell types that are critical for glucose and lipid metabolism differentially respond to Dex 

treatment in different subjects.

Individual adipocytes and HLCs show individual-specific genomic occupancy of GR

GCs modulate target gene expression by binding to GR, causing its translocation to the 

nucleus where it binds to the genome in a sequence-specific manner (Syed et al., 2020). In 

adipocytes, we found that a 6hr Dex treatment induced GR translocation to the nucleus 

(Figure S4A). We performed chromatin immunoprecipitation sequencing (ChIP-seq) for GR 

in these individual stem cell-derived adipocytes that showed comparable GR expression 

level (Figure S4B), which further confirmed the requirement of GC treatment for GR 

genomic binding (Figure S4C). ChIP-seq analysis of all eight individual stem cell-derived 

adipocytes identified 11904 to 31362 GR peaks in the eight Dex-treated adipocytes, mainly 

located in the intronic and intergenic regions of the genome and highly enriched for the 

classic GR DNA binding motif, as expected (Figures 2A and S4D). GSEA analysis revealed 

that these GR peaks were enriched for pathways that include respond to glucocorticoid, 

insulin receptor signaling pathway and lipid metabolism (Figure S4E).

Similar studies were performed in HLCs. We first compared the genomic binding of GR 

after 6hrs and 24hrs of Dex treatment. The data revealed that the 6hr Dex treatment induced 

stronger genomic occupancy of GR (Figures S4F and S4G), consistent with previous 

findings in transformed cell lines (McDowell et al., 2018). After 6hrs, Dex treatment again 

led to the nuclear translocation of GR (Figure S4H), which was expressed at comparable 

levels in all eleven HLCs (Figure S4I). GR ChIP-seq showed that GR genomic binding 

reproducibly required Dex on a genome-wide scale (Figure S4J). Analysis of eleven Dex-

treated HLCs identified 7485 to 24983 GR peaks, mainly located in the intronic and 

intergenic regions of the genome (Figure S4K). The genes near these GR peaks were 

enriched for pathways that included gluconeogenesis and annotated glucocorticoid responses 

(Figure S4L). These data demonstrate the robustness of the GR cistromes generated in 

adipocytes and HLCs treated with Dex.
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We next compared the results across the individual-derived adipocytes and HLCs. Among 

the eight individual adipocyte samples, we detected 2920 shared sites with comparable 

binding intensity (Figure 2B). The genes near these common sites were highly enriched for 

functional annotation related to response to glucocorticoid (Figure 2C). Remarkably, in 

addition to the common GR binding sites, we also noted genomic occupancy of GR that was 

individual-specific (Figures 2D). For each individual studied, we found that some GR-

binding sites were specifically gained (Figures 2E, 2F and S5A). Interestingly, subject A8 

had the greatest number of individual-specific GR binding sites (Figures 2E and 2F), 

consistent with this individual having the most unique Dex-responsive gene regulation in the 

transcriptome analysis. In contrast, we also identified some GR binding sites that were 

absent in only one of eight individual adipocytes (Figure S5B), such as individual A5 whose 

adipocytes had 628 GR binding sites with an average intensity much lower than others 

(Figure S5C).

Parallel GR ChIP-seq analysis of all eleven HLCs revealed the GR peaks highly enriched for 

the canonical GR-binding motif (Figure 2G) and 2025 GR peaks with similar intensity 

across individuals, whose nearby genes were enriched for pathways including response to 

glucocorticoid (Figures 2H and 2I). Strikingly, similar to the findings in adipocytes, GR 

genomic binding also exhibited individual-specificity (Figure 2J), with some GR binding 

sites uniquely gained in HLCs from only one individual (Figures 2K, 2L and S5D), while 

other GR binding sites were specifically lost in only one of eleven individual HLCs (Figures 

S5E and S5F). Overall, the peak intensity of common peaks was higher than that of 

individual-specific GR peaks (Figures S5G and S5H). Together, these data revealed that a 

large fraction of genomic GR binding is different among individual adipocytes and HLCs.

Individual-specific GR binding drives differential Dex responses

We next tested whether the differential genomic GR binding drove the individual-specific 

Dex responses in adipocytes (Figure S6A). Indeed, Dex-regulated genes were more likely 

associated with GR binding sites than random genes (Figure 3A). GR binding sites were 

highly enriched in Dex-responsive genes (Figure S6B). Stronger GR binding promoted 

higher Dex response, and vice versa (Figures 3B and 3C). Individual-specific Dex-

responsive genes were much more likely to be regulated by individual-specific GR binding 

sites than common GR binding sites (Figure S6C).

Combining the gene response and GR binding intensity in all eight individual adipocytes, we 

identified 1037 gene-peak pairs in which gene responses to Dex were related to the intensity 

of their nearby GR binding sites (Figure 3D). For example, the induction of FAM214A gene 

by Dex was strongly positively correlated with nearby GR binding intensity (Figures 3E and 

3F), while ASF1B gene expression was tightly but inversely correlated with GR binding 

intensity (Figures 3G and S6D). The same analysis was also performed in HLCs (Figure 

S6E). Dex-regulated genes tended to have GR binding sites nearby (Figures 3H and S6F), 

with the binding intensity strongly correlating with the magnitude of the Dex response 

(Figures 3I and 3J). Individual-specific Dex-responsive genes were much more likely to be 

near individual-specific GR binding sites (Figure S6G). In total, 1986 gene-peak pairs 

demonstrated a close association between Dex response amplitude and GR binding intensity 
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(Figure 3K), including SLC1A5 (Figures 3L and 3M) and HEXIM2 (Figures 3N and S6H) 

whose regulation by Dex was positively or negatively related to GR binding intensity, 

respectively. Collectively, these data indicate that individual-specific responses to Dex are 

determined by individual differences in genomic occupancy of GR in adipocytes and HLCs.

Cell type-specific Dex responses are related to differential GR binding

The functions of GCs are not only pleiotropic, including regulation of cell growth and 

development, metabolism, and inflammation, but also tissue-specific (Quatrini and Ugolini, 

2020). Comparison of the adipocyte and HLC transcriptomes revealed that only a small 

fraction of genes that were Dex-regulated in at least half of the individuals overlapped 

between the two cell types (Figure 4A). The Dex-regulated genes in both individual-derived 

adipocytes and HLCs were enriched for cellular responses to lipid and lipid biosynthetic 

process (Figure 4B). We observed clear cell type-specific Dex responses (Figure 4A), which 

were not attributed to the differential basal gene expression profiles between adipocytes and 

HLCs (Figure S7A). GO analysis also showed that adipocyte-specific responsive genes were 

enriched for regulation of cell differentiation, ossification, and lipid metabolic processes 

(Figure S7B), while HLC-specific Dex-responsive genes were enriched for amino acid 

metabolic processes, regulation of hormone levels, and fatty acid biosynthetic processes 

(Figure S7C). Of note, Dex regulated many more genes in adipocytes than in HLCs, which 

may be due to the higher GR expression in adipocytes than in HLC (Figure S7D). Consistent 

with the small amount of common Dex-regulated genes, we also noted that GR binding sites 

detected in at least half of each individual population were rarely shared between adipocytes 

and HLCs (Figure 4C).

We next addressed the question of whether cell type-specific GR binding explained cell 

type-specific Dex responses. Approximately 39% of adipocyte-specific Dex-responsive 

genes had adipocyte-specific GR binding sites nearby, which was higher than that of HLC-

specific Dex-responsive genes or random genes (Figure 4D). Similarly, ~45 percent of HLC-

specific Dex-responsive genes were driven by HLC-specific GR binding sites nearby, which 

was higher than that of adipocyte-specific Dex-responsive genes or random genes (Figure 

4E). For example, the Acetyl-CoA Carboxylase Beta gene (ACACB), which is important for 

fatty acid metabolism, was specifically induced by Dex in adipocytes, with much higher GR 

binding nearby in adipocytes than in HLCs (Figures 4F and S7E). Conversely, ATP Binding 

Cassette Subfamily B Member 11 (ABCB11) was specifically induced by Dex in HLCs, 

with stronger GR binding at this locus in HLCs than in adipocytes (Figures 4G and 4H). By 

contrast, the classic GR target gene FKBP5 was induced by Dex in both adipocytes and 

HLCs, with high intensity of GR binding at this locus (Figure S7F). These data suggest that 

cell type-specific Dex responses are mainly controlled by cell type-specific GR genomic 

binding.

To explore the underlying mechanisms driving the cell type-specific Dex response and GR 

binding, we performed de novo motif analysis for common and cell type-specific GR peaks. 

As expected, the GR peaks shared between adipocyte and HLCs were significantly enriched 

for GR- and CEBP-binding motifs (Figure 4I). By contrast, adipocyte-specific GR peaks 

were enriched for motifs shown to be involved in adipocyte lineage determination, such as 
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NF1 and EBF (Hiraike et al., 2017; Rajakumari et al., 2013) (Figure 4J). Similarly, 

hepatocyte lineage determining factors HNF4 and Forkhead Box family members were 

enriched in HLC-specific GR binding sites (Figure 4K). These data suggest that lineage-

determining TFs cooperate with GR to regulate adipocyte- and hepatocyte-specific Dex 

responses.

Genetic variations determine individual-specific Dex responsiveness

To determine whether the individual-specific GR peaks were associated with complex 

metabolic traits and diseases, we obtained GWAS summary statistics for metabolic disorders 

and traits (Buniello et al., 2019) and performed enrichment analysis, as previously reported 

(Zhang et al., 2020). In adipocytes, individual-specific GR binding sites were significantly 

enriched for SNPs associated with metabolic traits, including Body Mass Index (BMI), 

cholesterol, diabetes and triglycerides levels, while common GR binding peaks exhibited 

much weaker enrichment (Figure 5A). Systematic integration of SNPs from dbSNP150 with 

the individual-specific genes and individual-specific GR peaks identified 288 SNPs located 

in individual-specific GR binding sites and affected the motif of GR or a cooperating TF 

such as CEBP, PPARγ, FOX, AP1 or NFI.

To validate the concept that genetic variations determine individual-specific Dex-

responsiveness by modulating the genomic binding of GR, we focused on SNP rs10980797 

in the vicinity of Lysophosphatidic Acid Receptor 1 (LPAR1) gene. Individual A5 was 

uniquely homozygous for the minor G allele (GG) (minor allele frequency [MAF], G = 0.33, 

1000 Genomes), while all of the other seven individuals had at least one A allele, with 2 

being AA. Moreover, GR binding was much weaker in the genomic region spanning 

rs10980797 in this individual than all 7 others (Figure 5B). Consistent with this being a 

functional binding site, Dex induced LPAR1 gene expression in adipocytes from every 

individual except individual A5 (Figure 5C). Mechanistically, rs10980797 does not affect 

the GR binding motif, but has a major effect on a motif favored by CEBP, a TF that has been 

shown to cooperate with GR at the genome (Grontved et al., 2013); the score of agreement 

with the CEBP consensus motif was 363-fold greater for the A allele than for the G allele 

(Figure 5D). Indeed, GR and CEBPβ displayed much greater binding in this region of the 

LPAR1 locus in adipocytes from individuals with at least one A allele than from G/G 

individuals (Figures 5E and 5F), while GR binding was genotype independent on an 

unrelated genomic region (FKBP5). Similarly, another SNP rs10881935 that is 5kb 

downstream of the PPP1R3C gene also showed genotype-dependent GR binding and Dex 

response (Figures 5G and 5H), with an A allele favoring GR binding and Dex response, 

possibly by affecting a FOXC2 motif (Figure S8A).

A similar bioinformatics pipeline was used to study how genetic variation controls GR 

function and Dex response in HLCs, with the advantage of available genotype information 

of these eleven iPSC lines (Figure S8B) (Pashos et al., 2017). We first demonstrated that 

individual-specific GR binding sites in HLCs were significantly enriched for SNPs 

associated with metabolic traits including BMI, diabetes, and glucocorticoid response based 

on the GWAS catalog (Figure 5I). 534 SNPs located in individual-specific GR binding sites 

and affected Dex response by altering the motif of GR or a cooperating TF. Notably, SNP 
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rs6026774, which markedly affects a GR binding motif (Figure 5J) near the 

Lipopolysaccharide Binding Protein (LBP) gene, controlled GR binding and LBP gene 

induction by Dex. HLCs from individual H8, of the AG genotype, had much weaker GR 

binding and Dex response compared to the ten other individual HLCs with the AA genotype 

(Figures 5K, 5L and S8C).

The regulatory function of rs6026774 was assessed using luciferase reporter assays in the 

human liver-derived HepG2 cell line. Consistent with the endogenous A allele supporting 

GR binding and Dex-responsiveness of the native LBP gene, the A allele supported Dex-

activation of a reporter gene whereas the G allele did not (Figure 5M). Moreover, 

independent GR ChIP-qPCR data revealed much greater binding in this region of the LBP 
locus in HLCs from individuals with AA allele than from GG individuals (Figure 5N), while 

GR binding was genotype independent on an unrelated genomic region (PDK4). Further 

validating the transcriptional importance of rs6026774, the requirement of the AA genotype 

for Dex induction of the LBP gene was replicated in the original 11 HLCs lines as well 

HLCs from 6 additional iPSC lines (4 AG, 2 GG) (Figure 5O). Moreover, we identified 

another SNP, rs2060982, ~1kb downstream of the CPT1A gene that exhibited genotype-

dosage effects on GR binding (Figure 5P) and Dex responsiveness of the mRNA expression 

(Figure 5Q). Together, these results demonstrate that genetic variation modulates GR 

genomic occupancy and Dex responses in both adipocytes and HLCs.

To further explore the tight relationship of GR occupancy and Dex-responsiveness of nearby 

genes, we performed allele-specific analysis and identified 3795 SNPs located in imbalanced 

GR binding sites, which exhibited a cis-effect on GR binding (Figure S8D). These allele-

imbalanced SNPs were enriched in promoter regions, enhancer regions and eQTLs in liver 

tissues from GTEx (Figure S8E) (Consortium, 2015), suggesting they are functional in gene 

regulation. Moreover, these allele-imbalanced SNPs were associated with the metabolic 

traits BMI and cholesterol (Figure S8F). 950 allele-imbalanced SNPs were associated with 

allele-selective Dex responses by affecting the motif of GR or its cooperating TFs. 

rs13038139 was of particular interest because it is in a GR binding site ~18 kb downstream 

from the PCK1 gene which encodes phosphoenolpyruvate carboxykinase (PEPCK), the rate-

limiting enzyme in hepatic gluconeogenesis (She et al., 2000). 5 individual HLCs were 

heterozygous for this SNP, with ~6-fold greater binding at the C allele as determined by 

deep sequencing of the ChIP-seq products (Figure S8G). Another SNP, rs1042531, was 

heterozygous in two of the individuals and located in the last exon of the PCK1 gene, with 

the G allele (37% frequency) in cis with the C allele of rs13038139 (Machiela and Chanock, 

2015). Deep sequencing of the PCK1 transcripts revealed no difference in the absence of 

Dex, but about a 3-fold excess of the G allele in the Dex-treated HLCs (Figure S8G). The 

imbalanced GR binding and gene expression was further confirmed by the SNaPshot assay 

(Figure S8H). These data demonstrate a cis-acting relationship between the GR binding site 

and the associated PCK1 transcript.
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Genetic variations control Dex responsiveness by affecting chromatin accessibility and 
architecture

We noted that while ~50% of individual-specific GR binding sites contained SNPs within 

100 bp of the center of the peak, nearly half did not. To explain individual-specific GR 

binding differences in the absence of genetic variation at the site of binding, we 

hypothesized that SNPs could also modulate chromatin accessibility and architecture to 

indirectly modulate GR binding at a distance, as has been suggested for other sequence-

specific TFs (Behera et al., 2018; Deplancke et al., 2016; John et al., 2011; Waszak et al., 

2015). To test this, we performed ATAC-seq in eight iPSC-derived HLCs. We detected 

42,457 to 87,424 peaks, which were mainly located in the intronic and intergenic regions of 

the genome (Figure S9A) and highly enriched for the binding motifs of hepatic lineage 

factors FOXA1 and HNF4 as well as CTCF (Figure S9B), suggesting a faithful ATAC-seq 

dataset. Of note, all 8 HLCs shared 26,409 ATAC peaks (Figures S9C and S9D) but also 

exhibited individual-specific differences (Figures S9E and S9F).

1030 SNPs were noted to differentially affect chromatin accessibility near sites of variable 

GR binding and Dex-responsive gene expression (Figure 6A). For example, SNP 

rs55830753 (with genotype information available in 7 of 8 HLCs) is located 1.3 kb from a 

variable GR binding site that is 13kb upstream of CYP3A5 and 7kb downstream of 

CYP3A7. HLCs carrying the rs55830753 AG genotype showed high chromatin accessibility 

at this genomic site and increased GR binding intensity at the nearby site (Figures 6B and 

S9G). Remarkably, both the CYP3A5 and CYP3A7 genes were highly induced specifically 

in HLCs with the rs55830753 AG genotype (Figure 6C). These data suggest that the SNPs 

modulate GR genomic occupancy and function by affecting chromatin accessibility at a 

distance from the site of GR binding.

To examine how genetic variations impact enhancer-promoter looping to modulate gene 

expression, we performed Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) 

sequencing for a mark of active transcription, histone 3 lysine 4 trimethylation (H3K4me3) 

(Kouzarides, 2007; Li et al., 2017). We first identified 119,176 loops that were gained in 

individual H11 Dex-treated HLCs compared to DMSO-treated controls (Figure 6D). 

Enhancer-promoter interaction scores were assigned for each gene as described in the 

Methods section, and we noted 2,990 genes that exhibited increased enhancer-promoter 

interaction scores in Dex-treated HLCs than that in DMSO-treated HLCs (Figure 6E). 

Conversely, 1,419 genes decreased enhancer-promoter interaction scores in Dex-treated 

HLCs. Interestingly, ~42% of Dex-induced genes showed increased enhancer-promoter 

interaction after Dex treatment, in contrast, only ~28% of Dex-repressed genes gained 

enhancer-promoter interactions (Figure 6F). Similarly, ~22% of Dex-repressed genes 

showed decreased enhancer-promoter interaction after Dex treatment, whereas only ~9% of 

Dex-induced genes lost enhancer-promoter interactions (Figure 6G). This suggests that the 

transcriptional response to Dex is controlled by changes in enhancer-promoter interaction. 

For example, MAOA and MAOB are located near each other in the genome, yet MAOA was 

strongly induced by Dex while MAOB was not (Figure 6H). Remarkably, and consistent 

with the gene regulation, strong enhancer-promoter loops were seen at the MAOA but not 
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the MAOB locus (Figure 6I), although we also found that the MAOA locus showed strong 

GR peak gain compared to MAOB after Dex treatment.

We then performed H3K4me3 ChIA-PET in five iPSC-derived HLCs treated with Dex, and 

identified 4872 SNPs located at the anchor of individual-specific loops linked to individual-

specific Dex-responsive genes. For example, 6 SNPs with individual H9-specific genotype 

were noted at the anchor of loops markedly enriched in the HLCs of individual H9 near the 

FIBIN gene (Figure 6J). There is GR binding at this locus, though not at the loop anchor and 

of similar magnitude in all 5 individual HLCs (Figure 6J). These SNPs do not appear to alter 

the motifs for GR or cooperating TFs, but one SNP, rs7111860, alters the binding motif for 

CTCF (Figure S9H), which may cause altered chromatin architecture at the FIBIN locus. 

The FIBIN gene was uniquely induced by Dex in HLCs from individual H9 (Figure 6K), 

suggesting that the individual-specific loops facilitated the ability of Dex-bound GR 

activating the FIBIN gene by creating a favorable architecture that was not present in the 

other individual HLCs (Figure 6L). These data indicate that genetic variations can modulate 

GR function by affecting chromatin architecture.

Genetic variations altering GC responsiveness in adipocytes and HLCs predict metabolic 
adverse effects of drug treatment in the clinic

We next explored the clinical relevance of several SNPs that affect GR function and Dex 

response in adipocytes and HLCs. In GWASs, the A allele of rs10980797 that controls Dex-

responsiveness of the LPAR1 gene (Figure 5C) was associated with BMI-adjusted waist-hip 

ratio (p = 5 × 10−20) (Pulit et al., 2019). We then evaluated the relationship between this 

SNP and metabolic parameters in 387 children with acute lymphoblastic leukemia (ALL) 

who received dexamethasone as part of their chemotherapy (Kawedia et al., 2011; Ramsey 

et al., 2017). Overall, 6% of children with ALL developed hyperglycemia (defined as blood 

glucose level >160mg/dL) among those treated with Dex. Notably, we found that 

homozygosity for the G allele of rs10980797 was associated with a nearly 5-fold increase in 

the percentage of individuals who developed hyperglycemia compared to AA individuals 

(Figure 7A). AG heterozygotes had an intermediate risk, indicative of a SNP-dosage effect 

(Figure 7A). While the mechanism is not clear, LPAR1 has previously been shown to 

regulate glucose uptake in adipocytes (Yea et al., 2008).

Dex treatment can also result in increased serum triglyceride level (Brotman et al., 2005). 

We assessed the impact of genetic variation at rs10881935, where the A allele favored GR 

binding and Dex-induction of PPP1R3C (Figure 5H). PPP1R3C-deficient mice have 

increased levels of circulating triglycerides (Crosson et al., 2003), and thus we predicted that 

the A allele would be protective. Indeed, the therapy-induced increase in serum triglyceride 

level was blunted in AA relative to GG with AG heterozygotes being in between (Figure 

7B).

We next investigated whether rs6026774, which controls the LBP induction by Dex in HLCs 

(Figure 5L), had any relation to the adverse effects of Dex in the clinic. In mice, knockdown 

of LBP in the liver improved glucose homeostasis (Molinaro et al., 2020). Dex is known to 

increase hepatic glucose production (Desmet and De Bosscher, 2017), a major contributor to 

blood glucose levels, and thus we first tested the effect of SNP rs6026774 on Dex-
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modulation of glucose metabolism, employing a hepatic organoid model that is more mature 

and metabolically active than the HLCs used earlier (Ouchi et al., 2019; Shinozawa et al., 

2020). 17 iPSC lines (rs6026774 genotypes: 10 AA, 5 AG and 2 GG) were differentiated 

into hepatic organoids and measured glucose production. As the A allele controls GR 

binding and induction of LBP by Dex (Figures 5K and 5L), we predicted that the G allele 

should protect against Dex-induced glucose production. Glucose production in AA hepatic 

organoids was stimulated ~2-fold both by Dex and by glucagon, a canonical regulator of 

hepatic glucose output (Habegger et al., 2010); whereas, by contrast, glucose production by 

iPSC-derived hepatic organoids derived from individuals with the AG and GG genotype 

showed a blunted response to Dex, while the glucagon response was approximately equal to 

that of the AA genotype (Figure 7C).

We next explored whether SNP rs6026774 modulates the hyperglycemic effects of GC in the 

clinic. Unfortunately, rs6026774 was not successfully imputed in the pediatric ALL cohort. 

As an alternative, we examined the electronic records of 167 adult subjects at the Hospital of 

the University of Pennsylvania for which SNP information was available and who had 

normal blood glucose levels (<160mg/dL) prior to beginning GC treatment with a variety of 

regimens for disparate medical conditions and did not take insulin during steroid treatment. 

Interestingly, blood glucose levels increased to a greater degree after GC treatments in 

individuals with the AA SNP compared to those with the GG SNP (Figure S10A), which is 

consistent with the protective effect of the G allele seen in the hepatic organoids.

We were able to assess rs2060982, the SNP that regulates CPT1A responsiveness to Dex 

(Figure 5Q), in the treated ALL children cohort. CPT1 is the rate-limiting step in fatty acid 

oxidation, and inhibition of CPT1 has been reported to reduce glucose production by the 

liver (Conti et al., 2011). Thus, given that in individual-derived HLCs the GG genotype 

conferred Dex-induction of CPT1A, individuals with the AA SNP would be predicted to be 

further protected from Dex-induced hyperglycemia. Indeed, the A allele was significantly 

associated with decreased risk of hyperglycemia in a dosage-dependent manner (Figure 7D).

Allele-specific analysis also revealed that the C allele of rs13038139 was associated with 

allele-selective induction of PCK1 by Dex in HLCs (Figure S8G). In the Dex-treated 

children with ALL, individuals with the CC SNP exhibited greater increases in BMI than 

that of individuals with the TT SNP (Figure S10B), which was supported by previous studies 

(Chang et al., 2008; Zhao et al., 2008). Moreover, SNP rs55830753, identified earlier as a 

genetic modulator of GR function and the Dex responses of CYP3A5 and CYP3A7 genes by 

affecting chromatin accessibility (Figure 6B and 6C), was associated with changes in total 

cholesterol and LDL levels after Dex treatment in children with ALL (Figure 7E). Thus, 

distinct SNPs affecting GR function in different tissues underly adverse metabolic 

consequences of GC treatment. Further, we looked at GWAS results focused on treatment 

outcome (“any relapses”) and early treatment response of remission/induction therapy in the 

children with ALL in a St. Jude cohort (Yang et al., 2011; Yang et al., 2009). Only the 

rs10881935_G allele was associated with a better outcome using “any relapse” as the 

dependent variable (P = 0.0173) (Figure S10C). Considering multiple testing, this result is 

suggestive and will need to be confirmed by future studies.
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DISCUSSION

GWASs have been effective at identifying alleles that confer disease risk and drug response, 

but are time-consuming and costly due to the need for recruiting large cohorts of individuals 

and performing extensive genotyping and phenotyping (Visscher et al., 2017). As most 

GWAS-identified SNPs are in non-coding regions, it has recently been more widely accepted 

that many of these sites of natural genetic variation are affecting TF binding and enhancer 

function (Deplancke et al., 2016). Even with this recognition, GWASs often fail to provide 

insight into the TFs, as well as the cell types, most affected. Here, by studying adipocytes 

and hepatocytes derived from individual stem cells using genomic and epigenomic 

approaches, we have demonstrated predictable, individual-specific GC effects on gene 

expression and metabolism. Genetic variations were associated with Dex response in a cell-

type-specific manner by affecting GR binding or interrupting chromatin accessibility and/or 

architecture. Remarkably, SNPs identified in this way effectively predict dysmetabolic side-

effects of clinical GC use.

Previous studies have shown that genetic variations modulate gene expression through 

affecting genomic binding of TFs, but surprisingly, only a small fraction of SNPs can 

explain differential TF binding by directly interrupting the motif of the studied TFs, while 

the majority of variable genomic binding of TFs events appear to be attributed to 

mechanisms other than SNPs in the cognate motifs (Gosselin et al., 2014; Hu et al., 2019; 

Soccio et al., 2015). Consistently, in this study, GR motif-altering SNPs only accounted for a 

minority of individual-specific GR binding locations in adipocytes and hepatocytes. Genetic 

variation can also affect TF binding on chromatin through altering the motifs of its 

cooperating or collaborating factors (Deplancke et al., 2016; Soccio et al., 2015), which was 

supported by the finding that many SNPs affect genomic binding of GR by interfering with 

the motifs for CEBP, Forkhead Box family members and other TFs which function 

cooperatively or collaboratively with GR on chromatin (Grontved et al., 2013; Waddell et 

al., 2008).

SNPs can also function to alter chromatin accessibility and/or architecture. A previous study 

noted that the majority of PU.1 DNA binding variation in human lymphoblastoid cell lines 

was driven by SNPs located distally to the PU.1 binding region with a median distance 

between 20 and 30 kb from the transcribed region (Waszak et al., 2015). Similarly, by 

performing ATAC-seq and ChIA-PET on hepatocytes from multiple individuals, we noted 

numerous genes whose GR binding and Dex-dependent expression are associated with SNPs 

regulating chromatin accessibility and architecture. Intriguingly, we also uncovered SNPs 

that affect Dex-responsive gene expression, apparently due to changes in chromatin 

accessibility and architecture, with or without altering GR binding. Thus, natural genetic 

variation modulates individual-specific GC action by a multitude of decipherable 

mechanisms.

Previous studies have indicated that GCs exhibit cell-type-specific functions in humans 

(Gross and Cidlowski, 2008). For example, the transcriptional responses to GC are quite 

different between human primary hematopoietic and non-hematopoietic cells (Franco et al., 

2019). Consistent with this, we found very little overlap between the Dex-regulated 
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transcriptomes of human adipocytes and hepatocytes, and thus individual-specific SNPs 

controlling Dex-responsiveness function largely in a cell-specific manner. This is largely 

driven by cell type-specific GR genomic binding. Analysis of the sequence motifs reveals 

that cell-type-specific TFs cooperate with GR, likely by serving pioneering, lineage-

specifying roles (Heinz et al., 2015; Zaret et al., 2016). Other possible mechanisms for cell-

type-specific GR binding and function include different GR isoforms and post-translational 

modification, which potentially regulate different sets of genes (Cohen and Steger, 2017).

The models of stem cell-derived adipocytes and hepatocytes that we have derived from 

individuals may also be valuable for investigators searching for selective GR-modulating 

ligands with anti-inflammatory actions but without untoward metabolic effects. Analogous 

selective estrogen receptor modulators have been of enormous clinical utility in the 

treatments of breast cancer, osteoporosis and menopausal-related estrogen deficiency (Patel 

and Bihani, 2018). Selective GR modulating compounds have had less clinical success 

(Cole, 2006; Safy et al., 2017), in part because of the lack of translation of non-human 

models, a problem which our human systems would overcome. In addition, the advantage of 

using iPSCs is that multiple cell types can be generated with the same genetic background. 

Notably, beyond metabolic cell types, including adipocytes and hepatocytes that are reported 

here, the stem cells have the potential to be differentiated into immune cell types, such as 

macrophages and lymphocytes, to dissect both the theraputic effects of and metabolic side 

effects of selective GR ligands. It would also be interesting to determine if genes and 

metabolic processes altered in a individual-specific manner by Dex are differentially affected 

by other GR-modulators.

Previous studies on the role of genetics in modulating the response to GCs have largely 

focused on the GR itself, including rare individuals with GC resistance due to loss-of-

function GR mutations (Bachmann et al., 2007) as well as more subtle exonic variations 

associated with GC responsiveness, such as ER22/23EK, which reduces GC sensitivity 

(Russcher et al., 2005) and N363S, which is associated with hypersensitivity to GCs (van 

Rossum and Lamberts, 2004). Further, the Pharmacogenomics Knowledge Base includes 

some non-coding SNPs that have been associated with the efficacy and adverse effects of 

Dex, but the underlying biological mechanisms have not been determined (Karol et al., 

2016). Our genome-wide pipeline and integrative analysis of individual stem cell-derived 

adipocytes and hepatocytes models may allow for a more systematic identification of 

additional non-coding SNPs that affect Dex responses by affecting GR binding and/or 

chromatin accessibility and architecture.

Consistent with our findings, a previous study identified several enhancer SNPs that regulate 

GR-mediated gene expression using a massive Dex-responsive reporter activity assay 

(Johnson et al., 2018). Another study revealed wide gene expression variation following GR 

activation and found that the presumed enhancer and long distance chromatin regions 

modulate GR target gene expression in lymphoblastoid cell lines derived from multiple 

individuals (Maranville et al., 2013).The value of our approach is clear from our finding that 

several SNPs controlling gene responses to GC in human adipocytes and/or hepatocytes 

have clinical impact on increases in serum glucose, lipids and BMI, which are the most 

concerning metabolic side effects of GC therapy. Future studies in larger, well-phenotyped 
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populations may be even more powerful to uncover synergistic effects of two or more SNPs 

that predict which individuals will develop metabolic adverse effects. In addition, natural 

language processing of electronic health records should expand the phenotypic range of 

future studies by searching for terms like “central obesity” and “Cushingoid” (Nieman, 

2015).

In sum, our studies of individual-derived adipocytes and hepatocytes have revealed cell type-

specific and individual-specific GC responses, setting the stage for identifying people who 

will have the most severe metabolic adverse drug effects. More generally, our “biased” 

approach of focusing on the TF targeting by a known drug, and the cell types most likely to 

be causing the adverse effects of the drug target, allowed for the discovery of risk alleles. 

The success of this approach, using stem cell-derived mature differentiated cell types from a 

few different individuals, suggests a way forward to personalized and precision approaches 

to the treatment of cancer and immune diseases with GCs.

Limitations of study

GR activation is required for hepatocyte maturation and adipogenic differentiation. It is 

possible that Dex could affect adipocyte and/or HLC differentiation, although we have taken 

several steps to limit this concern, such as omitting hydrocortisone from the HCM kit and 

only adding Oncostatin M to promote hepatocyte maturation, treating the mature adipocytes 

with 1.5% BSA medium without Dex for an additional 2 days to wash the effect for Dex, 

and choosing adipocytes and HLCs with similar differentiation efficiencies. Nevertheless, 

the variability in differentiation may affect the individual magnitude of Dex responses. 

Another control could be to study mature adipocytes from the same biopsied material used 

to prepare pre-adipocytes. Also, although our studies strongly suggest the regulatory role of 

SNPs by reporter assay and allele-specific analysis, it would be valuable to prove the causal 

role of the SNPs by generating isogenic iPSCs. Future studies should investigate the inter-

individual genomic and gene expression variation of mature fat cell depots from clinical 

studies of subjects with annotated phenotypic responses to glucocorticoids. Finally, our 

examination of the clinical relevance of implicated SNPs in children with ALL is limited by 

the relatively small size of the population, and may not be relevant to adults.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and request for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Mitchell A. Lazar, M.D., Ph.D. 

(lazar@pennmedicine.upenn.edu).

Materials Availability—The iPSC lines used in this study are from the publicly available 

WiCell Research Institute depository for the NHLBI Next Generation Genetic Association 

Studies Consortium collection. The hASC lines used in this study are kindly provided by Dr. 

Ivona Percec, which are available from the lead contact upon request.
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Data and Code Availability—The accession number for the sequencing data reported in 

this paper is GEO: GSE163061.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study Cohorts—The patient setting, treatment strategy and clinical data collection were 

described as previously (Kawedia et al., 2011; Ramsey et al., 2017). This study was 

approved by the St. Jude Institutional Review Board, and informed consent was obtained 

from subjects who were 18 years old and, in the case of younger individuals, from their 

parents or guardians, in accordance with the Declaration of Helsinki. The clinical trial 

number is NCT00137111. In brief, children with newly diagnosed ALL (n = 498) were 

enrolled. 394 children have measured lab values. The children age is from 1.0 to 18.8 years 

with a median age 5.4 years, and 54.5% children are male. After a common remission 

induction and consolidation phase, dexamethasone at 8 mg/m2 per day (low-risk arm) and 12 

mg/m2 per day (standard-risk/high-risk arm) was given orally for 5 days at weeks 1, 4, and 9 

of continuation therapy. During both reinductions I and II (weeks 7–9, weeks 17–19), all 

patients received dexamethasone at 8 mg/m2 per day orally for 7 to 8 days. We collected 

heparinized blood samples on day 15 of consolidation and day 1 of week 2 (or week 5), 

week 7, week 8 (after 7 continuous days of dexamethasone), and week 12 of the 

continuation phase.

We also examined the electronic records of participants of the Penn Medicine Biobank. The 

University of Pennsylvania Institutional Review Board approved the study, and subjects 

consented to the use of genetic and clinical data for the purposes of research. 167 

participants whose SNP information was available and who had normal random blood 

glucose levels (<160 mg/dL) prior to beginning high dose GC treatment with a variety of 

medical conditions and did not admit insulin during GC treatment were included for this 

analysis. The average age of participants is 62.3 ± 14.6 years, and 54.0% participants are 

male.

Human iPSC lines—Human iPSC lines are selected based on their differentiation ability 

into hepatocytes from a cohort of iPSC lines generated in our previous study (Pashos et al., 

2017). 58% iPSC lines used in this study were generated from male subjects. The University 

of Pennsylvania Human Subjects Research Institutional Review Board approved the study 

protocol for the generation of these iPSC lines, and all subjects gave written informed 

consent for study participation. iPSCs were cultured in mTeSR medium at 37 °C with 5% 

O2 and 5% CO2.

Primary hASCs—Subcutaneous abdominal adipose tissues were excised from consented 

healthy female subjects undergoing elective abdominoplasty (University of Pennsylvania 

IRB approval Protocol number 812150). ASCs were isolated from fat tissue samples 

according to a standard collagenase protocol (Shan et al., 2017). The ASCs were maintained 

in DMEM medium at 37 °C with 5% CO2 and passaged 2–3 times before adipogenic 

differentiation.
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METHOD DETAILS

Adipogenic differentiation of hASCs—hASCs at passage P2-P3 were cultured in 

DMEM medium. Confluent hASCs were then transferred into adipogenic medium (DMEM 

with 10% FBS, 1% penicillin/streptomycin, dexamethasone (1 μM), IBMX (0.5 mM), 

indomethacin (0.2mM), Insulin (10 μg/ml) and rosiglitazone (1 μM)) for 14 days. Then, cells 

were further cultured in maintenance medium (DMEM with 10% FBS, 1% penicillin/

streptomycin, dexamethasone (1 μM), IBMX (0.5 mM), indomethacin (0.2 mM) and Insulin 

(10 μg/ml)) another 7 days. Before treatment with Dex, the cells were cultured with 1.5% 

BSA/DMEM medium for 2 days. We selected eight subject adipocytes with similar 

adipogenic differentiation efficiency based on morphology and gene expression from a pool 

of 23 individual ASCs as a celluar model system to study glucocorticoid response.

Differentiation of hiPSCs into HLCs—The differentiation of hiPSCs into HLCs were 

performed as described previously with minor modification (Pashos et al., 2017). Briefly, we 

treated hiPSC at 30–40% confluence 24 hrs after plating for differentiation with Definitive 

Endoderm Kit from day 1 to day 4 following manufacturer’s instruction. Then, the cells 

were transferred into RPMI-B27 (made with 2% B-27 Supplement) supplemented with 

BMP-4 (20 ng/mL) and FGF basic (10 ng/mL) for 5 days in 5% oxygen/5% CO2. 

Subsequently, RPMI-B27 supplemented with recombinant human HGF (20 ng/mL) were 

applied to the cells for 5 days in 5% oxygen/5% CO2. Finally, the cells were treated with 

HCM Hepatocyte Culture Medium (Lonza) without EGF and hydrocortisone and 

supplemented with recombinant human oncostatin M (20 ng/mL) for 5 days in ambient 

oxygen/5% CO2, yielding mature HLCs.

Immunostaining—For immunostaining, cells plated on glass coverslips were fixed by 4% 

PFA solution for 10 min at room temperature. Then cells were incubated in blocking buffer 

(1% bovine serum albumin in PBS) with 0.5% Triton X-100 for 30 min at RT. Afterwards, 

samples were incubated with primary antibodies (GR, Cell Signaling Technology, 1:100 

dilution; HNF4, 1:100 dilution; Albumin, 1:100 dilution) at 4 °C overnight and then with 

appropriate fluorescent probe-conjugated secondary antibodies for 1 h at RT. Images were 

captured with fluorescence microscope or Leica TCS SP8.

Western blot and gene expression analysis—For western blotting, HLCs were 

washed with cold PBS and lysed with Laemmli’s sample buffer, and then cell lysates were 

separated on SDS-PAGE, transferred onto nitrocellulose membrane and blotted with 

indicated primary antibodies. The membrane was detected by secondary antibody 

conjugated to HRP.

For gene expression analysis, total RNA samples were collected with RNeasy kit (QIAGEN) 

according to manufacturer’s instructions. The RNA for each reaction was reverse-transcribed 

to cDNA using High-Capacity cDNA Reverse Transcription Kit. Quantitative real-time PCR 

was subsequently conducted with specific primers and Power SYBR Green PCR Master Mix 

(Applied Biosystems). The relative expression levels were normalized against the internal 

control (HPRT). Primers used were listed in Supplement information, Table 1.
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RNA-seq and data processing—Total RNA samples were prepared with RNeasy kit 

(QIAGEN) according to manufacturer’s instructions. More than 2 ug RNA from three 

biological replicates were sent to Novogene (CA) for library preparation (Illumina) and 

sequencing at pair-end at 150bp read length on Novaseq 6000. Raw reads were trimmed 

using fastp v0.19.5 to remove reads with low quality, too short, or too many N. Trimmed 

reads were then aligned to human reference genome (hg38) using Hisat2 v2.1 with default 

parameters. Only unique mapped reads extracted by SAMtools v1.9 were considered for 

downstream analyses. Quantification of gene annotated in GRCh38 v94 from Ensembl 

database was estimated using StringTie v1.3.4. Genes with normalized expression value, 

fragments per kilobase of exon per million reads mapped (FPKM), larger than 1 in at least 

one sample were considered. To assess the reproducibility of replicates, PCA analysis was 

performed, and three biological replicates of adipocytes from each individual treated with 

DMSO or Dex generally clustered together. Pearson correlation between replicates from 

each individual was also calculated. The correlation coefficients were all larger than 0.99 

among replicates. To calculate Pearson correlation coefficients for inter-samples, average 

expression of the replicates for each gene was calculated, following by the calculation of 

Pearson correlation coefficient between each two individuals based on the average 

expression values.

Read counts that were measured for each gene using featureCounts v1.5.1 were used as the 

input to DESeq2 for differential expression analysis with adjusted p value (Benjamini 

Hochberg) < 0.01 and fold change ≥ 1.5. Genes that were deferentially expressed in only one 

individual were defined as individual-specific responsive genes. GSEA analysis, GO and 

KEGG enrichment analysis were performed using clusterProfiler. For GSEA analysis, genes 

ranked by average log2(fold change) in Dex vs DMSO across all individuals. For heatmaps 

showing individual-specific and common Dex-responsive genes in Figure S2E and S3D, 

triplicate results were combined for this analysis following a published method (Wang et al., 

2020).

ChIP—Mature adipocytes and HLCs were treated with Dex for 6h. DMSO-treated cells 

were included as control. ChIP assays were performed in two biological replicates as 

described previously (Hu et al., 2019). Mature adipocytes and HLCs were crosslinked in 1% 

formaldehyde for 15 min and then quenched with 1/20 volume of 2.5 M glycine solution for 

5 min. Soluble chromatin was sonicated into small fragments and then was incubated with 

anti-GR antibody (CST) or anti-CEBPβ antibody (Santa-Cruz). The pulled DNA was 

decrosslinked overnight at 65°C in SDS buffer (50 mM Tris-HCL, 10 mM EDTA, 1% SDS 

at pH 8), and DNA was purified using phenol/chloroform/isoamyl alcohol. Precipitated 

DNA was analyzed by qPCR or sequencing.

ChIP-seq and data processing—ChIP experiments were performed independently on 

hASC-derived adipocytes and iPSC-derived HLCs. The library preparation for ChIP-seq 

follows the guide provided by Illumina. ChIP-seq libraries were sequenced single-end at 

50bp read length on Illumina HiSeq2000 by the Functional Genomics Core of the Penn 

Diabetes Research Center or sequenced pair-end at 150bp read length on Illumina HiSeq X 

by Novogene (CA). For ChIP-seq in adipocytes, we downsampled the number of read pairs 
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to 40M seperately for each sample. ChIP-seq raw reads were trimmed using fastp v0.19.5. 

Trimmed reads were then aligned to human reference genome (hg38) using Bowtie2 v2.3.0 

with default parameters. SAMtools v1.9 was used to extract unique mapped reads and 

remove duplicated reads. Biological replicates from the same individual were pooled 

together following by peak calling and de novo motif analyses using HOMER v4.9 with 

default parameters. The overlap among biological replicates was calculated before pooling 

the replicates for downstream analysis. Peaks detected in only one individual were defined 

as individual-specific peaks. Peaks detected in all individuals were defined as common GR 

peaks. GSEA analysis, GO and KEGG enrichment analysis based on the nearest genes were 

performed using clusterProfiler. For GSEA analysis, genes ranked by average intensity of 

their counterpart peaks across all individuals.

Integrated analysis of Dex-responsive genes and GR cistromes—GR binding 

sites were paired with Dex-responsive genes within 200KB. Then the Pearson correlations 

between peaks and genes were calculated based on the intensities of GR peaks and Dex 

responses of genes across individuals. To check if individual-specific GR binding sites are 

likely to regulate individual-specific Dex responsive genes, a random test was performed by 

shuffling the genomic region label for Dex responsive genes for 1000 times. RP score for 

each Dex responsive gene were calculated using GR bindings as the input using the 

regulatory potential (RP) model decribed as previously (Wang et al., 2016).

To identify motif-altering SNPs that control GR function and Dex responses, protocol 

described as previously with minor modification (Hu et al., 2019) was used. Briefly, peak-

gene pairs in which peaks contain a SNP were considered. For HLCs, genotype data came 

from our previous study (Pashos et al., 2017). And for adipocytes, genotypes were predicted 

based on GR ChIP-seq data. Briefly, reads spanning the interesting SNPs were extracted, 

following by the extraction of the nucleotides locating at the same position of the SNPs. 

Only reads whose depth above 5 were considered. Next, individuals were divided into 

different groups based on the genotypes. For each SNP, the difference of peak intensities (or 

gene response) between different groups was required larger than 1.5 fold. Only peak-gene 

pairs in which group with higher peak intensities having stronger Dex response were 

considered. Then, the hg38 reference sequences including 20 bp on either side of candidate 

SNPs were retrieved, as well as the sequences of the SNPs with alternative allele. FIMO 

algorithm in MEME suite with p value < 0.001 was performed to examine if these SNPs 

alter the motifs of GR or its cooperating factors. The SNPs with position weight at a position 

weighted matrixes (PWMs) larger than 0.3 and with the ratio of the position weights 

between two alleles of the SNP larger than 3 were considered.

Allele-specific analysis—To identify allele-specific binding (ASB) SNPs, read counts 

for each allele were calculated using perl scripts based on bam files of ChIP-seq data. To 

maximize the power to detect ASB SNPs, reads from all heterozygous individuals were 

pooled for each SNP, and only SNPs with read counts > 6 were considered. The p-values 

were calculated based on binomial test using binom.test from the R package, and FDR 

correction were applied using R function p.adjust(x,method = “fdr”). Only SNPs with FDR 

< 0.1 were considered. To examine if the nearby GR target genes also show allele-selective 
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response to Dex, the same strategy was applied to RNA-seq data of target genes containing 

heterozygous SNPs. To analyze the enrichment of ASB SNPs in promoters, enhancers, liver 

eQTL and metabolic traits-related SNPs, protocol described previously (Zhang et al., 2020) 

was used. Briefly, the enrichment p values were calculated using binom.test from the R 

package. The fold enrichment was calculated using the formula described previously (Zhang 

et al., 2020). Promoter is defined as upstream 2 kb and downstream 2 kb of TSS annotated in 

GRCh38 v94 from Ensembl database. And enhancer regions were defined as H3K27ac 

peaks in hepatocyte without overlapping with promoter and exon regions annotated in 

GRCh38 v94 from Ensembl database. eQTL in liver tissue was download from GTEx 

(Consortium, 2015), and the metabolic traits-related SNPs came from GWAS catalog 

(Buniello et al., 2019).

Cell types-specific Dex-responsive genes and GR cistromes—Only high 

confident Dex-responsive genes and GR cistromes were considered, in which genes that are 

Dex-responsive and GR peaks that are detected in at least half of the individuals were 

considered. De novo motif analyses for cell type-specific GR cistromes were performed 

using HOMER v4.9. Gene ontology analyses for cell type-specific Dex responsive genes 

were performed using clusterProfiler.

ATAC-seq and data processing—ATAC-seq experiments were performed as described 

previously (Corces et al., 2016). In brief, 100,000 hiPSC-derived HLCs were resuspended in 

50 μl of transposase mixture (25 μl of 2× TD buffer, 2.5 μl of TDE1, 0.5 μl of 1% digitonin, 

and 22 μl of nuclease-free water) (Illumina). Transposition reactions were incubated at 37 °C 

for 30 min in a Thermo Mixer with agitation at 300 rpm. Transposed DNA was purified 

using a QIAGEN MinElute Reaction Cleanup kit. Transposed fragments were subjected to 

library preparation following previous protocol (Buenrostro et al., 2015). ATAC-seq libraries 

were sequenced using paired-end, dual-index sequencing on a NextSeq 500 instrument.

ATAC-seq raw reads were trimmed using fastp v0.19.5. Next, trimmed reads were aligned to 

human reference genome (hg38) using Bowtie2 v2.3.0 with parameter --very-sensitive. 

Reads mapped to mitochondria were ignored. SAMtools v1.9 was applied to extract unique 

mapped reads and remove duplicated reads. Peak calling was performed using Genrich 

(https://github.com/jsh58/Genrich#contact), which was developed by John M. Gaspar in the 

Informatic Group with an alternative analysis mode only for ATAC-seq, and also 

recommended in the latest ATAC-seq Guidelines (https://informatics.fas.harvard.edu/atac-

seq-guidelines.html#overview). Peaks detected in only one individual were defined as 

individual-specific peaks.

Integrated analysis of Dex-responsive genes and ATAC-seq data—ATAC-seq 

peaks were paired with Dex-responsive genes within 200KB. To identify motif-altering 

SNPs that control chromatin accessibility and Dex responses, similar pipeline described 

above was used. Briefly, ATAC peak-gene pairs in which peaks contain a SNP were 

considered. Next, individuals were divided into different groups based on the genotypes. For 

each SNP, the difference of ATAC peak intensities (or gene response) between different 

groups was larger than 1.5 fold. Only ATAC peak-gene pairs in which group with higher 

peak intensities having stronger Dex response were considered. We further filtered the ATAC 
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peak-gene pairs by associated them with GR binding that’s 2 kb from ATAC peaks and 

exhibited similar pattern of binding as ATAC peaks.

H3K4me3 in-situ ChIA-PET—The H3K4me3 in-situ ChIA-PET was performed 

according to the previously described protocol (Li et al., 2017) with minor modifications. 

Briefly, 5 million human iPSC-derived HLCs were harvested and crosslinked with 1% 

formaldehyde for 20 mins at room temperature. Then cells were quenched by 0.125 M 

glycine for 10 mins at room temperature. Then, the cells were fixed again by 1.5 mM EGS 

for 45 mins at 37 °C and quenched by 0.125 M glycine for 10 mins at room temperature. 

The dual-crosslinked cells were lysed and digested with AluI enzyme (NEB). Digested DNA 

ends were A-tailed and proximal ligated with biotinylated bridge linker overnight (Tang et 

al., 2015). The ligated chromatin was sheared by sonication and pull-down by H3K4me3 

antibody (Millipore). Immunoprecipitated DNA was subjected to Tn5 (Illumina) 

tagmentation, M280 Dynabeads (Thermo Fisher Scientific) streptavidin pull-down and PCR 

amplification (Illumina). PCR products were subjected to size-selection and pair-end 

sequencing on Illumina HiSeq X platform.

ChIA-PET data processing—ChIA-PET data was processed by ChIA-PIPE tools (Lee et 

al., 2020). Briefly, ChIA-PET paired-end reads were first removed bridge linker and split 

into 3 category tags: none-linker containing tags, one-end tags and pair-end tags (PETs). 

Tags longer than 18 bp were used to mapped to human genome (hg38) by Burrows–Wheeler 

alignment (BWA). Duplicated PETs are filtered and uniquely non-redundant PETs were 

classified into inter-chromosomal PETs, intra-chromosomal PETs (two tags distance >=8 

kb) and self-ligated PETs (two tags distance <8 kb). Multiple intra-chromosomal PETs 

whose respective ends were within 1 kb were then clustered together. PET count of each 

PET cluster represents the interaction strength. Loops with PETs ≥3 were considered for 

downstream analysis. Loops detected in only one individual were defined as individual-

specific Loops. H3K4me3-marked Promoter Interaction Score (PIS) was defined by the 

following steps: each promoter (extended TSS from −2.5 to +2.5 kb) was overlapped with 

all PET clusters, only ones which have at least 1 anchor overlapped with promoters would be 

kept. PIS was calculated by summing all PET counts of these overlapped clusters within 

each promoter and normalized by total intra-chromosomal PET number. ChIA-PET data was 

visualized by a customized karyoploteR package (Gel and Serra, 2017).

To identify SNP that control chromatin loops and gene responses, loops with one anchor 

spanning a SNP and the other anchor overlapped with gene promoter were considered, and 

similar pipeline described above was used. Briefly, individuals were divided into different 

groups based on the genotypes. For each SNP, the difference of loop intensities (or gene 

response) between different groups was larger than 1.5 fold. Only loop-gene pairs in which 

group with higher loop intensities having stronger Dex response were considered.

Luciferase reporter assay—249bp human DNA fragments encompassing SNP 

rs6026774 reference or alternative allele were synthesized from Integrated DNA 

Technologies. They were cloned into the XhoI and BglII restriction sites of the pGL4.24 

luciferase reporter (Promega) and sequence-verified. Transient transfections of HepG2 cells 

were performed in 24-well plates, n = 4 wells per condition, using Lipofectamine 3000 
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(Invitrogen) to add 400 ng of pGL4 luciferase reporter and 2 ng of renilla luciferase for 

normalization. One day later, the cells were treated with 1 μM Dex for 24 hours. The Dual-

Luciferase Kit (Promega) was used to measure luciferase activities on a Synergy HT plate 

reader (Biotek).

SNaPshot assay—Genotyping were carried out with SNaPshot Multiplex Kit (Applied 

Biosystem) according to manufacturer’s instructions. Briefly, each region of interest 

flanking the SNP was PCR amplified, and 5 μL of PCR product was purified by ExoSAP-IT 

reagent (Affmetrix). Primer extension was performed by adding 1 μL of purified PCR 

product to a mix of 2.5 μL SNaPshot reagent, 1 μL water and 0.2 pmol extension primer for 

25 cycles on Thermocycler. To remove unincorporated fluorescent dNTPs post-extension, 

each reaction was incubated 1U of Calf Intestinal Phosphatase (New England BioLabs). 

Samples were sequenced by the Penn DNA Sequencing Facility on an ABI 3730, and 

genotypes were identified manually using Peak Scanner Software (Life Technologies).

Glucose production assay—Human hepatic organoids from 17 human iPSC lines were 

generated exactly following the previous protocol (Ouchi et al., 2019). The glucose 

production assay was performed as previously (Zou et al., 2018). Briefly, each well of 

hepatic organoids from 6 well plates at day 23 were transferred to one well of 24 well ultra-

low attachment plate, and cultured with complete HCM (Lonza HCM bullet kit, except no 

EGF, supplemented with 100 nM Dex, 20 ng/mL oncostatin M, and 20 ng/mL HGF) with 

10% Matrigel for 3 days. Then, hepatic organoids were washed with PBS and starved in 

GOM buffer (118 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM 

NaHCO3, 1.2 mM CaCl2, pH= 7.4) plus 0.1% BSA for 6 hrs. After starvation, hepatic 

organoids were treated in glucose-free media supplemented with 1 μM Dex or 100 nM 

Glucagon, 1x P/S, 10 mM Lactate and 1 mM Pyruvate for 24 hrs. Glucose concentration in 

cell culture media was determined by Glucose Colorimetric Detection Kit (ThermoFisher 

Scientific) following the manufacturer’s instruction. Glucose production rate was 

normalized to protein content.

Clinical analysis—387 children with ALL with available phenotype and genotype data 

were included for this analysis. Hyperglycemia was defined according to National Cancer 

Institute Common Terminology Criteria for Adverse Events, Version 3.0 (Grade 2 or above, 

blood glucose level >160 mg/dL) during the treatment course. Genotypes were coded as 0, 1 

or 2, representing number of minor alleles and were tested for additive effect for their 

association with phenotypes. Multiple logistic regression was used in the analysis of 

hyperglycemia, which was coded as a binary variable. The effects of genotypes on changes 

in lipid measures, and BMI were evaluated using analysis of covariance based on a general 

linear model using the measures at a later timepoint (week 8) as the dependent variable and 

the measures at baseline (week 7, or at diagnosis for BMI) as covariates. Genetic ancestry, 

age, gender and risk arm were included in all models as covariates. For therapeutic effect 

analysis, we looked at GWAS results that we have previously published on treatment 

outcome (“any relapses”) and early treatment response (minimal residual disease during 

[mrd_day19] or at the end of [mrd_day46] of remission/induction therapy (Yang et al., 2011; 

Yang et al., 2009). For “any relapse”, we used cox-proportional hazard regression (n = 475), 

Hu et al. Page 22

Cell Metab. Author manuscript; available in PMC 2022 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adjusting for covariates include race and treatment risk group; For “MRD D19”, we used 

ordinal regression (n = 465), treating dependent variable MRD as three levels: <0.01% vs. 

0.01–1% vs. >= 1%, adjusting for race; For “MRD D46”, we used logistic regression (n = 

469), <0.01% vs. >= 0.01%, adjusting for race.

To test the association of rs6026774 with glucose level after GC treatment, we examined the 

electronic records of participants of the Penn Medicine Biobank with available genotype 

data. 167 participants whose SNP information was available and who had normal random 

blood glucose levels (<160 mg/dL) prior to beginning high dose GC treatment with a variety 

of medical conditions and did not admit insulin during GC treatment were included for this 

analysis. High dose GC therapy was defined as dexamethasone ≥2 mg or equivalent doses of 

prednisone, methylprednisolone, or hydrocortisone. The change of glucose level was 

calculated by comparing the maximal glucose level within 6 days post GC treatment to that 

before GC treatment.

Genotyping—For the clinical study at St. Jude Children’s Research Hospital, single 

nucleotide polymorphism (SNP) genotyping was performed using the Affymetrix Gene Chip 

Human Mapping Array, using 500K or 6.0 arrays (Affymetrix) (Ramsey et al., 2017). 

Imputation was performed using Michigan Imputation Server using 1000genome population 

data as reference. SNPs with imputation r2 > 0.6 and following Hardy-Weinberg equilibrium 

> 0.05 were included in the analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Error bars represent the standard error to mean (SEM), and statistical significance was 

determined by unpaired two-tailed Student t-test or multiple logistic regression analysis 

using GraphPad Prism software or R software; a P-value of ≤ 0.05 was considered 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Human adipocytes and hepatocytes responses to glucocorticoids (GCs) were 

tested

• Individual-specific genomic binding by GR determined these responses

• Genetic variations control GR function and GC response

• Genetic variations predict individual adverse metabolic effects of GC therapy
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Figure 1. Individual-specific Dex responsiveness in individual stem cell-derived adipocytes and 
HLCs.
(A and B) Scheme of the adipogenic (A) and hepatic (B) differentiation procedure and 

DMSO or Dex (1 μM) treatment.

(C) Gene ontology for Dex-responsive genes in adipocytes from all eight individuals.

(D) Heatmap of individual-specific responsive genes that are significantly regulated by Dex 

in the adipocytes from only one individual. The color bar indicates log2(fold change) in Dex 

vs DMSO.
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(E) mRNA expression of individual A4-specific upregulated gene PCSK1 and 

downregulated gene GPD2 in adipocytes from eight individuals, normalized to DMSO, as 

measured by RNA-seq.

(F and G) Gene ontology for A2-specific Dex-responsive genes (F) and A8-specific Dex-

responsive genes (G).

(H) Gene ontology for Dex-responsive genes in HLCs from all eleven individuals.

(I) Heatmap of individual-specific responsive genes that are significantly regulated by Dex 

in only one individual’s HLCs. The color bar indicates log2(fold change) in Dex vs DMSO.

(J) mRNA expression of individual H7-specific upregulated gene APOC2 and H2-specific 

downregulated gene CPT1C in the HLCs of eleven individuals, normalized to DMSO, as 

measured by RNA-seq.

(K and L) Gene ontology for H7-specific Dex-responsive genes (K) and H8-specific Dex-

responsive genes (L).

*P < 0.05, by Student’s t-test (E and J).

See also Figures S1–S3.
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Figure 2. Differential Dex-induced genomic binding of GR in individual stem cell-derived 
adipocytes and HLCs.
(A) Consensus motif logos for the top-scoring motif families found in GR binding regions in 

adipocytes treated with Dex.

(B) Heatmap of common GR peaks that are detected similarly in adipocytes from all eight 

individuals. The color bar indicates the scale of normalized tag counts.

(C) Gene ontology for the nearest genes of GR binding sites that are detected similarly in 

adipocytes from eight individuals.

(D) Overall GR binding profile in adipocytes from eight individuals.

(E) Heatmap of individual-specific unique peaks that are specifically unique in adipocytes 

from only one individual.

(F) Proportion of individual-specific GR peaks that are specifically detected in adipocytes 

from only one individual.

(G) Consensus motif logos for the top-scoring motif families found in GR binding regions in 

HLCs treated with Dex.

(H) Heatmap of common GR peaks that are detected similarly in HLCs from all eleven 

individuals. The color bar indicates the scale of normalized tag counts.

(I) Gene ontology for the nearest genes of GR binding sites that are detected similarly in 

HLCs from all eleven individuals.
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(J) Overall GR binding profile in HLCs from all eleven individuals.

(K) Heatmap of individual-specific unique peaks that are specifically unique in HLCs from 

only one individual.

(L) Proportion of individual-specific GR peaks that are specifically detected in HLCs from 

only one individual.

See also Figures S4–S5.
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Figure 3. Differential GR binding drives individual-specific Dex responses
(A and H) Dex-responsive genes are enriched in GR peaks in adipocytes (A) and HLCs (H) 

based on a random test. The percentage of Dex-responsive genes that have GR binding sites 

within 10 kb is indicated with a red arrow.

(B and I) The Dex responses near strong (Top 500 peaks) and weak (Bottom 500 peaks) GR 

binding sites in adipocytes (B) and HLCs (I).

(C and J) The GR binding intensities near high (Top 500 genes) and low (Bottom 500 

genes) Dex-responsive genes in adipocytes (C) and HLCs (J).
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(D and K) The number of gene-peak pairs in which gene responses to Dex are tightly 

associated with the intensities of GR bindings within 200 kb in adipocytes (D) and HLCs 

(K).

(E - G) Two example genes FAM214A (E) and ASF1B (G) whose responsiveness to Dex are 

positively or negatively associated with GR binding intensity in adipocytes. The GR-ChIP 

tracks at FAM214A locus were shown (F).

(L - N) Two example genes SLC1A5 (L) and HEXIM2 (N) whose responsiveness to Dex are 

positively or negatively associated with GR binding intensity in HLCs. The GR-ChIP tracks 

at SLC1A5 locus were shown (M).

The P values were calculated by permutation test (A and H), Student’s t-test (B, C, I and J) 

or R function cor.test (D, E, G, K, L and N).

See also Figures S6.
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Figure 4. Cell type-specific Dex responses and GR genomic binding.
(A) Heatmap demonstrating the Dex-responsive genes in at least half of the individual 

adipocytes or HLCs. The color bar indicates log2(fold change) in Dex vs DMSO.

(B) Gene ontology for Dex-responsive genes observed in both adipocytes and HLCs.

(C) Venn diagram demonstrating the GR genomic binding in at least half of the individual 

adipocytes and HLCs.
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(D and E) The percentage of adipocyte-specific Dex-responsive genes, HLCs-specific Dex-

responsive genes or random genes that have nearby adipocyte-specific GR binding sites (D) 

or HLCs-specific GR binding sites (E).

(F) One example gene ACACB that’s induced by Dex in adipocytes only have higher nearby 

GR binding intensity in adipocytes compared to that in HLCs. Boxplots show median as a 

horizontal line, interquartile range as a box.

(G) One example gene ABCB11 that’s induced by Dex in HLCs only have higher nearby 

GR binding intensity in HLCs compared to that in adipocytes. Boxplots show median as a 

horizontal line, interquartile range as a box.

(H) GR ChIP-seq tracks at ABCB11 locus in adipocytes and HLCs.

(I-K) De novo motif analysis for common (I), adipocyte-specific (J) and HLC-specific (K) 

GR peaks.

See also Figures S7.
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Figure 5. Genetic variants determine GR function and Dex responses.
(A and I) Enrichment of genetic variants associated with metabolic disorders in common or 

specific GR peaks in adipocytes (A) and in HLCs (I). The number is - log10 (P), which is 

also reflected by color.

(B) Visualization of an A5-specific absent peak region (yellow box) at LPAR1 locus across 

individual adipocytes. The black arrow indicates the position of rs10980797.

(C) Scatter plot showing the LPAR1 gene is not responsive to Dex in only individual A5 

adipocytes.
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(D) The putative effect of rs10980797 on CEBP motif.

(E and F) GR (E) and CEBPβ (F) ChIP-qPCR for LPAR1, FKBP5, and INS2 in eight 

individual adipocytes (2 A/A, 5 A/G and 1 G/G). Data are expressed as mean ± SEM.

(G and H) Differential GR binding near PPP1R3C locus (G) and Dex response of PPP1R3C 
(H) between different genotypes of rs10881935 across individual adipocytes. Data are 

expressed as mean ± SEM.

(J) The putative effect of rs6026774 on GR motif.

(K and L) Differential GR binding near LBP locus (K) and Dex response of LBP (L) 

between different genotypes of rs6026774 across individual HLCs. Data are expressed as 

mean ± SEM.

(M) The activities of luciferase reporters with the different alleles for rs6026774 and control 

reporter PGL4.24 in hepG2 cell lines treated with DMSO or Dex. Data are expressed as 

mean ± SEM.

(N) GR ChIP-qPCR for LBP, PDK4, and INS2 in HLCs (9 A/A and 2 G/G). Data are 

expressed as mean ± SEM.

(O) mRNA expression of LBP was examined by qPCR in 17 individual HLCs. Blue dots 

represent repeated experiment of individuals H1-H11. Red dots represent new HLCs (4 A/G, 

2 G/G). Data are expressed as mean ± SEM fold change due to Dex.

(P and Q) Differential GR binding near CPT1A locus (P) and Dex response of CPT1A (Q) 

between different genotypes of rs2060982 across individual HLCs. Data are expressed as 

mean ± SEM.

*P < 0.05, by Student’s t-test (M, N and O).

See also Figures S8.
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Figure 6. Genetic variations modulate GR function through affecting chromatin accessibility and 
architecture.
(A) Diagram depicting SNPs modulate gene response to Dex by affecting chromatin 

accessibility.

(B and C) rs55830753 affects ATAC-seq (left of B) signal and GR binding (right of B) near 

CYP3A5 and CYP3A7 locus and modulates their response to Dex (C).

(D) Venn diagram demonstrating the numbers of H3K4me3-mediated loops in DMSO- or 

Dex-treated H11 HLCs.
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(E) Scatter plot revealing the genes whose promoter interaction score is 2 fold higher in Dex 

or DMSO group. Promoter interaction score represents the total PET number of each gene 

promoter.

(F and G) The percentage of Dex-responsive genes with Dex-specific interactions (F) or 

DMSO-specific interactions (G).

(H) mRNA expression of MAOA and MAOB in HLCs from eleven individuals, normalized 

to DMSO, as measured by RNA-seq. Data are expressed as mean ± SEM.

(I) Visualization of promoter-enhancer interactions (Top) and GR binding (Bottom) at 

MAOA and MAOB locus in DMSO or Dex-treated H11 HLCs. The scale of Y-axis of ChIA-

PET is a log scale.

(J) Visualization of promoter-enhancer interactions (Top) and GR binding (Bottom) at 

FIBIN locus in five Dex-treated HLCs. Yellow box indicates genomic regions with H9-

specifc promoter-enhancer loops and H9-specific genotypes. The scale of Y-axis of ChIA-

PET is a log scale.

(K) mRNA expression level of FIBIN in HLCs from five individuals, normalized to DMSO, 

as measured by RNA-seq. Data are expressed as mean ± SEM.

(L) Diagram depicting the mechanisms of SNPs that modulate gene response to Dex by 

affecting the generation of loops.

*P < 0.05, by Student’s t-test (H and K).

See also Figures S9.
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Figure 7. Genetic variants determine metabolic side effects of GC therapy.
(A) Percentage of pediatric individuals carrying each genotype of rs10980797 becoming 

hyperglycemic (>160 mg/dL) during treatment. 117 AA, 194 AG and 76 GG children with 

ALL who received chemotherapy with glucocorticoids.

(B) The change of triglyceride level after Dex treatment (Continuation Week8 – Week7) in 

individuals with ALL carrying different genotypes at rs10881935. Boxplots show median as 

a horizontal line, interquartile range as a box.

(C) Glucose production in hepatic organoids with different genotypes at rs6026774 treated 

with DMSO, Dex and Glucagon. 10 AA (red) and 7 AG or GG (blue) iPSC-derived hepatic 

organoids. Data are expressed as mean ± SEM. *P < 0.05 (Student’s t-test).

(D) Percentage of pediatric individuals with ALL carrying each genotype of rs2060982 

becoming hyperglycemic (>160 mg/dL). 112 AA, 173 AG and 102 GG.
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(E) The change of total cholesterol level (left) and LDL level (right) after Dex treatment 

(Continuation week8 – week7) in individuals with ALL carrying different genotypes at 

rs55830753.

The P value was calculated by multiple logistic regression analysis (A, B, D and E). See also 

Figures S10.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

GR Cell Signaling Technology Cat# 3660S; RRID: AB_11179215

GR Proteintech Cat# 24050-1-AP; RRID: AB_2813890

Albumin Bethyl Laboratories Cat# A80-229A; RRID: AB_67018

HNF4 Thermo Fisher Scientific Cat# MA1199; RRID: AB_2633309

Histone H3K4me3 Millipore Cat# 04-745; RRID: AB_1163444

CEBPβ Santa Cruz Cat# sc-7962; RRID: AB_626772

Chemicals, peptides, and recombinant proteins

mTeSR 1 STEMCELL Technologies Cat# 05850

Gelt rex Thermo Fisher Scientific Cat# A1413302

Matrigel Corning Cat# 356237

Accutase Innovative Cell Technologies Cat# AT-104

STEMdiff Definitive Endoderm Kit STEMCELL Technologies Cat# 05110

RPMI 1640 Thermo Fisher Scientific Cat# 22400105

Advanced DMEM/F12 Thermo Fisher Scientific Cat# 12634010

B-27 Supplement Thermo Fisher Scientific Cat# 17504044

N-2 Supplement Thermo Fisher Scientific Cat# 17502048

Knockout Serum Replacement Thermo Fisher Scientific Cat# 10828-028

GlutaMAX Thermo Fisher Scientific Cat# 35050061

HCM BulletKit Lonza Cat# CC-3198

Human BMP-4 Pe protech Cat# 120-05ET

Human FGF-basic Pe protech Cat# 100-18B

Human HGF Pe protech Cat# 100-39H

Recombinant Human Oncostatin M R&D Systems Cat# 8475-OM-050

Human/Murine/Rat Activin A Pe protech Cat# 120-14E

Recombinant Human FGF-4 Peprotech Cat# 100-31

DMEM Thermo Fisher Scientific Cat# 11995065

DMEM/F12 Thermo Fisher Scientific Cat# 11330032

DMEM, no glucose Thermo Fisher Scientific Cat# 11966025

Fetal bovine serum Atlanta Biologicals Cat# S11150

Insulin solution human Sigma Cat# 19278

3-lsobutyl-1-methylxanthine Sigma Cat# 15879

Dexamethasone Sigma Cat# D4902

Indomethacin Sigma Cat# 17378

Rosiglitazone Sigma Cat# R2408

Y27632 Selleckchem Cat# S1049

CHIR99021 Selleckchem Cat# S1263

Retinoic acid Sigma Cat# R2625
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Glucagon Sigma Cat# G2044

Lactate Sigma Cat# L1750

Sodium Pyruvate Thermo Fisher Scientific Cat# 11360070

Paraformaldehyde Solution, 4% Affymetrix Cat# 19943 1 LT

cOmplete, EDT-free Pro tease Inhibitor Cocktail Roche Cat# 11873580001

Chloroform Sigma Cat# C2432-500ML

RNase A (DNase and Protease Free) Fermentas Life Sciences Cat# EN0531

Phenol/Chloroform/ Isoamyl Alcohol Fisher Scientific Cat# BP1753I-400

ChIP DNA Clean & ConcentratorCapped column Zymo Research Cat# D5205

DNA LoBind Microcentrifuge Tube Eppendorf Cat# 30108.051

Deoxynucleotide (dNTP) Solution Mix New England Biolabs Cat# N0447S

Phusion Hot Start II DNA Polymerase Thermo Fisher Scientific Cat# F-549L

UltraPure Glycogen Thermo Fisher Scientific Cat# 10814010

T4 DNA Polymerase New England Biolabs Cat# M0203S

Klenow Fragment New England Biolabs Cat# M0212S

Klenow DNA Polymerase New England Biolabs Cat# M0210S

T4 Polynucleotide Kinase New England Biolabs Cat# M0201S

EGS Thermo Fisher Scientific Cat# 21565

Alul New England Biolabs Cat# R0137L

Tn5 Illumina Cat# 20034197

Human Liver Whole Tissue Lysate Novus Biologicals Cat# NB820-59232

Human NR3C1 knockout HeLa cell lysate Abeam Cat# ab257009

Critical commercial assays

RNeasy Mini Kit QIAGEN Cat# 74106

High-Capacity cDNA Reverse Transcription Kit Applied Biosystems Cat# 4368813

Power SYBR Green PCR Master Mix Applied Biosystems Cat# 4367659

Agilent high sensitivity DNA assay Agilent Cat# 5067-4626

M280 Dynabeads Thermo Fisher Scientific Cat# 11206D

Agencourt AM Pure XP beads Beckman Coulter Cat# A63881

Nextera DNA Library Prep Kit lllumina Cat# FC-121-1031

MinElute Reaction Cleanup Kit QIAGEN Cat# 28204

NEBNext High-Fidelity 2X PCR Master Mix New England Biolabs Cat# M0541S

Dual-Luciferase Reporter Assay System Promega Cat# E1910

Glucose Colorimetric Detection Kit Thermo Fisher Scientific Cat# EIAGLUC

SNaPshot Multiplex Kit Thermo Fisher Scientific Cat# 4323159

Deposited data

RNA-seq, GR ChlP-seq, H3K4me3 ChlA-PET, and 
ATAC-seq

This study GEO: GSE163061

Genotype data Pashos et al., 2017 dbGaP: phs001341.v1.p1

Oligonucleotides

Cell Metab. Author manuscript; available in PMC 2022 August 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hu et al. Page 46

REAGENT or RESOURCE SOURCE IDENTIFIER

See Table S1 N/A N/A

Software and algorithms

Fastp 0.19.5 Chen et al., 2018 https://github.com/OpenGene/fastp

BWA 0.7.17 Li and Durbin, 2009 http://biobwa.sourceforge.net/

Bowtie 2.3.0 Langmead and Salzberg, 2012 http://bowtiebio.sourceforge.net/bowtie2/
manual.shtml

SAMtools 1.9 Li et al., 2009 http://samtools.sourceforge.net/

Bedtools 2.26.0 Quinlan and Hall, 2010 http://bedtools.readthedocs.org/en/latest/

Homer v4.9 Heinz et al., 2010 http://homer.salk.edu/homer/

R 3.3.2 N/A https://www.r-project.org/

StringTie 1.3.4 Pertea et al., 2015 https://ccb.jhu.edu/software/stringtie/

Hisat2 2.1 Kim et al., 2015 https://ccb.jhu.edu/software/hisat2/index.shtml

IGV 2.4 Robinson et al., 2011 http://software.broadinstitute.org/software/igv

MEME SUITE 4.12.0 Grant et al., 2011 http://meme-suite.org/

featureCounts v1.5.1 Liao et al., 2014 http://bioinf.wehi.edu.au/featureCounts/

DESeq2 1.26.0 Love et al., 2014 http://bioconductor.org/packages/release/bioc/
vignettes/DESeq2/inst/doc/DESeq2.html

clusterProfile 3.14.3 Yu et al., 2012 https://guangchuangyu.github.io/software/
clusterProfiler/

ChIA -PIPE v1.0 Lee et al., 2020 https://github.com/TheJacksonLaboratory/ChlA-PIPE
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