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Artificial Intelligence in 
Nonalcoholic Fatty Liver Disease: 
A New Frontier in Diagnosis and 
Treatment
Pankaj Aggarwal, M.D., and Naim Alkhouri, M.D.

Artificial intelligence (AI) is an increasingly relevant field 
in medicine as clinicians incorporate technology into their 
daily practices. Nonalcoholic fatty liver disease (NAFLD) has 
risen to become the most common form of chronic liver 
disease globally. Furthermore, the extent of invasive and 
noninvasive objective metrics used in the diagnosis and 
management of NAFLD creates a seamless marriage be-
tween fatty liver disease and AI.

AI refers to the digital simulation and replication of 
human cognition. Machine learning (ML) is a popular 
subdiscipline of AI that refers to the process by which 
computers can be taught to independently collate data 

without specific instruction. ML is further classified into 

supervised and unsupervised learning. Whereas the 

computer is trained with human feedback in supervised 

learning, unsupervised learning allows the computer to 

independently interpret data without specific human 

guidance or feedback. A subdiscipline of ML is deep 

learning (DL), which is based on deep neural networks 

(DNNs) inspired by the human brain (Fig. 1). DL refers 

to the computer’s ability to conduct nonlinear analyses 

to identify predictive variables, assign them weights, 

and create prospective models for diseases. For exam-

ple, a computer could be taught to use supervised ML 
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algorithms to identify all patients with the diagnosis of 
diabetes mellitus in an electronic medical record (EMR). 
Using these patients as a test group, unsupervised ML 
algorithms can be used to identify the most common 
comorbidities or the utilization and response to specific 
classes of medications across a much larger population. 
This algorithm could be extended using DL to create a 
DNN that can predict long-term outcomes or socioeco-
nomic determinants of care.

Thus, AI has the potential to elucidate and streamline 
several knowledge gaps within the field, specifically patient 
identification, determination of disease severity, and drug 
development. In this review, we aim to characterize how AI 
may close these gaps (Table 1).

IDENTIFYING PATIENTS AT RISK FOR NAFLD

Given the lack of efficient screening methods and the 
fact that most are asymptomatic, identifying patients 
with NAFLD is challenging. AI may solve this problem by 
identifying patients with explicit and implicit risk factors 
for NAFLD in EMRs. A recent study used ML to predict 
the presence of NAFLD in the general population who 
underwent screening with magnetic resonance imag-
ing (MRI). Their model produced the NAFLD ridge score, 
which included six clinical variables (Table 2), with an area 
under the receiver operating characteristic curve (AUROC) 

FIG 1  AI is an umbrella term that encapsulates ML. Within 
ML, DL models can be implemented to gain a more thorough 
understanding of the topic at hand.
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of 0.87 in the training cohort and 0.88 in the validation 
cohort.1 Furthermore, in a large-scale study of more than 
10,000 patients, researchers used AI to identify that tri-
glycerides (TGs), alanine aminotransferase (ALT), gamma-
glutamyltransferase (GGT), uric acid, and body mass 
index (BMI) were the most effective predictive markers of 
NAFLD.2 These two studies highlight the potential utility 
of AI in patient identification. With the ability to screen 
and process exorbitant amounts of data, ML technology 
could help identify patients at risk for disease earlier and 
potentially effect change at the population level.

DIAGNOSING THE SEVERITY OF NAFLD

Similarly, AI is a potentially useful method of assessing the 
severity of NAFLD and identifying those with nonalcoholic 
steatohepatitis (NASH) and advanced fibrosis. Although 
liver biopsy is still considered the gold standard for the diag-
nosis of NASH, the histopathological evaluation of steatosis, 
inflammation, and ballooning is performed semiquantita-
tively, making the assessment subjective and prone to intrao-
bserver and interobserver variability. In a recent presentation 
at The Liver Meeting, the PathAI research platform (PathAI; 
Boston, MA) was used to train a DNN with more than 20 
layers and 8 million parameters from more than 600 liver 
biopsies. The ML models showed high concordance with 
the pathologist interpretations of liver histopathology, 
which may help to streamline the diagnosis and manage-
ment of NASH3 (Fig. 2). Another similar example compared 
expert pathologist interpretation of NAFLD histopathology 
with a calculated collagen proportionate area in the stag-
ing of liver fibrosis. There was good-to-excellent agreement 
between pathologist interpretation and automated calcu-
lation, emphasizing the potential for programmed diagno-
sis of liver fibrosis.4 These examples lend credence to the 

integration of AI in the interpretation of pathology and are 
favorable given increased uniformity, decreased human 
workload, and rapid processing of samples.

Alternatively, clinicians are more consistently turning to 
noninvasive tests based on clinical and serological biomark-
ers to determine the presence of NASH and the stage of 
liver fibrosis. For example, instead of comparing individual 
biomarkers, such as ALT or GGT, with fibrosis stage (F), ML 
algorithms can be used to compare dozens of biomarkers, 
identify the most predictive variables, and assign them rel-
ative weights to create novel scoring systems. In a study 
of morbidly obese patients, ML algorithms, such as logistic 
regression, random forest, and K-nearest neighbor, were 
used to compare serological tests and histopathology; the 
combination of liver enzymes (aspartate aminotransferase 
[AST] and ALT), cell death markers (M30 and M60), and hy-
aluronic acid (HA) was able to successfully identify stage F1 
versus F2 (fibrosis) with 79% accuracy.5 Similarly, another 
study used ML algorithms to advocate for the addition of 
caspase cleaved serum CK-18 (M30) and adiponectin to 
noninvasive scoring systems6 (Table 2). The authors posit 
that the addition of the aforementioned markers has the 
added advantage of commenting on patients’ overall met-
abolic status, and although this study is limited given the 
exclusion of patients with advanced fibrosis, these analy-
ses are theoretically superior to conventional methodology. 
Furthermore, their ability to account for multiple features 
simultaneously in a robust multivariate approach eliminates 
the inherent biases of traditional linear analyses (Fig. 3).

Methods to stage liver fibrosis based on measur-
ing liver stiffness, such as vibration-controlled tran-
sient elastography (VCTE) and shear-wave elastography 
(SWE), are increasingly being used. For example, VCTE 

FIG 2  AI can improve accuracy and concordance in histological assessment of NAFLD severity. The PathAI System (B) identifies key 
histological features of NASH that are usually seen on traditional H&E staining (A), including steatosis, inflammation, hepatocyte 
ballooning, and fibrosis.



396   |	Clinical Liver Disease, VOL 17, NO 6, JUNE 2021� An Official Learning Resource of AASLD

Artificial Intelligence in NAFLD   Aggarwal and AlkhouriReview

has demonstrated promise in the diagnosis of advanced 
fibrosis with AUROC of up to 0.89 for stage F4 fibrosis. 
However, VCTE is less sensitive in the detection of interme-
diate stages of fibrosis with an AUROC of 0.80 for F3 and 
0.77 for F2.7 By applying DNN to radiomic data acquired 
through SWE, DL radiomic elastography (DLRE) was devel-
oped and improved the diagnostic accuracy of SWE with 
increased AUROC to 0.97 for F4, 0.98 for F3, and 0.85 for 
F2 when compared with liver biopsy.8 This suggests that 
ML algorithms such as DLRE could be used to diagnose 
cases of advanced fibrosis with excellent accuracy (Fig. 4).

DRUG DISCOVERY

The application of AI to drug discovery involves the abil-
ity of DNNs to incorporate and assemble large-scale data 
from genomic and transcriptomic analyses in ways that 
can inform drug design and predict both therapeutic and 

toxic drug effects. Whereas genomics refers to the study 
of gene association with disease pathogenesis, transcrip-
tomics focuses on gene expression and the biochemical 
processes that follow. More specifically, the “pharmacog-
enome” is defined as the sequence(s) of genes that will 
account for and reliably predict a patient’s response to 
a medication. AI may play different roles in the field of 
drug discovery, including, but not limited to, the following: 
(1) increasing the efficiency by which researchers identify 
drugs, (2) improving the precision of those drugs by rec-
ognizing patient-specific drug targets, and (3) repurposing 
previously discovered drugs for novel indications. A recent 
study demonstrated that DL computational models could 
more accurately identify metabolic pathways leading to the 
formation of toxic metabolites—a crucial first step in drug 
development.9 Preliminary studies have also shown that 
DL methods can more reliably elucidate and predict drug-
target interactions compared with previous standards.10,11 
In addition, ML has shown promise in the repurposing of 
existing agents, although this study was not specific to 
NAFLD.12 Thus, the rise of AI presents a significant oppor-
tunity in the world of drug discovery, which is specifically 
relevant and applicable to the pharmacotherapy of NASH. 
Given the complex interplay between genetic background 
and environmental exposures, patients with NAFLD may 
have several unique pathophysiologies accounting for 
their disease state. Therefore, clinicians could rely on ML 
algorithms in the identification of drug targets and their 
efficacy in patient-specific disease processes.

FIG 3  Comparison between hypothesis-based testing and ML. (A) The first graphic represents traditional hypothesis-based testing 
in which the control variable V0 (blue circle) is compared with experimental variables V1 (yellow) in sequential, linear fashion (six total 
tests). (B) The second graphic illustrates the potential for ML algorithms to conduct more robust analyses. As every experimental variable 
becomes its own control, the algorithm is able to conduct 3.5× more tests (21 total) to identify patterns beyond traditional cognition.

FIG 4  In traditional VCTE and SWE, minimal fibrosis (F0-F1) is 
easily distinguished from advanced fibrosis (F4). However, the 
diagnosis of intermediate stages of fibrosis is more difficult. DLRE 
using DNNs helps to distinguish progressive stages of fibrosis 
with remarkable accuracy.
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CONCLUSION

The rise of AI in medicine has shown significant promise 
in the identification, diagnosis, and staging of patients with 
NAFLD. Furthermore, DL algorithms have the potential to 
provide target-specific medications, yielding efficacious phar-
macotherapy in this biochemically complex disease. Notably, 
due to the lack of large-scale, randomized controlled trials, 
further research is necessary to demonstrate the utility of AI. 
However, given its potential to affect patient outcomes at a 
population-based level, AI may become increasingly relevant 
in the future diagnosis and management of NAFLD.
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