TABLE 2.
Study | No. of Patients | Purpose | Gold Standard | Algorithms Used | Key Variables | AUROC or Accuracy (%) | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|---|
Yip et al. 1 | 922 | Patient identification using EMR | MRI |
|
|
AUROC: 0.88 | 0.923 | 0.904 |
Ma et al. 2 | 10,508 | Patient identification using EMR | Ultrasound |
|
|
Accuracy: 83% | 0.68 | 0.946 |
Sowa et al. 5 | 126 | Determining severity of fibrosis | Liver biopsy |
|
|
AUROC: 0.67 | 0.60 | 0.77 |
Accuracy: 79% | ||||||||
Canbay et al. 6 | 164 | Determine histological severity | Liver biopsy |
|
|
AUROC: 0.73 |
Identifies most significant ML algorithms used in data analyses.