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Abstract 

Background:  Chronic heart failure (CHF) comorbid with atrial fibrillation (AF) is a serious threat to human health and 
has become a major clinical burden. This prospective cohort study was performed to design a risk stratification sys-
tem based on the light gradient boosting machine (LightGBM) model to accurately predict the 1- to 3-year all-cause 
mortality of patients with CHF comorbid with AF.

Methods:  Electronic medical records of hospitalized patients with CHF comorbid with AF from January 2014 to April 
2019 were collected. The data set was randomly divided into a training set and test set at a 3:1 ratio. In the training 
set, the synthetic minority over-sampling technique (SMOTE) algorithm and fivefold cross validation were used for 
LightGBM model training, and the model performance was performed on the test set and compared using the logis-
tic regression method. The survival rate was presented on a Kaplan–Meier curve and compared by a log-rank test, and 
the hazard ratio was calculated by a Cox proportional hazard model.

Results:  Of the included 1796 patients, the 1-, 2-, and 3-year cumulative mortality rates were 7.74%, 10.63%, and 
12.43%, respectively. Compared with the logistic regression model, the LightGBM model showed better predictive 
performance, the area under the receiver operating characteristic curve for 1-, 2-, and 3-year all-cause mortality was 
0.718 (95%CI, 0.710–0.727), 0.744(95%CI, 0.737–0.751), and 0.757 (95%CI, 0.751–0.763), respectively. The net reclassifi-
cation index was 0.062 (95%CI, 0.044–0.079), 0.154 (95%CI, 0.138–0.172), and 0.148 (95%CI, 0.133–0.164), respectively. 
The differences between the two models were statistically significant (P < 0.05). Patients in the high-risk group had a 
significantly higher hazard of death than those in the low-risk group (hazard ratios: 12.68, 13.13, 14.82, P < 0.05).

Conclusion:  Risk stratification based on the LightGBM model showed better discriminative ability than traditional 
model in predicting 1- to 3-year all-cause mortality of patients with CHF comorbid with AF. Individual patients’ prog-
nosis could also be obtained, and the subgroup of patients with a higher risk of mortality could be identified. It can 
help clinicians identify and manage high- and low-risk patients and carry out more targeted intervention measures to 
realize precision medicine and the optimal allocation of health care resources.
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Perspectives
What is known?

The global prevalence of heart failure is estimated to 
exceed 37.7 million. The risk of mortality is higher in 
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patients with CHF comorbid with AF, but few risk pre-
diction tools are available for this subgroup.

What is new?
Using patients’ routine clinical variables, we designed 

and evaluated a risk stratification system based on the 
LightGBM model to effectively predict all-cause mortal-
ity in patients with CHF comorbid with AF. In this study, 
the LightGBM model performed better than the tradi-
tional risk prediction model.

Introduction
Chronic heart failure (CHF) refers to a syndrome of ven-
tricular filling or contraction disorders caused by dam-
age to the structure and/or function of the heart under 
the influence of various pathogenic factors, leading to a 
series of complex clinical symptoms. In developed coun-
tries, patients with heart failure constitute about 1% to 
2% of all adults, and this proportion increases to > 10% of 
adults aged > 70 years [1]. The global prevalence of heart 
failure is estimated to exceed 37.7 million. In the United 
States, the total medical cost of patients with heart failure 
was US$20.9 billion in 2012 and is expected to increase to 
US$53.1 billion by 2030 [2]. The high prevalence rate and 
poor prognosis of heart failure seriously affect patients’ 
physical and mental health and quality of life, and heart 
failure has become a global public health problem that 
threatens human health.

Atrial fibrillation (AF) is the most common arrhyth-
mia in heart failure. AF increases the risk of thrombo-
embolism (especially stroke) and may damage cardiac 
function, leading to deterioration of high-frequency 
symptoms. In the Framingham Heart Study, patients 
with heart failure comorbid with atrial fibrillation have a 
higher risk of mortality than those with only one disease 
[3]. The combination of AF and CHF is a major clinical 
burden because of the common pathophysiology, com-
mon risk factors, mutual causality, and poor prognosis of 
these concomitant diseases.

Accurate risk prediction can promote patient clas-
sification, assist clinicians in understanding individual 
patients’ disease risk, and preserve medical resources 
for patients with potential life-threatening needs in 
emergency care, thus delaying disease progression and 
improving the prognosis. However, the existing risk pre-
diction models of heart failure have some shortcomings. 
First, traditional risk prediction models are based on the 
assumption that a linear relationship exists between vari-
ables and outcomes, which often limits their ability to 
model complex relationships. Second, the performance 
of the risk scores is still limited. For example, in the long-
term heart failure registry of the European Society of 
Cardiology, the Meta-Analysis Global Group in Chronic 

Heart Failure risk score overestimated mortality while 
the Seattle Heart Failure Model underestimated mortal-
ity [4]; this limits their clinical application. Therefore, 
more accurate prognostic tools are needed.

The machine learning model can overcome the con-
ditional limitations of the traditional survival predic-
tion model, deal with high-dimensional interactions and 
nonlinear relationships between variables, improve the 
prediction ability of the model, and show better perfor-
mance in identifying personalized outcome predictions 
[5]. It has been effectively used in heart disease research 
[6, 7], including the prediction of hospital readmis-
sion and mortality, etc. However, few prognostic studies 
have focused on the outcome of CHF comorbid with AF. 
Therefore, the goal of the present study was to identify 
the risk factors for all-cause mortality in patients with 
CHF comorbid with AF and to design and evaluate a 
LightGBM-based risk stratification model to predict 1- to 
3-year all-cause mortality based on the patient’s baseline 
parameters at admission. It can help clinicians identify 
and manage high- and low-risk patients and carry out 
more targeted intervention measures to realize preci-
sion medicine and the optimal allocation of health care 
resources.

Methods
Data sources and study population
This is a prospective cohort study that involved patients 
who were hospitalized in the First Hospital of Shanxi 
Medical University and Shanxi Cardiovascular Hospi-
tal from January 2014 to April 2019 and diagnosed with 
CHF comorbid with AF. Patients were selected in strict 
accordance with the inclusion and exclusion criteria, and 
all patients provided written informed consent.

The inclusion criteria were an age of ≥ 18  years; typi-
cal symptoms (e.g., exertional or paroxysmal dyspnea, 
fatigue, or loss of appetite) or signs (e.g., edema of both 
lower extremities, rales in the lungs, or positive signs of 
hepatic jugular venous reflux) of CHF; New York Heart 
Association (NYHA) class of II to IV; current treatment 
with heart failure drugs or other treatment measures; and 
a history of AF or diagnosis of AF through clinical exami-
nation, standard electrocardiogram, and single-lead port-
able electrocardiogram monitoring.

The exclusion criteria were acute cardiovascular events 
in the past 2 months, concurrent mental illness, inability 
to understand or complete the questionnaire because of 
speech or intellectual impairment, and refusal to partici-
pate in the study.

Data collection and predictor variables
According to the content of case records and heart fail-
ure guidelines [8], our group developed the chronic 
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heart failure case report form (CHF-CRF) to collect the 
patients information. CHF-CRF included demographics 
(age, sex, family history, and other parameters), vital signs 
(blood pressure, body temperature, heart rate, and res-
piratory rate), causes of CHF [e.g. coronary heart disease 
(CHD), old myocardial infarction (OMI)], CHF comor-
bidities [chronic obstructive pulmonary disease (COPD), 
diabetes, atrial fibrillation, renal insufficiency and other 
conditions], symptoms and signs, laboratory test results 
included blood cell analysis, blood glucose, blood lipid, 
liver and kidney function, potassium, sodium, chlorine, 
B-type natriuretic peptide (BNP) and N-terminal pro 
B-type natriuretic peptide (NT-proBNP) et  al., echo-
cardiography was recorded along with standard and tis-
sue Doppler imaging. LVEF was quantified by Simpson’s 
method. QRS duration was measured manually from 
limb leads using standard 12 lead ECG (25 mm/s). Drug 
therapy, percutaneous coronary intervention (PCI) and 
coronary artery bypass grafting (CABG) and other treat-
ment information were also recorded on CHF-CRF.

Outcomes
The patients were followed up at 1, 3, 6 and 12 months 
after discharge and annually thereafter. Patients with less 
than 3-year follow-up time were excluded, and the out-
come was all-cause mortality within 1, 2, and 3  years, 
including death from heart failure, cardiovascular causes, 
and other causes. The death information was composed 
of two parts: one was that the follow-up personnel con-
duct regular follow-up of the patient, and the other was 
to inquire in the information system of the death cause 
registration report of Shanxi Province based on the 
patient’s ID number.

Data pre‑processing
To make full use of clinical information, we filled in the 
missing data before variable screening, missing continu-
ous variables were imputed with median, and missing 
categorical variables were imputed with mode. At the 
same time, BNP, coronary CT and coronary angiography 
results were excluded in order to exclude the influence of 
variables with high missing ratio on the prediction per-
formance of the model. Estimated glomerular filtration 
rate was calculated by CKD-EPI using cystatin C [9].

Machine Learning Modeling Approach: LightGBM
To solve the time-consuming shortcomings of the tradi-
tional boosting algorithm under big data, Ke et  al. [10] 
proposed two novel techniques: Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB). GOSS retains all data with large gradients and ran-
domly samples data with small gradients, thereby reduc-
ing the amount of calculation and optimizing speed and 

memory. EFB can bundle mutually exclusive features 
into a single feature to reduce the dimension of features. 
LightGBM is a new gradient boosting decision tree algo-
rithm with GOSS and EFB.

Model development and performance evaluation
The data set was randomly divided into a training set 
and test set at a 3:1 ratio. This process was repeated 100 
times to ensure the stability of the model. In the train-
ing set, the SMOTE algorithm was used for data equali-
zation sampling, and fivefold cross validation was used 
for LightGBM model training; a prediction performance 
evaluation was performed on the test set and compared 
using the logistic regression method.

The area under the receiver operating characteris-
tic curve (AUC), accuracy, sensitivity, specificity, and 
f-measure were calculated to quantify the model’s dis-
criminative ability in each year. Calibration of the model 
was evaluated by the Brier score, which is defined as the 
mean square difference between the observed outcomes 
and the predictions. The Hosmer–Lemeshow goodness-
of-fit test of the model was visualized by calibration curve 
plots. The net reclassification index was used to quantify 
the degree of improvement in the prediction ability of the 
LightGBM algorithm compared with the logistic regres-
sion model.

Risk groups
One of the data splits was randomly selected for train-
ing and testing of the model, and the receiver operating 
characteristic curves were plotted. Using the maximal 
Youden’s index as the best cut-off value, the 1-, 2-, and 
3-year probabilities of death predicted by the LightGBM 
model were divided into high-risk and low-risk groups.

Statistical analysis
Continuous variables are presented as median (inter-
quartile range), and categorical variables are presented 
as number (percentage). To determine the factors related 
to all-cause mortality, the recursive feature elimination 
method was used for feature selection. The selected con-
tinuous variables and categorical variables were analyzed 
with the Mann–Whitney U test and chi-square test, 
respectively.

DeLong test was used to compare the AUC between 
models, and P < 0.05 was considered statistically signifi-
cant. The survival rate was presented on a Kaplan–Meier 
curve and compared by a log-rank test, and the hazard 
ratio was calculated by a Cox proportional hazard model.

Sensitivity analysis
Sensitivity analyses were performed using different sub-
groups, including heart failure type [heart failure with a 
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reduced left ventricular ejection fraction (LVEF), mid-
range LVEF, or preserved LVEF], sex, and age (≤ 74 
or ≥ 75  years). All statistical analyses were performed 
using Python 3.7.

Results
Baseline characteristics of patients
The baseline characteristics of patients with CHF comor-
bid with AF are shown in Table 1. In total, 1796 patients 
were included in this study. The median age of all patients 
in the entire cohort was 73 (64–80) years, and 63.42% 
were male. The most common comorbidity was hyper-
tension (62.97%), followed by diabetes (28.56%). The 1-, 
2-, and 3-year cumulative mortality rates of patients with 
CHF comorbid with AF were 7.74%, 10.63%, and 12.43%, 
respectively.

Predictor variable
The recursive feature elimination method based on the 
random forest model was used for feature screening. As 
shown in Table 2, the main predictors of all-cause mor-
tality were older age; a higher white blood cell count 
(WBC), red blood cell distribution width (RDW), aspar-
tate aminotransferase (AST) level, total bilirubin (TBIL) 
level, alkaline phosphatase (ALP), blood urea nitrogen 
(BUN) level, uric acid level, N-terminal pro-brain natriu-
retic peptide (NT-proBNP) level, and NYHA class; a 
lower body mass index (BMI), diastolic blood pressure 
(DBP), hemoglobin level, albumin level, estimated glo-
merular filtration rate was calculated using cysteine C 
level (CyscGFR) and left ventricular ejection fraction 
(LVEF); a wider QRS complex; the combination of COPD 
and diabetes; and not taking beta-blockers, and angio-
tensin-converting enzyme inhibitor (ACEI)/angiotensin 
receptor blocker (ARB).

Model prediction performance
Compared with logistic regression, the LightGBM 
model exhibited higher discrimination and lower 
Brier score in the 1-, 2-, and 3-year follow-up of the 
test cohort (Table  3, Fig.  1). The prediction accuracy of 
all-cause mortality of the LightGBM model was 0.853 
(95%CI, 0.850–0.857), 0.855 (95%CI, 0.852–0.859), and 
0.864(95%CI, 0.861–0.868), and the AUC was 0.718 
(95%CI, 0.710–0.727), 0.744 (95%CI, 0.737–0.751), and 
0.757 (95%CI, 0.751–0.763), respectively, and Brier 
score was 0.146 (95%CI, 0.143–0.150), 0.145 (95%CI, 
0.141–0.148), and 0.135 (95%CI, 0.132–0.138), respec-
tively. The prediction accuracy of all-cause mortality of 
the Logistic regression model was 0.709(95%CI, 0.705–
0.713), 0.715(95%CI, 0.710–0.720), and 0.732 (95%CI, 
0.727–0.737), and the AUC was 0.687 (95%CI, 0.680–
0.694), 0.667 (95%CI, 0.660–0.673) and 0.683 (95%CI, 

0.677- 0.689), respectively, and Brier score was 0.291 
(95%CI, 0.287–0.295), 0.285 (95%CI, 0.280–0.290), and 
0.268 (95%CI, 0.263–0.273), respectively.

The calibration curve plots indicated that the Light-
GBM model was generally well calibrated, with intercepts 

Table 1  Patients’ baseline characteristics (n = 1796)

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic blood 
pressure, LVEF: Left ventricular ejection fraction, LVD: left atrial dimension, 
NYHA: New York Heart Association, AF: atrial fibrillation, CHD: coronary heart 
disease, OMI: old myocardial infarction, COPD: chronic obstructive pulmonary 
disease, ACEI: angiotensin-converting enzyme inhibitor, ARB: angiotensin 
receptor blocker, MRA: mineralocorticoid receptor antagonist, PCI: percutaneous 
coronary intervention, CABG: coronary artery bypass grafting. CRT: Cardiac 
resynchronization therapy

Variables Description

Age, years 73 (64, 80)

Male, n (%) 1139 (63.42)

BMI, kg/m2 24.22 (22.04, 26.87)

SBP, mmHg 130 (116, 142)

DBP, mmHg 80 (70, 86)

Heart rate, b.p.m 75(64, 90)

LVEF, % 50 (40, 59)

LVD, mm 43 (39, 46)

NYHA class, n (%)

II 574 (31.96)

III or IV 1222 (68.04)

AF type

Paroxysmal 274(15.26)

Persistent 39(2.17)

Permanent 1483(82.57)

Causes of HF

CHD 1609(89.59)

OMI 854(47.55)

Comorbidities, n (%)

Hypertension 1131 (62.97)

Type II diabetes 513(28.56)

COPD 432 (24.05)

Stroke 486(27.06)

Therapy, n (%)

Beta-blockers 1213(67.54)

ACEI/ARB 854 (47.55)

MRA 1321(73.55)

Loop diuretic 1252 (69.71)

Digitalis 486 (27.06)

Calcium antagonist 313 (17.43)

Anticoagulant 1646 (91.65)

PCI 365 (20.32)

CABG 110 (6.12)

Pacemaker 62 (3.45)

Defibrillator 7 (0.39)

CRT​ 6 (0.33)
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closer to 0 and slopes closer to 1, while logistic regression 
showed poor calibration (Fig. 2).

The classification improvement of each year was 
calculated and compared with the logistic regression 
model. The net reclassification index of the Light-
GBM model in the 1-, 2-, and 3-year follow-up was 
0.062 (95%CI, 0.044–0.079, P < 0.05), 0.154 (95%CI, 
0.138–0.172, P < 0.05), and 0.148 (95%CI, 0.133–0.164, 
P < 0.05), respectively, suggesting that the mortality 

prediction ability of the LightGBM model was better 
than that of logistic regression.

Feature importance
The feature importance of all-cause mortality is shown 
in Fig.  3. The importance of each feature was quanti-
fied by the number of times a feature was used to split in 
the model, and a higher value of feature importance was 
associated with a greater contribution to the risk predic-
tion of the model. The importance of the first 11 features 
was ranked as follows: NT-proBNP level, COPD, albumin 
level, TBIL level, CyscGFR level, DBP, NYHA class, beta-
blockers, AST level, age, and LVEF.

LightGBM model‑based risk stratification
The probabilities of death predicted by the LightGBM 
model were divided into high-risk and low-risk groups, 
using the maximal Youden’s index as the best optimal 
cut-off value (0.492, 0.498, 0.497, respectively). At each 
cut-off, the sensitivity and specificity of model prediction 
were 0.738 and 0.843, 0.776 and 0.815, 0.815 and 0.795, 
respectively.

As shown by the Kaplan–Meier curve, log-rank test, 
and Cox proportional hazards model, there were sig-
nificant differences in the distribution of death events 
between the two groups in all follow-up years (Fig.  4, 
Table  4). Patients in the high-risk group had a signifi-
cantly higher hazard of death than those in the low-
risk group, the hazard ratio was 12.68, 13.13, 14.82, 
respectively.

Results of the sensitivity analysis
The models in each subgroup performed well, and the 
predictive performance between the sexes was simi-
lar. For 1-year mortality, however, the discrimination 
was lower for patients aged ≥ 75  years. For example, 
the model had a discrimination of 0.693 for patients 
aged ≥ 75  years and 0.761 for patients aged ≤ 74  years 
(Table 5).

Discussion
In this study, we designed and evaluated a risk strati-
fication system based on the LightGBM model to pre-
dict 1- to 3-year all-cause mortality in patients with 
CHF comorbid with AF. The risk stratification system 
showed moderate predictive performance with an aver-
age AUC of 0.740. CHF and AF are causes and effects of 
each other. Damage to the cardiac structure or function, 
abnormal activation of neurohumoral mechanisms, and 
remodeling of ion channels in patients with CHF can lead 
to myocardial remodeling, enlarge the atrium, change the 
electrical activity characteristics of atrial myocytes, and 

Table 2  Predictor variables of all-cause mortality in the model

Data are presented as median (interquartile range) or n (%)

BMI: body mass index, DBP: diastolic blood pressure, WBC: white blood cell, 
RDW: red blood cell distribution width, ALT: alanine aminotransferase, AST: 
aspartate aminotransferase, TBIL: total bilirubin, BUN: blood urea nitrogen, 
ALP: alkaline phosphatase, CyscGFR: estimated glomerular filtration rate was 
calculated by cystatin C, NT-proBNP: N-terminal pro-brain natriuretic peptide, 
LVEF: left ventricular ejection fraction, NYHA: New York Hearth Association, 
COPD: chronic obstructive pulmonary disease, ACEI: angiotensin-converting 
enzyme inhibitor, ARB: angiotensin receptor blocker

Variables Survive (n = 1573) Death (n = 223) P

Age, years 72 (63, 79) 77 (71, 82)  < 0.001

BMI, kg/m2 24.34(22.23,27.00) 23.52(20.83,25.95)  < 0.001

DBP, mmHg 80 (70,86) 76 (70, 84) 0.01

WBC,109/L 6.60 (5.30, 7.80) 7.00 (5.80, 8.60)  < 0.001

Hemoglobin, g/L 135 (125, 150) 129 (118, 142)  < 0.001

RDW, % 14.1 (13.54, 14.56) 14.5 (13.93, 15.26)  < 0.001

AST, U/L 23.00 (21.00, 24.00) 25.00 (21.00, 39.00)  < 0.001

Albumin, U/L 42.00 (39.80, 45.40) 40.00 (37.00, 43.00)  < 0.001

TBIL, umol/L 16.50 (12.70, 20.20) 20.20 (14.60, 22.80)  < 0.001

ALP, U/L 76 (64, 88) 76 (64, 97) 0.029

BUN, mmol/L 6.50 (5.19, 8.20) 7.81 (5.80,10.20)  < 0.001

CyscGFR, ml/
min/1.73m2

57.70(51.25,69.77) 46.40(38.69,61.03)  < 0.001

Uric acid, umol/L 399.0 (327.0, 470.0) 457.0 (350.0, 523.0)  < 0.001

NT-proBNP, ng/L 2201(983, 3293) 4563 (2201,7532)  < 0.001

QRS, ms 98 (88, 116) 106 (90, 130)  < 0.001

LVEF, % 50 (40, 59) 45 (38, 56)  < 0.001

NYHA class, n (%)

II 560 (97.56) 14 (2.44)  < 0.001

III or IV 1013(82.90) 209 (17.10)

COPD n (%)

No 1242 (91.06) 122(8.94)  < 0.001

Yes 331 (76.62) 101 (23.38)

Diabetes n (%)

No 1148 (89.48) 135 (10.52)  < 0.001

Yes 425 (82.85) 88 (17.15)

ACEI/ARB, n (%)

Yes 763 (89.34) 91(10.66) 0.031

No 810 (85.99) 132 (14.01)

Beta-blockers, n (%)

Yes 1112 (91.67) 101 (8.33)  < 0.001

No 461 (79.07) 122 (20.93)
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Table 3  Comparison of prediction performance of different classification models

Data are presented as mean (95% confidence interval), CI: confidence interval, AUC: area under the curve
* DeLong test, P < 0.05, the AUC of 1-, 2-, and 3-year all-cause mortality were different between LightGBM and logistic regression model

Logistic regression LightGBM

1-year 2-year 3-year 1-year 2-year 3-year

AUC​ 0.687
(0.680,0.694)

0.667
(0.660, 0.673)

0.683
(0.677, 0.689)

0.718*
(0.710, 0.727)

0.744*
(0.737, 0.751)

0.757*
(0.751, 0.763)

Accuracy 0.709
(0.705, 0.713)

0.715
(0.710, 0.720)

0.732
(0.727, 0.737)

0.853
(0.850, 0.857)

0.855
(0.852, 0.859)

0.864
(0.861, 0.868)

Sensitivity 0.662
(0.646, 0.677)

0.606
(0.593, 0.619)

0.618
(0.605, 0.631)

0.559
(0.542, 0.576)

0.603
(0.589, 0.617)

0.615
(0.603, 0.626)

Specificity 0.713
(0.708, 0.717)

0.727
(0.722, 0.734)

0.748
(0.742, 0.754)

0.878
(0..875, 0.881)

0.885
(0.882, 0.888)

0.900
(0.897, 0.903)

f-measure 0.257
(0.250, 0.264)

0.308
(0.300, 0.315)

0.363
(0.355, 0.371)

0.367
(0.356, 0.378)

0.465
(0.455,0.475)

0.528
(0.519, 0.537)

Brier score 0.291
(0.287, 0.295)

0.285
(0.280, 0.290)

0.268
(0.263,0.273)

0.146
(0.143, 0.150)

0.145
(0.141, 0.148)

0.135
(0.132, 0.138)

Fig. 1  Receiver operating characteristic curves of different models
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promote the occurrence and persistence of AF. Similarly, 
regular atrial contraction loss and irregular electrocar-
diographic conduction in patients with AF can lead to 

the impairment of left ventricular diastolic and systolic 
function and promote the occurrence and development 
of heart failure. Previous studies have shown that the 

Fig. 2  Calibration plots for 1-, 2- and 3-year all-cause mortality outcome (on the left is the logistic regression model, and on the right is the 
LightGBM model. The horizontal axis of the calibration plot is the predicted probability, the vertical axis is the true probability, and the 45-degree 
straight line represents the perfect prediction line.)
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existence of AF is related to the poor prognosis of CHF 
[11]. However, identifying the risk factors of adverse 
prognosis of CHF comorbid with AF and taking effective 
control and treatment measures will help to reduce the 
incidence of adverse events such as death.

Consideration of the relationship between multi-
ple clinical variables of a single patient and mortality 
is a great challenge for clinicians, and it is often easy to 
ignore the potential relationship between variables. ML 
methods can handle complex interactions and nonlinear 
relationships between predictors, allowing the selection 
of unknown variables and the best predictive subset of 
the model through continuous iteration. As an emerg-
ing algorithm in machine learning, the LightGBM algo-
rithm overcomes the limitations of traditional boosting 
algorithms. LightGBM algorithm has the following 
advantages: first, it has faster training speed, higher effi-
ciency and better accuracy; Second, it has lower memory 
consumption and can process large-scale data; Third, it 
supports parallel, distributed, and GPU learning. Experi-
ments show that LightGBM algorithm can speed up the 

training process of traditional gradient boosting deci-
sion tree (GBDT) by more than 20 times, while achiev-
ing almost the same accuracy, and LightGBM can be 
significantly better than the extreme gradient boosting 
(XGBoost) algorithm and the stochastic gradient boost-
ing (SGB) algorithm in computing speed and memory 
consumption [10]. Therefore, we chose LightGBM for 
this research.

We screened the most important predictors of all-
cause mortality in the cohort of this study. According to 
the feature importance ranking, older age; a higher NT-
proBNP level, NYHA class, AST level, TBIL level; a lower 
DBP level, albumin level, cyscGFR and LVEF; combined 
with COPD; and not taking beta-blockers had a relatively 
large contribution to prediction of the risk of death in 
patients with CHF comorbid with AF.

Our study found that NT-proBNP is an important pre-
dictor of prognosis in patients with CHF comorbid with 
AF. The NT-proBNP level is positively correlated with the 
severity of heart failure, and is closely related to NYHA 
class, end-diastolic pressure, and degree of hemodynamic 
disturbances, and can be used as an effective means of 
prognostic evaluation [12, 13]. Abnormal liver enzymes 
often appear in patients with heart failure, with a preva-
lence of 30–60% [14]. Increased venous congestion and 
impaired hemodynamics are common causes of abnor-
mal liver enzymes in patients with heart failure. Abnor-
mal liver function may lead to increased fluid overload 
due to hypoalbuminemia and low-osmolality state, which 
may lead to deterioration of heart failure. This explains 
the liver function indicators as powerful predictors of 
prognosis in patients with CHF comorbid with AF in our 
study, and is consistent with other studies [15–17].

Renal dysfunction is a common complication of CHF, 
the pathophysiology of cardiorenal syndrome is closely 
related to decreased cardiac output and increased cen-
tral venous pressure. About 40% of hospitalized patients 
with heart failure showed elevated serum creatinine and 
decreased glomerular filtration rate (GFR) [18]. Cysta-
tin C is considered to be a more sensitive blood marker 
of renal function than creatinine and is less strongly 
affected by muscle mass, age, sex, or race. The CyscGFR 
is closer to the directly measured glomerular filtration 
rate and has better prognostic value [19]. Renal function 
parameters were found to be predictors of adverse events 
in patients with CHF comorbid with AF in the present 
study, consistent with previous reports [20–23].

Diabetes (28.12%) and COPD (24.05%) are common 
complications and predictors of poor prognosis in the 
present study. COPD and AF have common risk fac-
tors and therefore often coexist. COPD greatly limits 
the survival of patients. Previous study has found that 
patients with concurrent AF and COPD have higher 

Fig. 3  Feature importance of all-cause mortality
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cardiovascular mortality and all-cause mortality [24]. 
The prevalence of diabetes is 12–44% in heart failure 
patients, depending on the severity of heart failure and 
whether the left ventricular ejection fraction is reduced. 
Diabetes is a powerful independent predictor of death 
in patients with advanced heart failure [25]. Type II dia-
betes can cause inflammation of adipose tissue, and the 
resulting systemic inflammation can lead to the expan-
sion of epicardial adipose tissue and proinflammatory 
transformation. In one study, patients with multiple 
non-cardiovascular comorbidities had a higher risk of 

competitive death [26]. The white blood cell count is 
elevated in patients with AF and CHF, and the increase 

Fig. 4  Kaplan–Meier curves and log-rank test (P < 0.001)

Table 4  Hazard ratios of all-cause mortality in Cox proportional 
hazards model

Time bj sb Wald χ2 P HR (95%CI)

1-year 2.54 0.35 7.22  < 0.005 12.68 (6.36, 25.25)

2-year 2.57 0.34 7.46  < 0.005 13.13 (6.69, 25.76)

3-year 2.70 0.35 7.66  < 0.005 14.82 (7.43, 29.56)

Table 5  Subgroup-Specific ROC of the LightGBM Models

HFrEF: heart failure with reduced ejection fraction, HFmrEF: heart failure with 
midrange ejection fraction, HFpEF: heart failure with preserved ejection fraction

Subgroup 1 year 2 years 3 years

HFrEF 0.721 (0.703, 
0.739)

0.743 (0.731, 
0.756)

0.758 (0.746, 
0.769)

HFmrEF 0.760 (0.746, 
0.774)

0.765 (0.754, 
0.775)

0.764 (0.754, 
0.773)

HFpEF 0.711 (0.700, 
0.722)

0.722 (0.712, 
0.732)

0.730 (0.721, 
0.739)

Female 0.756 (0.744, 
0.769)

0.741 (0.729, 
0.752)

0.753 (0743, 0.763)

Male 0.749 (0.741, 
0.758)

0.751 (0.743, 
0.759)

0.763 (0.755, 
0.770)

Age ≤ 74 years 0.761 (0.751, 
0.772)

0.757 (0.747, 
0.767)

0.762 (0.753,0.770)

Age ≥ 75 years 0.693 (0.684, 
0.701)

0.708 (0.700, 
0.716)

0.728 (0.720, 
0.736)
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of inflammatory markers in patients with cardiovascular 
disease (especially heart failure) can be considered a fac-
tor for a poor prognosis [27]. There is a lot of evidence 
that systemic inflammation is present in COPD patients 
[28]. Combined with the above, it may explain to some 
extent the cause of high mortality in patients with COPD 
or diabetes. The RDW is the coefficient of variation of 
the red blood cell volume and reflects the heterogeneity 
of the red blood cell volume. It is a proven predictor of 
adverse outcomes of heart failure [29].

In the present study, patients with a higher BMI had a 
lower prognostic risk. This seems to reflect the obesity 
paradox but laterally indicates that the BMI is not an 
independent predictor of CHF comorbid with AF. Lower 
DBP is associated with an increased risk of adverse car-
diovascular events in patients with heart failure with a 
preserved LVEF [30, 31], and our study revealed a simi-
lar relationship in patients with CHF comorbid with AF. 
Oral beta-blocker therapy is helpful to control the heart 
rate. In Chinese elderly patients with heart failure, admis-
sion without beta-blocker therapy is a specific independ-
ent risk factor for readmission or death within 1 year [32]. 
Previous studies have also shown a moderate association 
between the use of ACEI/ARB and lower mortality [33].

Based on the above predictive variables, we conducted 
subgroup analysis, but found that LightGBM model 
had a low discrimination for patients aged ≥ 75  years. 
We speculate that the possible reason is that patients 
aged ≥ 75 years have more complicated conditions, more 
complications, and are more likely to have some complex 
clinical emergencies. The prediction model constructed 
by conventional inspection indexes can not achieve good 
prediction results, and we have found the same results in 
another machine learning study[34].

Compared with previous reports, the innovations of 
this study are the use of patients with CHF comorbid 
with AF as the target population; the use of the Light-
GBM as a new machine learning prediction model; inclu-
sion of a variety of non-cardiac clinical variables such 
as COPD, diabetes, and liver and kidney function in the 
model; and the fact that the patients’ clinical variables 
were easy to obtain. Compared with the traditional risk 
prediction model, the LightGBM model performs bet-
ter in predicting all-cause mortality in patients with 
CHF comorbid with AF. It can risk-stratify individuals 
and identify patients with a high risk of death during the 
whole follow-up period. Patients in the high-risk group 
had a significantly higher hazard of death than those in 
the low-risk group, the hazard ratio was 12.68, 13.13, 
14.82 in our study, respectively. Clinicians can carry out 
active intervention programs for high-risk patients and 
controllable variables to improve patients’ quality of life 

and reduce mortality. In addition, we performed 100 ran-
dom splits on the data set to ensure that the prediction 
results of the model were more robust.

Limitations
Our study has two main limitations. First, we did not 
perform external verification; the external accuracy of 
the model may need to be confirmed by further research. 
Second, we did not include genetic biomarkers (such as 
microRNA); thus, the clinical data and biomarkers of 
patients with CHF should be combined in future stud-
ies to establish a new predictive model with compre-
hensive patient information to improve prognostic risk 
assessment.

Conclusions
Using patients’ routine clinical variables, we designed 
and evaluated a risk stratification system based on the 
LightGBM model to effectively predict all-cause mortal-
ity in patients with CHF comorbid with AF and identify 
subgroups of patients with a high risk of death. It can 
help clinicians identify and manage high- and low-risk 
patients and carry out more targeted intervention meas-
ures to realize precision medicine and the optimal alloca-
tion of health care resources.
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