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Abstract 

Background:  Plant height is an important architecture trait which is a fundamental yield-determining trait in crops. 
Variety with dwarf or semi-dwarf phenotype is a major objective in the breeding because dwarfing architecture can 
help to increase harvest index, increase planting density, enhance lodging resistance, and thus be suitable for mecha-
nization harvest. Although some germplasm or genes associated with dwarfing plant type have been carried out. The 
molecular mechanisms underlying dwarfism in oilseed rape (Brassica napus L.) are poorly understood, restricting the 
progress of breeding dwarf varieties in this species. Here, we report a new dwarf mutant Bndwarf2 from our B. napus 
germplasm. We studied its inheritance and mapped the dwarf locus BnDWARF2.

Results:  The inheritance analysis showed that the dwarfism phenotype was controlled by one semi-dominant gene, 
which was mapped in an interval of 787.88 kb on the C04 chromosome of B. napus by Illumina Brassica 60 K Bead 
Chip Array. To fine-map BnDWARF2, 318 simple sequence repeat (SSR) primers were designed to uniformly cover the 
mapping interval. Among them, 15 polymorphic primers that narrowed down the BnDWARF2 locus to 34.62 kb were 
detected using a F2:3 family population with 889 individuals. Protein sequence analysis showed that only BnaC04.BIL1 
(BnaC04g41660D) had two amino acid residues substitutions (Thr187Ser and Gln399His) between ZS11 and Bnd-
warf2, which encoding a GLYCOGEN SYNTHASE KINASE 3 (GSK3-like). The quantitative real-time PCR (qRT-PCR) analysis 
showed that the BnaC04.BIL1 gene expressed in all tissues of oilseed rape. Subcellular localization experiment showed 
that BnaC04.BIL1 was localized in the nucleus in tobacco leaf cells. Genetic transformation experiments confirmed 
that the BnaC04.BIL1 is responsible for the plant dwarf phenotype in the Bndwarf2 mutants. Overexpression of BnaC04.
BIL1 reduced plant height, but also resulted in compact plant architecture.

Conclusions:  A dominant dwarfing gene, BnaC04.BIL1, encodes an GSK3-like that negatively regulates plant height, 
was mapped and isolated. Our identification of a distinct gene locus may help to improve lodging resistance in oil-
seed rape.
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Background
Oilseed rape (Brassica napus L.) is one of the most 
important oil crops worldwide, and provides high-
quality vegetable oil for human diets, protein-rich feed 
for animals, and raw materials for industrial processes. 
Variety with dwarf or semi-dwarf phenotype is a major 
objective in the breeding because dwarfing architec-
ture can help to increase harvest index, increase plant-
ing density, enhance lodging resistance, and thus be 
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suitable for mechanization harvest [1]. To find availa-
ble germplasm or genes associated with dwarfing plant 
type for B. napus breeding, some efforts have been 
carried out. For example, the dwarfness-associated 
genes in B. napus, including DS-1 [2], ndf-1 [3], DS-3 
[4], DS-4 [5], G7 [6], BnaDwf.C9 [7], have been posi-
tioned or identified. Additionally, the Bndwf1 was fine-
mapped on the A9 chromosome to a 152-kb interval 
[8]. However, the molecular mechanism(s) underlying 
the development of the dwarf phenotype in B. napus 
remain elusive. The lack of innovation on B. napus ideal 
type breeding is mainly due to absence of successfully 
applied cultivar in vast oilseed rape production region.

Dwarfism is usually related to plant hormone biosyn-
thesis and signal transduction, such as auxin [9, 10], 
gibberellin (GA) [1, 11], and brassinosteroid (BR) [12, 
13]. Auxin affects plant height by regulating cell divi-
sion, elongation, and differentiation [14]. GA mainly 
affects the elongation of stem and internode to regulate 
plant height [1]. Relationship between plant dwarf stat-
ure and genes in auxin and GA biosynthesis and signal 
transduction pathways has been well-documented [4, 
15–19]. Defects in BR biosynthesis and signaling path-
ways can lead to dwarfing phenotypes. During BR bio-
synthesis, many synthases belong to the cytochrome 
P450 monooxygenase (CYP) gene. Defects of these syn-
thases can lead to dwarfing phenotypes. For instance, 
CPD (constitutive photomorphogenesis and dwarfism) 
encodes a steroid 23α-hydroxylase enzyme, a mem-
ber of CYP90A family, which acts in the conversion 
of cathasterone to teasterone in the BR biosynthetic 
pathway [20]. The loss-of-function mutations of AtCPD 
gene leads to the dwarfing phenotype, when over-
expression of CPD gene can restore the plant height 
and plant type [20]. BRD1 (BR-deficient dwarf 1) gene 
encodes the final catalytic enzyme (BR-C6 oxidase) in 
BR biosynthesis, mutation of which cause dwarfing 
phenotype. Rice brd1 was the first report to describe 
the phenotypic characterization of a BR-deficient 
mutant in monocot plants, and showed the pheno-
type of leaf sheath small, leaves wrinkled, internodes 
short, fewer tillers. The exogenous application of BL 
can restore the plant type of the brd1 mutants [21]. The 
dwf4 (CYP90B1) in Arabidopsis, dwarf2 (CYP90D) and 
dwarf11 (CYP724B1) in rice encode P450 monooxy-
genase to involve in BR biosynthesis, loss-of-function 
mutations of which reduce the endogenous BR lev-
els and consequently confer reduced plant height [13, 
22, 23]. The Arabidopsis DET2 (de-etiolated 2) is a key 
gene in BR biosynthesis and allow an assignment for 
this steroid’s role in plant development [24, 25]. The 
Arabidopsis det2 mutant [24] and the maize na1 (nana 
plant1) mutant [26] were the loss-of-function of DET2 

gene lead to the dwarfing phenotype, dark green leaves, 
and have reduced fertility.

BR signal transduction is a signaling cascade from 
the BR receptor to the expression of BR target genes, 
which plays an important role in various developmen-
tal and growth processes in plants [27]. Researches 
during the past several decades have accumulated 
extensive knowledge of BR signaling pathways in 
model plants [28–30], such as Arabidopsis and rice. 
It is well documented that BRs are perceived extra-
cellularly by the BR-INSENSITIVE1/BRI1-ASSO-
CIATED KINASE1 (BRI1-BAK1) [31–33] complex. 
Afterwards, the binding between BRs and BRI1-BAK1 
complex could initiate signal transduction to BRASSI-
NAZOLERESISTANT1/BRI1-EMS-SUPPRESSOR1 
(BZR1/BES1) [34, 35] through CONSTITUTIVE 
DIFFERENTIAL GROWTH1 (CDG1) [36] and BR 
SIGNALING KINASE1 (BSK1) [37], then BRI-SUP-
PRESSOR1 (BSU1) [38], BRASSINOSTEROID INSEN-
SITIVE2 (BIN2) [39, 40], as well somehow PROTEIN 
PHOSPHATASE 2A (PP2A) [41]. The transcriptional 
factor BES1/BZR1 affects plant growth and develop-
ment in various aspects through the regulating expres-
sion of thousands of BR responsive genes. Among 
these genes, glycogen synthase kinase-3 (GSK3)-like 
kinase BIN2 is a key suppressor that regulates plant 
growth and development by determining the phos-
phorylation status of BES1 and BZR1 [33, 34, 39, 40]. 
GSK3-like kinases are a highly conserved Ser/Thr 
kinases that are implicated in a wide range of cellu-
lar and developmental processes [42]. In Arabidopsis, 
the GSK3/SHAGGY-like family has 10 gene members 
that can be classified into four subgroups [43]. In this 
family, the Arabidopsis GSK3-like kinase (AT4G18710, 
BIN2/UCU1/DWF12/AtSK21) which belongs to the 
group II, has activity to negatively regulate the BR sig-
nal transduction by phosphorylating BZR1/BES1 [39, 
40, 44]. The gain-of-function bin2 mutant was dis-
covered to be insensitive to BRs in Arabidopsis and 
has the shaggy phenotypic characteristic of dwarf-
ing architecture. It also confers curved leaves, and an 
impaired cell elongation [45]. The coding sequence 
of the BIN2 gene, substitutes consecutive glutamate 
residues in the highly conserved TREE domain, which 
results in the negatively regulating growth by phos-
phorylating the BES1 and BZR1 proteins, that result 
in the degradation of BZR1 to reduce its activity [40]. 
Based on sequence similarity of BIN2 with its two 
closest group II Arabidopsis homologs, BIN2-Like1 
(BIL1) and BIN2-Like2 (BIL2), which belong to the 
AtSKs group [40]. It was further suggested that BIL1 
and BIL2 may also be involved in BR signaling. Over-
expression of BIL1 or BIL2 gene driven by their native 
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promoters in wild-type Arabidopsis plants exhibits the 
dwarf phenotype [46]. However, the evidence of BIL1 
and BIL2 genes involved in BR signal transduction is 
still insufficient, and the mechanism of plant dwarf 
phenotype caused by overexpression of BIL1 and BIL2 
genes remains to be elucidated. Therefore, it is urgent 
to further explore their participation and even related 
mechanism.

In this study, a pure dwarf mutant, Bndwarf2, was 
found in advanced selfing generation in a nearly pure 
line CB1501-1 in B. napus. To expedite this study, the 
dwarf gene BnaC04.BIL1 was isolated using map-based 
cloning. The BnaC04.BIL1 gene encoding a GSK3-like 
kinase, belongs to GSK II subfamily. Genetic trans-
formation experiments confirmed that the BnaC04.
BIL1 was responsible for the plant dwarf phenotype in 
the Bndwarf2 mutants. Our study clarifies the role of 
BnaC04.BIL1 in the regulation of plant height, which 
may help to improve lodging resistance in oilseed rape.

Results
Characterization of the Bndwarf2 Mutant
A pure dwarf mutant, Bndwarf2 was obtained in 
advanced selfing generation in a nearly pure line 
CB1501-1 in B. napus. The Bndwarf2 mutant showed 
obvious dwarf phenotype after 6 d dark germina-
tion compared to Zhongshuang 11 (ZS11, a conven-
tional B. napus cultivar), which was used as a parent 
to map-based clone the gene responsible for the dwarf-
ism (Fig.  1a). At seedling stage, the Bndwarf2 mutant 
plants had shorter hypocotyls and shorter petioles 
(Fig.  1b, c). The leaves of Bndwarf2 mutants showed 
darker green, thickened, and wrinkled leaves, and 
had significant higher Chl a, Chl b, and Chl contents 
than those of ZS11 (Table S1). At flowering stage, the 
Bndwarf2 mutant showed significant difference in 
plant height from ZS11 (Figure S1). While at matu-
rity stage, the Bndwarf2 mutant showed dwarf stat-
ure (33.62 ± 1.12  cm) with no apical dominance, 

Fig. 1  Phenotypic comparison among ZS11, F1, and Bndwarf2 mutant. a The root length and hypocotyl length of ZS11 (left), F1 (middle), and 
Bndwarf2 (right) in the dark for 6 d. b The performance of ZS11 (left), F1 (middle), and Bndwarf2 (right) at seedling stage. c The petioles comparison 
at seedling stage. d The plant height comparison at maturity stage. e The siliques comparison of at maturity stage. f The seeds comparison of ZS11 
(up) and Bndwarf2 mutant (down). Bars = 2 cm
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that was significantly lower than that for ZS11 
(193.54 ± 4.80  cm) (Fig.  1d). The siliques of Bndwarf2 
mutants were significantly shorter compared to that of 
ZS11 (Fig. 1e). In addition, the Bndwarf2 mutants had 
lower 1000-seeds weight and compact plant architec-
ture (Fig. 1f; Table S2). The F1 plants (105.30 ± 5.16 cm) 
generated by cross of ZS11 with Bndwarf2 were in-
between that of ZS11 and Bndwarf2.

Inheritance of the dwarf trait
To investigate the genetic regulation mechanism for 
Bndwarf2, the F1 (ZS11 × Bndwarf2) and RF1 (Bnd-
warf2 × ZS11) plants were obtained by crossing Bnd-
warf2 with ZS11, all had the dwarf trait, indicating that 
dwarf trait was controlled by dominant genes. The phe-
notypic segregation ratio of dwarf plants to tall plants 
in the F2 population was in a Mendelian model of 1:2:1 
(69 homozygous dwarf plants vs. 140 hybrid dwarf plants 
vs. 78 tall plants, χ2 < χ2

0.05) (Figure S2). Among 289 BC1 
individuals, 139 as dwarf types and 150 as tall types, also 
approximately fitted an expected Mendelian inheritance 
ratio of 1:1 (dwarf plants vs. tall plants). In subsequent 
segregating F2:3 populations, the genetic regulation was 
confirmed (Table  1). These results indicated that the 
dwarf trait was controlled by a semi-dominant nuclear 
gene, which was named as BnDWARF2 in the subsequent 
study.

Map‑based cloning
To map BnDWARF2, 94 plants (70 dwarf plants and 
24 tall plants) from the F2 population were used for 
single nucleotide polymorphism (SNP) marker geno-
typing. Although the chip (Illumina, Inc) has 52,157 
SNP markers, only 7457 polymorphic markers were 
used to construct the SNP genetic linkage map after 
removing the invalid or non-polymorphism markers. 
The BnDWARF2 locus was primarily mapped within 
the 787.88-kb on C04 chromosome between the SNP 
marker M33367 and M35244 (Fig. 2a). To fine map the 
BnDWARF2 locus, 318 primer pairs of simple sequence 
repeat (SSR) markers were designed to uniformly 
cover the preliminary mapping interval. A further 

889 individuals from the F2:3 populations, finally nar-
rowed down the BnDWARF2 locus to a 34.62-kb 
region between SSR markers S3 and S4 (Fig.  2b). No 
other markers to further narrow the mapping inter-
val were found for this mapping population and its 
parents. A total of 5 putative genes (BnaC04g41640D, 
BnaC04g41650D, BnaC04g41660D, BnaC04g41670D, 
and BnaC04g41680D) were localized in the 34.62-kb 
region according to the gene annotation of the B. napus 
reference genome (Fig. 2c; Table 2). Gene cloning was 
performed for the mapping interval, and the results 
showed that only BnaC04g41660D (BnaC04.BIL1) 
gene had 10 SNPs differences between ZS11 and Bnd-
warf2. The BnaC04.BIL1 had two amino acid residues 
substitutions at aa-187 (Thr-to-Ser mutation, named 
Thr187Ser) and aa-399 (Gln-to-His mutation, named 
Gln399His) (Fig. 2e).

BnaC04.BIL1 contains a 1233-bp open reading frame 
(ORF) with 11 introns in B. napus (Fig.  2d; Figure S3). 
BnaC04.BIL1 is a homologous gene of the Arabidopsis 
AT2G30980 gene, which encodes a GSK3-like [47]. The 
conservative domain analysis showed that the amino 
acid sequence 65–357 was the conserved domain of 
STKc_GSK3, and Thr187Ser is in the conserved domain 
(Fig.  2e). The amino acid multiple sequence analysis 
showed that BnaC04.BIL1 had a series of amino acid resi-
dues conserved in GSK3 kinase, such as GSK3 domain 
signature SYICSR and plant-specific TREE motif (Figure 
S3a). It was perfectly aligned with the genes for GSK3/
Shaggy kinases with regarding to a series of amino acid 
residues such as the GSK3 signature SYICSR within 
domain VIII that was absent from MAP kinase sequences 
[48]. The E-K mutation in the highly conserved TREE 
motif is thought to preventing the BR-mediated BIN2 
inhibition [49], thus resulting in the increased BIN2 
stability [50, 51]. The phylogenetic tree clustering and 
construction were analyzed by MEGA 7.0 selection 
Neighbor-joining method. The results showed that 
BnaC04.BIL1 and Arabidopsis BIN2 were homologous, 
belonging to GSK3 II subfamily (Figure S3b). These sug-
gested that the BnaC04.BIL1 gene may be responsible for 
the dwarf trait of Bndwarf2.

Table 1  Inheritance of the plants height trait in populations derived from the two parents in B. napus 

Population Homozygous dwarf 
plants

Hybrid dwarf plants Tall plants Expectation χ2 P value

F1 0 30 0

RF1 0 30 0

F2 69 140 78 1:2:1 0.74 0.69

BC1 0 139 150 1:1 0.35 0.56

F2:3 206 451 232 1:2:1 1.71 0.43
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Fig. 2  Map-based cloning of BnDWARF2. a The BnDWARF2 locus was mapped primarily on C04 chromosome between the SNP markers M33367 
and M35244. b The BnDWARF2 locus was fine-mapped in the 34.62 kb region between SSR markers S3 and S4. The numerals indicate the number 
of recombinants. c The genes in the mapping interval. d The gene structure and the mutation sites in BnaC04.BIL1. e The protein structure and the 
mutation sites of the BnaC04.BIL1 protein, and the STKc_GSK3 superfamily domain was predicted. Solid lines show the position of the amino acid 
transition. f The chromatogram of BnaC04.BIL1 at 1565–1585 bp in ZS11 and Bndwarf2 mutant, respectively. g The chromatogram of BnaC04.BIL1 at 
2900–2920 bp in ZS11 and Bndwarf2 mutant, respectively. The black arrows denote the A1575T and G2910T substitutions, respectively

Table 2  Information of 5 putative genes in the mapping interval

Gene in B. napus Homologue in A. thaliana Gene function

BnaC04g41640D AT2G29770.1 Galactose oxidase/kelch repeat superfamily protein

BnaC04g41650D unknown protein

BnaC04g41660D AT2G30980 Encodes a GSK3-like protein kinase

BnaC04g41670D AT2G30990.1 Arginine N-methyltransferase, putative (DUF688)

BnaC04g41680D unknown protein
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Expression patterns of BnaC04.BIL1 and the subcellular 
localization
To explore the possible function of BnaC04.BIL1 gene 
from Bndwarf2 mutant in different tissues, the transcrip-
tion levels of BnaC04.BIL1 in leaves, roots, hypocotyls, 
stems, buds, flowers, siliques, and seeds were analyzed. 
The qRT-PCR analysis showed that the BnaC04.BIL1 
gene was expressed in all tissues, which indicated that 
BnaC04.BIL1 expressed constitutively (Fig.  3a). The 

expression level of BnaC04.BIL1 was higher in leaves, 
hypocotyls, siliques, and seeds, while its level in buds and 
stems were lower.

Previous research showed that Arabidopsis BIN2 [52] 
was localized in the nucleus. To define the subcellular 
location of expression, pA7-GFP and BnaC04.BIL1-GFP 
constructs were then introduced into the tobacco leaf 
cells by the particle bombardment method. The merged 
image of BnaC04.BIL1-GFP and nuclear localization 

Fig. 3  Expression pattern of BnaC04.BIL1 and subcellular localization of its encoding protein. a Expression pattern of BnaC04.BIL1 detected by 
qRT-PCR in bud, stem, flower, silique, seed, root, hypocotyl, and leaf from Bndwarf2. The BnActin gene was used as a reference gene and the 
expression level of bud was set to 1. The bud, stem, and flower samples are from flowering stage. The silique samples are from podding stage. The 
seed samples are from maturity stage. The root and hypocotyl samples are from 7-day-old seedlings grown on medium, and the leaf samples are 
from seedling stage. b Subcellular localization of BnaC04.BIL1 protein in tobacco leaf cells. Plasmids pA7-GFP and BnaC04.BIL1-GFP were introduced 
into tobacco leaf cells by particle bombardment, respectively. Bars = 20 μm
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signal (NLS)-mCherry signals showed that BnaC04.BIL1 
was localized to the nucleus (Fig. 3b). The result showed 
the BnaC04.BIL1 gene functions in the nucleus.

Overexpression of BnaC04.BIL1 leads to plant dwarf
To investigate BnaC04.BIL1 functioning in plant height, a 
construct was generated by inserting a 1233 bp BnaC04.
BIL1 ORF fragment from Bndwarf2 into the vector pBI-
121 under the control of the CaMV35S promotor. The 
construct was introduced into ZS11 plants by Agro-
bacterium-mediated transformation. The plant height 
trait was compared between the ZS11 and OE-BnaC04.
BIL1 (OE-BIL1) transgenic plants by overexpressing the 
BnaC04.BIL1 gene. Notably, plant height in the OE-BIL1 
transgenic plants was similar to the expected Bndwarf2 
phenotype with obvious dwarf stature; meanwhile, the 
transgenic plants also displayed dramatically smaller 
seeds than the ZS11 plants (Fig.  4a-c; Table S3). At the 
seedling stage, the OE-BIL1 transgenic lines displayed 
darker green and wrinkled leaves compared to those of 
ZS11 (Fig.  4b). These results suggest that the BnaC04.
BIL1 gene not only controls the plant height, but also 
regulates the seed size. It follows that, the yield of per 
OE-BIL1 transgenic plants showed a significantly reduc-
tion compared to that of ZS11 (Table S3). The T2 prog-
eny plants were examined from six independent T1 
transgenic lines in growth chamber, which showed the 

expected Mendelian inheritance ratio of 3:1 in T2 prog-
eny (dwarf vs. tall plants, χ2 < χ2

0.05, 1 = 3.84; P > 0.05; 
Table S4). The T2 progeny plants displayed perfect co-
segregation between the transgene and the dwarf phe-
notype. Consistently, the expressions of BnaC04.BIL1 
gene in homozygous T3 lines (OE-BnaC04.BIL1 trans-
genic genes) were significantly higher than those of ZS11 
plants (Fig. 4d). These results confirmed that the BnaC04.
BIL1 is the causal mutation for the dwarfism and controls 
smaller seeds, which were also observed in Bndwarf2.

Discussion
Plant height is an important growth habit that is a funda-
mental yield determining trait in crops. In the 1960s and 
1970s, the dwarf trait genes (Rht1 and sd1) were intro-
duced into wheat and rice that were crucial to the first 
“Green Revolution” [1, 53]. The semi-dwarf architecture 
can help to increase harvest index, increase planting den-
sity, enhance lodging resistance, and thus be suitable for 
mechanization harvest [54]. However, there are few stud-
ies with respect to dwarf oilseed rape. Because of the 
lower mechanization level of oilseed rape production and 
few varieties suitable for mechanization harvest, oilseed 
rape production faces severe challenge.

Most of our knowledge about BIN2 functions came 
mostly from gain-of-function results. For example, 
genetic screening in Arabidopsis for BR-insensitive 

Fig. 4  Phenotype comparison and qRT-PCR analysis between the ZS11 and OE-BIL1 transgenic plants. a The phenotype of ZS11 (left) and OE-BIL1 
(right) transgenic plants at maturity stage. b The phenotype of ZS11 (left) and OE-BIL1 (right) transgenic plants at seedling stage. c The seeds of 
ZS11 (up) and OE-BIL1 (down) plants. d qRT-PCR analysis of BnaC04.BIL in ZS11 and OE-BIL1 transgenic lines
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dwarf mutants resulted in the isolation of eight gain-
of-function bin2 alleles [39, 40, 45]. Based on sequence 
similarity of BIN2 with its two closest group II Arabi-
dopsis homologs, BIN2-Like1 (BIL1) and BIN2-Like2 
(BIL2), which belong to the AtSKs group [46]. Over-
expression of BIL1 or BIL2 gene driven by their native 
promoters in wild-type Arabidopsis plants exhibits the 
dwarf phenotype [46]. In our study, a gain-of-function 
mutation for BIL1 in oilseed rape has been discov-
ered, and most importantly, it exhibits the BR-insen-
sitive dwarf phenotype. For example, the Bndwarf2 
mutant displayed the BR signaling phenotypes: shorter 
hypocotyls, shorter petioles, wrinkled leaves, and obvi-
ous dwarf compared with the ZS11 (Fig.  1; Figure S1; 
Table S2). These characteristics were similar to the phe-
notypes of BR-insensitive mutants such as bri1 [27], 
dwf12 [39], and ucu1 [45]. Through map-based clon-
ing, the BnaC04.BIL1 was identified to be a BIN2-Like1 
(BIL1), showing a Thr187Ser amino acid substitution 
residing in the conserved region (Fig.  2; Figure S3a). 
Genetic transformation experiments confirmed that 
the BnaC04.BIL1 was responsible for the plant dwarf 
phenotype in the Bndwarf2 mutants. Overexpression 
of BnaC04.BIL1 under the background of ZS11 reduced 
plant height compared with ZS11 (Fig. 4; Table S3). This 
result was consistent with previous reports, showing 
that overexpressing BIL1 gene confers the dwarf pheno-
type in Arabidopsis [46]. The genetic evidence clarifies 
the BnaC04.BIL1 can sharply change plant architecture 
in natural plant accessions in allotetraploid.

Further study has identified Bndwarf2, a dwarf and 
compact mutant in B. napus, and the dwarf trait is con-
trolled by a semi-dominant nuclear gene (Table  1). The 
plant height of F1 derived from the cross of Bndwarf2 
with the tall parent, decreased by about 50% compared 
to that of tall plant (Table S2). Particularly, the Bndwarf2 
displayed an extreme reduction in height at maturity, 
which is different from the previously reported dwarf 
mutants in B. napus [4, 8, 55–57]. For example, the dwarf 
locus of bnC.dwf mutant was controlled by a recessive 
gene [56]. And, the dwarf trait of Bndwf1 mutant was 
controlled by a semi-dominant gene [8]. The F1 plants 
have compact properties such as shortened branch, 
shortened gap between siliques, shortened gap between 
branches and dwarfing plant height by BnDWARF2 gene 
(Fig. 1; Figure S1; Table S2). This finding implicates that 
the plant architecture of homozygous or heterozygous 
individuals derived Bndwarf2 mutant is compact (Fig. 1). 
This kind of compact architecture can be undoubtedly 
helpful to increase planting density, enhance lodging 
resistance and increase planting density, therefore the 
compact plant architecture is ideal for machinery pro-
duction of oilseed rape.

The germplasm Bndwarf2 has compact plant type, and 
lacks strong growth vigor. However, the compact plant 
architecture can be used in hybrid cultivar development 
in which the compact type and hybrid vigor can be com-
bined well. This is helpful to breeding of variety breeding 
with the objectives such as high-yield, good quality and 
suitable for machinery. On the other hand, the growth 
vigor in pure line or cultivar may be improved in some 
genetic background. Some reports have demonstrated 
that the genes in BIN2 regulation network can also inter-
act with BIN2, leading to improvement of the growth 
inhibition caused by BIN2 gene overexpression caused 
by natural biological accession state or by transgenic 
[58–61]. We speculate that some gene may interact with 
BnaC04.BIL1 to attenuate its role in limit growth vigor 
as that the Arabidopsis homolog BIN2 crosstalk experi-
ments have shown. Furthermore, expressions of some 
regulator genes may probably alter the expression level of 
BnaC04.BIL1 that is constitutively expressed in the vari-
ous organs, and reduced expression level may improve 
the growth vigor. The subcellular localization analysis 
demonstrated that BnaC04.BIL1 exists in the nucleus 
(Fig. 3). Consistently, the Arabidopsis BIN2 functioned in 
nucleus to negatively regulate BR signaling [52]. In fact, 
previous results revealed that many genes regulated by 
BZR1 and/or BES1, and some proteins interacting with 
BZR1/BES1, were closely associated with the BR signal-
ing [29, 62]. The BR signal transduction pathways was 
impairment to lead to the dwarfing phenotype.

Methods
Plant materials and growth conditions
A pure dwarf mutant, Bndwarf2 was found in advanced 
selfing generation in a nearly pure line CB1501-1 in B. 
napus from our germplasm bank of our lab in Nanjing 
Agricultural University. The populations for mapping 
the BnDWARF2 locus, were generated from the crosses 
between Bndwarf2 and the canola variety Zhongsh-
uang 11 (ZS11). All oilseed rape materials were grown 
in growth chamber and the fields of the Jiangpu Agri-
cultural Experimental Station at Nanjing Agricultural 
University.

Tobacco was grown in growth chamber. The illumina-
tion period was 14 h with temperature at 26 °C and 10 h 
with temperature at 20 °C. When tobacco leaves at 5-leaf 
stage were used for the subcellular localization.

Map‑based cloning
SNP and SSR markers were used to map the dwarf gene. 
70 dwarf plants, 24 tall plants and parents from F2 popu-
lation were genotyped using a Brassica 60  K SNP Bead 
Chip Array (Illumina, Inc), which have a total of 52,157 
SNP markers. The SNP genetic map was constructed by 
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JoinMap 4.1 mapping software [63], then the BnDWARF2 
locus was primarily mapped onto physical and genetic 
map. The mapping interval sequence was downloaded 
from the Brassica napus Genome Browser (http://​www.​
genos​cope.​cns.​fr/​brass​icana​pus/​cgi-​bin/​gbrow​se/​colza/). 
Using this genomic sequence, SSR marker primers were 
designed by aid of SSR Hunter 1.3 [64], and Primer Pre-
mier 5.0 [65]. A total of 318 polymorphic SSR markers 
were obtained. These SSR markers helped to fine-map 
the BnDWARF2 locus using a size-enlarged population 
comprised of F2:3 plants.

To identify genes associated to the dwarf trait, 
sequence of the fine mapping interval was obtained from 
the Brassica napus Genome Browser for reference to 
next-step experiments. Then, all of the genes in the fine 
mapping interval were cloned from Bndwarf2 and parent 
ZS11. And, the resulting sequences were aligned using 
ClustalX 1.83 and GeneDoc software. The specific prim-
ers of the genes are listed in Table S5.

Sequence analysis
The B. napus BIL1 genes were obtained by screening the 
B. napus Genome Browser (http://​www.​genos​cope.​cns.​
fr/​brass​icana​pus/) with known A. thaliana BIL1 gene 
as a query. The Conserved Domain Database was used 
to search the protein functional in the National Center 
for Biotechnology Information (NCBI) (http://​www.​
ncbi.​nlm.​nih.​gov). Predicted A. thaliana BIL1 amino 
acid sequences were obtained from the TAIR website 
(http://​www.​arabi​dopsis.​org/​Blast). Moreover, the pro-
tein sequences of other species were obtained from the 
NCBI using the A. thaliana BIL1 protein sequence as a 
query. All obtained protein sequences were aligned using 
ClustalX 1.83 [66]. Additionally, a phylogenetic tree was 
constructed using MEGA 7.0 [67] with maximum likeli-
hood method, and the bootstrap values were estimated 
with 1000 replicates.

RNA extraction and qRT‑PCR
Total RNA was extracted from various samples using 
TRIzol reagent (Sigma; http://​www.​sigma​aldri​ch.​com/). 
First-strand cDNA synthesis was carried out using a 
Reverse Transcription System (Takara, Tokyo, Japan). 
The cDNA was used as the template for qRT-PCR analy-
sis with specific primers (Table S5). The qRT-PCRs were 
carried out with SYBR Green Real-time PCR Master mix 
using a CFX96-2 PCR machine (BIO-RAD, USA). Rela-
tive expression levels were calculated using the 2−ΔΔCt 
method with Actin as an internal control.

Plant transformation
The 1223-bp BnaC04.BIL1 open reading frame was 
amplified from Bndwarf2 using the primers BnaC04.

BIL1-F/R (Table S5) and cloned into the Xba I-BamH I 
sites of the overexpression pBI121 vector with CaMV35S 
promotor to construct the 35S::BnaC04.BIL1-pBI121 
plasmid. The 35S::BnaC04.BIL1-pBI121 plasmid was 
introduced into Agrobacterium tumefaciens strain 
EHA105 by a heat shock method. The positive A. tume-
faciens were transformed into ZS11 with a modified flo-
ral dip method. Briefly, agrobacteria cultures carrying a 
target construct were collected by centrifugation and 
then resuspended in a solution containing 1/2 MS salts 
containing 3% Suc, 0.1% Silwet L-77, 2  ng/L 6-benzy-
ladenine, and 8  mg/L acetosyringone. The ZS11 plants 
at the flowering stage were used for the transformation. 
The head of a flowering plant was bent downward and 
dipped into a beaker containing the agrobacterial culture 
liquid for 3 min, and the treated plant head was loosely 
wrapped with a vegetable parchment paper. The plant 
for transformation was treated every week 1 to 2 times 
and then continued to grow until maturation. Seeds that 
experienced transgenic treatment were harvested. The 
transformant leaf were collected for PCR detection [68]. 
The 35S::BnaC04.BIL1-pBI121 sequence was detected 
by PCR in transgenic plants, the transgenic plants were 
named OE-BnaC04.BIL1 (OE-BIL1).
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