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Abstract

Effective control of an epidemic relies on the rapid discovery and isolation of infected individuals. 

Because many infectious diseases spread through interaction, contact tracing is widely used to 

facilitate case discovery and control. However, what determines the efficacy of contact tracing has 

not been fully understood. Here we reveal that, compared with ‘forward’ tracing (tracing to whom 

disease spreads), ‘backward’ tracing (tracing from whom disease spreads) is profoundly more 

effective. The effectiveness of backward tracing is due to simple but overlooked biases arising 

from the heterogeneity in contacts. We argue that, even if the directionality of infection is 

unknown, it is possible to perform backward-aiming contact tracing. Using simulations on both 

synthetic and high-resolution empirical contact datasets, we show that strategically executed 

contact tracing can prevent a substantial fraction of transmissions with a higher efficiency—in 

terms of prevented cases per isolation—than case isolation alone. Our results call for a revision of 

current contact-tracing strategies so that they leverage all forms of bias. It is particularly crucial 
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that we incorporate backward and deep tracing in a digital context while adhering to the privacy-

preserving requirements of these new platforms.

Mass quarantine has shown its effectiveness in controlling the epidemic outbreak during the 

coronavirus disease-2019 (COVID-19) pandemic, but with a considerable social and 

economic cost1,2. Once the initial outbreak has been suppressed, it is critical to manage 

resurgence to avoid uncontrolled spreading and another lockdown. Because voluntary testing 

and case isolation suffer from inevitable undetected transmissions, contact tracing is a potent 

intervention measure that allows the discovery and subsequent isolation of pre-symptomatic 

and asymptomatic cases, and plays a critical role for the successful control of emerging 

disease3–9. However, because traditional contact tracing is labour intensive and slow, its 

efficacy and cost–benefit trade-offs have been questioned10,11. Therefore, digital contact 

tracing that leverages mobile devices may allow more swift and efficient contact tracing, 

potentially overcoming the limitations of traditional contact tracing9.

Regardless of whether it is performed in person or digitally, contact tracing, in practice, 

often discovers super-spreading events, which are abundant in many epidemics12. A famous 

example from the COVID-19 pandemic would be the ‘Shincheonji Church’ incident 

associated with ‘Patient 31’ in South Korea13. This patient was the first identified positive 

case from the church event, which was later identified—via contact tracing—to be the single 

biggest super-spreading event in South Korea. This single super-spreading event eventually 

caused more than 5,000 cases, accounting for more than half of the total cases in South 

Korea during that time13. As illustrated for this case, super-spreading events are the norm 

rather than the exception12, and these events are often discovered through contact-tracing 

efforts5,14.

The ability of contact tracing to detect super-spreading events can be attributed, in part, to 

the ‘friendship paradox’15. The friendship paradox states that your friends tend to have more 

friends than you, because the more friends someone has, the more often they show up in 

someone’s friend list. Now, because a disease is transmitted through contact ties, the disease 

preferentially reaches individuals with many contacts, who can potentially cause super-

spreading events. Beyond being an interesting piece of trivia, this insight has proven useful 

for epidemic surveillance and control16. Individuals with many social contacts, such as 

celebrities and politicians, are in many ways ideal sentinel nodes for epidemic 

outbreaks12,16–18.

In this Article, we argue that contact tracing is assisted by an additional statistical bias in 

social networks. This bias is leveraged when the contact tracing is executed backward to 

identify the source of infection (parent). This is because the more offspring (infections) a 

parent has produced, the more frequently the parent shows up as a contact. Both biases can 

be at play at the same time, and thus their effects are additive, resulting in an exceptional 

efficacy of backward contact tracing at identifying super-spreaders and super-spreading 

events. Although the effectiveness of backward tracing has been explored in the 

literature8,19–25, for instance by using agent-based simulations8,22 or branching process 

models20,21,23–25, a clear connection between the effectiveness and the nature of statistical 

biases regarding contact network structure has not yet been established.
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A leading factor that determines the strengths of these statistical biases is the structural 

properties of the underlying contact network itself, in particular the heterogeneity of the 

degree (that is, the number of contacts). Heterogeneous networks, where the number of 

contacts varies substantially among individuals, have a larger variance in the degree, which 

in turn produces a stronger friendship paradox effect. Real networks are known to be 

heterogeneous26–28, with strong implications for epidemiology because these properties alter 

the fundamental nature of the epidemic dynamics in the form of, for example, vanishing 

epidemic threshold29, hierarchical spreading30, and large variance in an individual’s 

reproductive number12, as well as the final outbreak size31.

Here, we analyse the statistical biases that backward contact tracing leverages. Using 

simulations on both synthetic and empirical contact network data, we show that strategically 

executed contact tracing can be highly effective and efficient at controlling epidemics. Our 

results call not only for the incorporation of contact tracing as a more crucial part of the 

epidemic control strategy, but, crucially, for the implementation of backward-facing contact-

tracing protocols both in traditional and digital contact-tracing programmes to fully leverage 

the biases afforded by empirical network structures.

Bias due to the friendship paradox

Face-to-face contacts between people can be represented as a network, where a node is a 

person and an edge indicates a contact between two persons. When a node in the network is 

infectious, the disease can be transmitted to neighbours through the edges (Fig. 1a). A node 

with many edges is likely to be one of the neighbours and thus has a high chance of 

infection. This is the friendship paradox described above15. In other words, ‘you’ are a 

random node having k contacts drawn from a distribution pk, whereas ‘your friends’ are 

those having k′ contacts drawn proportionally to k′pk′. The friendship paradox aggravates 

epidemic outbreaks I because individuals with many contacts are preferentially infected Iand 

spread the infection to many others29,30,32.

Formally, if we sample a node at random, the distribution of degree (that is, the number of 

contacts) is given by {pk}, which can be expressed as a probability generating function 

(PGF), that is

G0(x) = ∑
k

pkxk
(1)

where x is a counting variable for degrees. The PGF is a polynomial representation of the 

degree distribution. For example, the average degree can be calculated using a derivative 

k = ∑kkpk = G0′ (1). Now, consider that a node is infected and the disease is transmit ted 

through an edge chosen at random. The disease is then k times more likely to reach a node 

with degree k than a node with degree 1. Therefore, the number of other contacts (that is, 

excess degree, k − 1) found at the end of that contact is generated by

G1(x) = 1
k ∑

k
kpkxk − 1

(2)
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where 〈k〉 is a normalization constant. Note that the average excess degree is larger than or 

equal to the average degree, G1′ (1) ≥ G0′ (1) (the friendship paradox).

This property can be leveraged by the so-called ‘acquaintance sampling’ strategy, where one 

randomly samples individuals and then samples their ‘friends’ by following contacts16,17. 

Because the acquaintance sampling can preferentially sample hubs in a network, even 

without knowing its whole structure, it has been shown to help early detection of an 

outbreak as well as efficient control of the disease16,17.

Bias due to backward tracing

An often overlooked fact about contact tracing is that there are two directions in which the 

contact tracing can lead to the discovery of infected individuals. The first is following the 

direction of the transmission—to whom the transmission may have occurred—and the other 

is reaching to the parent—from whom the transmission occurred. The difference has a 

profound implication on the statistical nature of the sampling.

Disease spreading can be represented as a tree composed of edges from parents to offspring 

(Fig. 1c). If we follow the transmission edge to the offspring of a node, we are sampling 

with the bias due to the friendship paradox (~kpk). However, when we trace back to the 

parent, another statistical bias comes into play. Imagine someone who has spread the disease 

to k individuals (for example, node 11 in Fig. 1d) and another infected individual who only 

spreads the disease to one individual (node 10). If we sample infected individuals (one of 

nodes 12–15) and follow a transmission edge back to the parent, we are likely to reach the 

one who has more offspring (node 11). Formally, if we trace back to the parent, the number 

of other offspring from the parent is generated by

G2(x) =
G1′(x)
G1′(1) = 1

∑k k(k − 1)pk
∑

k
k(k − 1)pkxk − 2

(3)

The contact tracing samples a parent having k − 2 degree (that is, the number of other 

offspring) with a probability proportional to k(k − 1)pk (~k2pk)—a bias stronger than 

acquaintance sampling (~kpk). To illustrate this in practice, we simulate the ‘susceptible– 

exposed–infectious–recovered’ (SEIR)11 model on a degree heterogeneous network 

generated by the Barabási–Albert (BA) model33 (the parameters of the SEIR model are 

described in Methods). At an early stage (time t = 10), the degree distribution for all infected 

nodes and that for parents closely follow distributions proportional to kpk and k(k − 1)pk, 

respectively (Fig. 2a).

Backward tracing needs information about the direction from which the infection occurs. 

However, except for a few diseases34, the direction of transmission is not clear in practice. 

Still, we can preferentially sample super-spreading parents (events) by leveraging the bias 

due to backward tracing. Because a super-spreader or super-spreading event infects many 

individuals, they would appear as a common contact or visited location of many infected 

individuals. For example, in Fig. 1d, node 11 is a common neighbour for three infected 

nodes and hence would appear three times more frequently than node 10. The bias can be 
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leveraged by the frequency-based contact tracing, where we trace and isolate the most 

frequent nodes in the contact list. For the BA network, the frequency-based contact tracing 

samples nodes with a degree similar to the parents without knowing the direction of 

transmissions (Fig. 2b).

Effectiveness of contact tracing for heterogeneous networks

The backward tracing leverages the two sampling biases attributed to the heterogeneity in 

the degree distributions. Therefore, we hypothesize that contact tracing is highly effective in 

degree heterogeneous networks. As a proof of concept, we simulated epidemic spreading 

using the SEIR model on a network with a power-law degree distribution. The network is 

generated by the BA model33 and is composed of 250,000 nodes with minimum degree 2 

(see ‘Simulating epidemic spreading’ in Methods for parameter values). Although the SEIR 

model simulated on a BA network in many respects differs from epidemic spreading in 

empirical social networks11,35,36, it demonstrates that contact tracing can leverage the 

sampling biases arising from the heterogeneity.

We intervene in epidemic spreading from time t = 0.5 by detecting and isolating newly 

infected individuals at the time of infection with probability ps (that is, probability of 

detecting infection). Then, from each detected individual, we add each contact (that is, 

neighbour) to a contact list with probability pt (that is, probability of successful tracing). At 

every interval Δt = 1, we isolate the most frequent n nodes in the contact list and then clear 

the list. Note that contact tracing with pt = 0 is equivalent to case isolation; that is, we 

discover and isolate newly infected nodes with probability ps, but do not trace close contacts. 

We model the contact tracing as preventing infections to all nodes rooted from the isolated 

nodes in the transmission tree.

The disease infects ~25% of nodes at the peak of infection (Fig. 3a). The peak can be 

reduced by more than 75% with contact tracing for pt ≥ 0.5 (Fig. 3a). Implementing even a 

small number of extra isolations through contact tracing (for example, n = 10 from the 

population of 250,000) is still effective in flattening the curve of infections (Fig. 3b). The 

effectiveness is more pronounced when we can identify more infected nodes, for example, 

by increasing the amount of testing (Fig. 3c).

Contact tracing isolates fewer nodes in total, while preventing more cases than case 

isolation, resulting in a high cost efficiency in terms of the number of prevented cases per 

isolation (Fig. 3d–f). This might appear to be counterintuitive, because contact tracing 

isolates extra nodes (that is, contacts) in addition to case isolation. However, because this 

additional isolation by contact tracing preferentially targets those who are at high risk, they, 

in turn, prevent many subsequent transmission events, reducing the total number of 

isolations.

Outbreak investigation can be considered as contact tracing for ‘gatherings’ (for example, 

churches, grocery markets or any spontaneous gatherings; Fig. 1e)37. Note that privacy-

preserving contact-tracing protocols such as DP-3T38 can be used to detect spreading events 

that took place in gatherings and notify risk information to those who attended the 
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gatherings. Moreover, the people-gathering structure is found in high-temporal-resolution 

proximity data37 and is stable, because human mobility often follows regular 

routines37,39,40.

Contact tracing is effective at detecting gatherings with super-spreading events for the same 

reason as for super-spreaders; gatherings with k participants are detected with a probability 

roughly proportional to k2 (see ‘People-gathering networks’ in Methods). To test its 

effectiveness, we generated synthetic people-gathering networks composed of 200,000 

person-nodes and 50,000 gathering-nodes with a power-law distribution of exponent −3 

using the configuration model41. We then ran SEIR simulations on the network (see 

‘Simulating epidemic spreading’ in Methods). Contact tracing is executed from t ≥ 0.1 in the 

same way as in the people contact network.

As in the case of people contact networks, contact tracing substantially reduces the peak of 

infections (Fig. 3g). The effectiveness of this stands out even if we isolate only 10 gatherings 

from a population of 200,000 people and 50,000 gatherings (Fig. 3h,i). Contact tracing 

isolates a comparable number of nodes as case isolation while preventing more infections, 

yielding a higher cost efficiency (Fig. 3j–l).

Contact tracing on a temporal contact network of students

A virus can easily spread in a densely connected population where people routinely have 

face-to-face contact with each other, such as students participating in the same class42,43 and 

workers in dorms44. Without physical distancing, epidemic control is extremely difficult. If 

large gatherings (for example, classes) are prohibited, there may not be strong heterogeneity 

in terms of the offspring distribution (no super-spreading events). In such a case, would 

contact tracing be useful at all?

We tested the effectiveness of contact tracing for a temporal contact network of 567 

university students, which was constructed using physical contact data collected in the 

Copenhagen Network Study45. The physical contacts were estimated by smartphones at a 

resolution of 5 min. This network only captured infections among a specific population and 

neglected others, so it had a fairly homogeneous degree distribution, with maximum degree 

of 42 at 5-min resolution.

Epidemic spreading was simulated using the SEIR model (see Methods for the data pre-

processing and parameters for the SEIR model). Even in this fairly homogeneous network, 

sampling biases are present. For example, the parents of infected nodes have a larger degree 

than the infected nodes in the aggregated network (Fig. 2e).

We carried out contact tracing on the third day onwards, in the same manner as for the 

synthetic networks, except in the way we compiled the contact list. We detected newly 

infected individuals with probability ps at the time when the individuals are infected. Then, 

with probability pt, a close contact for each detected individual was traced and added to the 

contact list. We considered a node a close contact if, and only if, it had had contact with the 

detected individual for at least 1 h in the previous seven days. Contact tracing was carried 

out at every 24 h interval.
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Our simulations show that case isolation alone reduces the peak of infections by ~15% (Fig. 

4a). Contact tracing lowers the peak by ~50%, even though the network does not exhibit 

strong heterogeneity (Fig. 4a). Moreover, tracing and isolating a few traced contacts has 

comparable effectiveness to isolating all close contacts (Fig. 4b). The peak can be further 

reduced by contact tracing when we can detect more infected nodes, that is, by increasing 

the testing capacity (Fig. 4c). Contact tracing has a marked diminishing return; as tracing 

probability pt increases, contact tracing isolates more nodes but prevents nearly the same 

number of cases (Fig. 4d–f). Still, contact tracing pays off, as it prevents at least roughly five 

cases per isolation. In summary, our results suggest that even when the network is 

homogeneous and densely connected, a small amount of contact tracing may be able to curb 

spreading.

Branching process analysis of contact tracing

Let us investigate how much contact tracing would be necessary to prevent an outbreak. We 

calculate the epidemic probability— the probability of sustained transmission of disease—

for networks with an arbitrary degree distribution under contact tracing based on a branching 

process formalism (see ‘Epidemic probability’ in Methods for the derivation of the 

probability). We consider a contact network of people, where a disease is transmitted from 

an infected person i (parent) to a susceptible person j (offspring) with transmission 

probability T. The parent is identified and isolated with probability P = pspt (that is, the 

tracing probability), protecting its offspring j with probability 1 − f, where failure probability 

f allows us to account for imperfect isolation due to individual behaviour or temporal delays 

in the tracing process.

Our analytical solution (‘Epidemic probability’ in Methods), as well as a numerical 

simulation (Fig. 5), demonstrates that increasing the tracing probability P can control an 

epidemic and stop any possibility of sustained transmission while showing a diminishing 

return of contact tracing. Notably, we find a smooth epidemic threshold in P, which is 

distinct from the usual sharp epidemic threshold observed over T. This phenomenology can 

be understood by considering who is targeted by contact tracing. Effective execution of 

contact tracing detects transmission events from an individual with a probability 

proportional to k2, where k is the degree of the individual. Consequently, as we increase the 

frequency of contact tracing, we not only reduce the number of transmissions but do so by 

only allowing transmissions to occur around relatively small degrees. Therein lies the power 

of contact tracing on heterogeneous networks—it reduces the size of the epidemic and 

localizes it around nodes of lower degrees, reducing both the total number of infections and 

the frequency of super-spreading events.

Discussion

We show that contact tracing leverages two sampling biases arising from the heterogeneity 

in the number of contacts an individual has. Our theoretical and simulation analyses indicate 

that contact tracing can be a highly effective and efficient strategy, even when it is not 

performed on a massive scale, as long as it is strategically performed to leverage the 

sampling biases. Furthermore, contact tracing can be more cost-efficient than case isolation 
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in terms of the number of prevented cases per isolation, particularly when detecting infection 

is difficult. The effectiveness and efficiency hinge on the fact that backward tracing can 

detect super-spreading events exceptionally well. Therefore, we argue that (1) even when 

massive contact tracing is not feasible, it may still be worth implementing contact tracing, 

(2) not all contact-tracing protocols are equal and it is crucial to implement the protocols that 

leverage the presented biases and (3) the ‘cheaper’ contact tracing offered by digital contact 

tracing may hold even greater potential than previously suggested11.

In the context of digital contact tracing, our results show the need for (1) backward contact 

tracing that aims to identify the parent of a detected case and (2) deep contact tracing to 

notify other recent contacts of the traced nodes. Current implementations of digital contact 

tracing, including the Apple and Google partnership46 and the DP-3T proposal38, notify the 

contacts of an infected individual about the risk of infection. However, they neglect that one 

of these previous contacts is likely the source of infection (that is, parent), who might be 

infecting others. We show that multiple notifications are particularly indicative of the parent 

and can be potentially leveraged for better intervention strategies. Therefore, we urge the 

consideration of a multi-step notification feature that can fully leverage the sampling biases 

arising from the heterogeneity in the contact network structure.

An implementation of our model does not necessarily require any compromise in terms of 

privacy or decentralization of the contact-tracing protocol itself47. One could also imagine a 

hybrid approach where deep contact tracing is undertaken using a centralized database when 

a given device has been notified more than a certain number of times. The benefits of such 

network-based contact tracing could be considerable, especially if accompanied by serious 

educational efforts for users to explain the rationale behind the intervention and the 

importance of their own role in our social network.

Although backward tracing is, in general, highly effective in heterogeneous networks, a 

number of factors can hinder its effectiveness. First, delays in testing, isolation and tracing 

steps would reduce the effectiveness of contact tracing. Backward contact tracing would be 

more vulnerable to such delays because it relies on the premise that we need to reach the 

infectors before they produce many offspring. Second, we assume that every individual has 

an equal probability of infection and isolation; however, this may vary depending on 

demographics. The heterogeneity in infection and isolation probabilities may hinder the 

effectiveness of opt-in contact-tracing strategies. Third, we assumed that all people are 

traceable, which may not be true in practice. For example, to successfully perform digital 

contact tracing, the tracing app may have to achieve almost universal adoption because the 

probability of successful contact tracing decreases by the square of the app adoption rate. On 

the other hand, traditional contact tracing can also fail because of those who refuse contact 

tracing48,49 or travelled from a different country that does not share contact data, as well as 

because of the imperfect recall of recent contacts, for example.

Even with the aforementioned limitations, our results suggest that contact tracing has a 

larger potential than commonly considered. Because its effectiveness hinges on the ability to 

reach the ‘source’ of infection, our results underline the importance of strategic and rapid 

contact-tracing protocols.
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Methods

Data.

We used the dataset collected in the Copenhagen Network Study45 to construct a temporal 

network of physical contacts between students in a university. The dataset contains 

information on the physical contacts between more than 700 students in a university 

estimated by Bluetooth signal strength. We removed all individuals from the data that had a 

valid Bluetooth scan in less than 60% of the observation period. We then considered that two 

individuals i and j had contact if i or j received Bluetooth scans from the other with a signal 

strength more than −75 dB. We note that this signal strength is received at a distance of ~1 m 

from a device50. These steps resulted in a cohort of N = 567 individuals with contact data for 

28 days with resolution of 5 min.

Simulating epidemic spreading.

We simulated the SEIR model for the static contact networks and people-gathering networks 

using the EoN package51, with transmission rate β = 0.25, recovery rate γ = 0.25, incubation 

rate σ = 0.25 and initial seed fraction ρ = 10−3. For the student contact network, we 

simulated the SEIR model with the parameters used in studies on COVID-19 disease52 

(expected infectious and incubation periods were set to 5 days and 1 day, respectively. The 

transmission rate of COVID-19 varies highly across case studies and estimation 

methods11,31. One expects that, in any closed population with dense contacts, between 20 

and 60% of the population are infected31. We thus use a transmission rate of 0.5 day−1 to 

produce outbreaks that reach 50% of the population, which is close to the worst-case 

scenario that might be expected on a university campus. We randomly chose 1% of the total 

population as initially infected nodes at time t0, where t0 was chosen randomly in the first 28 

days. The epidemic spreading process may take longer than the days recorded in the contact 

data (that is, 28 days). Therefore, following a previous study53, we assumed that the same 

contact sequence for the 28 days repeats.

People-gathering networks.

In the people-gathering network, a person-node is connected to a gathering-node if he/she 

joined the gathering. The degree of a person implies how mobile the person is across diverse 

sets of gatherings, and the degree of a gathering indicates the number of participants for the 

gathering. Denoted by G0(x) and F0(x), the generating functions for the degree distributions 

of persons and gatherings, respectively, are defined as

G0(x) = ∑
k

pkxk
(4)

F0(x) = ∑
k

qkxk
(5)

The transmission event happens from a person to others via a gathering. When we trace a 

gathering from a person, a gathering with k participants is k times more likely to be sampled 
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than the gathering with only one person. Therefore, the excess size of the gathering is 

generated by

F1(x) =
F0′(x)
F0′(1) = 1

∑k kqk
∑

k
kqkxk − 1

(6)

The probability distribution of the number of one’s neighbours through gatherings is given 

by G0(F1(x)). Because larger gatherings would produce more infections and thus are more 

likely to be traced, the number of participants of the gathering, except for the original 

spreader and the isolated individual, is given by the probability generating function

F2(x) =
F1′(x)
F1′(1) = 1

∑k k(k − 1)qk
∑

k
k(k − 1)qkxk − 2

(7)

In other words, contact tracing samples a gathering with k participants with probability 

roughly proportional to k2. Therefore, as is the case for people contact networks, contact 

tracing is effective at identifying super-spreading events and preventing numerous further 

disease transmission events.

Epidemic probability.

We calculated the probability that the contact tracing stops the spreading of disease. To keep 

the analysis simple, we assumed that every newly infected node has a probability P to lead to 

its parent node and we can prevent the infections to all of the parent’s grandchildren by 

notifying the infected node.

The probability of epidemics is determined by the offspring distributions, that is, the number 

of nodes to which an infected node spreads the disease. We note that the offspring 

distribution depends on how we sample nodes due to the sampling biases (see ‘Bias due to 

the friendship paradox’). Specifically, if we sample infected nodes at random or by 

following a random transmission, the offspring distributions are given by generating 

functions

R0(x) = G0(Tx + (1 − T )) = ∑k rkxk or R1(x)
= G1(Tx + (1 − T )) = ∑kqkxk (8)

respectively, where T is the probability of transmitting disease through an edge, and rk and 

qk are the probabilities of having k offspring, respectively.

With contact tracing, the offspring of a parent can continue the spreading process if and only 

if successful contact tracing does not take place for all the offspring, which occurs with 

probability (1 − P)k. Therefore, the nodes sampled by following a random transmission have 

the offspring distribution given by

R1(x, y) = ∑
k

qk (1 − P )kxk + 1 − (1 − P )k yk
(9)
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where R1 denotes R1 under contact tracing, and R0 is the analogous function for R0. We 

have distinguished standard transmissions (counted with the variable x) from transmissions 

that occurred but are isolated quickly enough by contact tracing to stop the transmission tree 

(counted with the variable y). This gives us a way to calculate the coefficients rk of R0(x, 1), 
which specify the distribution of successful branching events in the transmission tree (that is, 

those that can continue spreading).

Because we use a multivariate PGF where the variable x counts traditional transmission 

events and y counts transmission with attempted isolation, the probability f of isolation 

failure can be implemented by replacing y with y′ = fx +(1 − f)y. This models a Bernoulli 

trial on each isolation, where failure with probability If leads to a transmission (counted by 

x) and where success leads to isolation (counted by y).

The probability u that transmission to a node without contact tracing around the parent does 

not lead to sustained transmission is given by the self-consistency condition

u = R1(u, fu + (1 − f)) (10)

where the right-hand side gives the probability that the offspring also do not lead to 

sustained transmission (1 if successful contact tracing occurs and u otherwise). The 

probability of an epidemic is then the probability that at least one transmission around the 

patient leads to sustained transmission, or

Π = 1 − R0(u, fu + (1 − f)) (11)

The failure probability f should correspond to a given continuous-time epidemic model. See 

Supplementary Information for the calculation of failure probability f.

Data availability

The physical contact data that support the findings of this study are available from the 

Copenhagen Network Study with the identifier https://doi.org/10.1038/s41597-019-0325-

x45. Source data are provided with this paper.

Code availability

Code is available at https://github.com/yy/backward-contact-tracing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic illustration of backward contact tracing.
a, A transmission event occurs from a ‘parent’ to a ‘focal node’ (or an offspring). b, The 

disease spreads from an infected node to its neighbours through edges in networks. c, The 

spread of disease can be represented as a transmission tree with directed edges from parents 

to offspring. d, Backward tracing is likely to sample parents with many offspring; for 

example, node 11 is more likely to be sampled than node 10 by backward tracing. e, Contact 

tracing can also be conducted for a bipartite network of people and gatherings. As for the 

contact network, a high-degree gathering is more likely to be ‘infected’ and to be traced with 

the same logic.
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Fig. 2 |. Backward and frequency-based contact tracings are effective at reaching hub nodes.
a,b, We simulate the SEIR model on a BA network composed of 250,000 nodes. We sample 

the infected nodes with probability 0.1 and trace their parents at time t = 10. In a, the blue 

and orange lines respectively indicate the complementary cumulative distribution function 

(CCDF) for the degree of the sampled nodes and their parents, which follow G1 and G2, 

respectively. Frequency-based contact tracing (b)—isolating the most frequently traced 

nodes—can reach nodes with a degree similar to the parents without knowing who infects 

whom. c,d, As for the contact network, both backward (c) and frequency-based (d) contact 

tracing can reach large degree nodes for people-gathering networks. e, The bias due to 

backward tracing is present even in a relatively homogeneous network. We simulate the 

SEIR model on a temporal contact network of university students and sample all infected 

nodes and their parents. The infected and parent nodes have degree distributions that closely 

follow G1 and G2 for the unweighted aggregated network, respectively. f, As for the contact 

and people-gathering networks, frequency-based contact tracing is effective at reaching large 

degree nodes.
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Fig. 3 |. Effectiveness of contact tracing for networks with a heterogeneous degree distribution.
a–l, People contact networks (a–f) and people-gathering networks (g–l) are generated by the 

BA and the configuration model, respectively. Contact tracing (a) lowers the peak of 

infection by more than 70% of that for case isolation. The effectiveness (b) stands out even 

if we can trace a few nodes. The efficacy of contact tracing (c) is substantially enhanced 

when the detection probability is increased. Compared with case isolation (pt = 0), contact 

tracing (pt > 0) isolates fewer nodes (d) while preventing more cases (e,f). Contact tracing is 

therefore highly cost-efficient in terms of the number of prevented cases per isolation. The 

plots in g–l correspond to those in a–f, but for people-gathering networks. Contact tracing is 

also highly effective for people-gathering networks (g). Each point indicates the average 

value for 30 simulations. The translucent bands indicate the 95% confidence interval 

estimated by a bootstrapping with 104 resamples.
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Fig. 4 |. Effectiveness of contact tracing for the student physical contact network.
An infected node is discovered and isolated with probability ps. Contact tracing isolates the 

most frequent n close contacts in the contact list. We isolate n = 3, 10 or all close contacts, 

as indicated by ‘n = 3’, ‘n = 10’ or ‘all’, respectively. a, Contact tracing reduces the peak of 

infections more than case isolation. b, Even if we trace and isolate a few nodes, it is as 

effective as isolating all contacts. c, The effectiveness is more pronounced when we can 

detect more infected nodes. d–f, Contact tracing isolates more nodes (d) and prevents more 

cases (e,f) as we trace more contacts. Contact tracing is not efficient when tracing 

probability is large. Although contact tracing is highly effective and efficient, massive 

contact tracing may have a diminishing return. Each point indicates the average value for 

1,000 simulations. The translucent bands indicate the 95% confidence interval estimated by 

a bootstrapping with 104 resamples.
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Fig. 5 |. Control of an outbreak using contact tracing in heterogeneous networks.
We use randomized BA networks, where each of 250,000 nodes has a degree of at least 2, 

and attempt to control the spread of a disease with transmissibility T using tracing 

probability P, which successfully isolates a given sibling of a new case with probability 1 − 

f. Symbols show the average of 100 Monte Carlo simulations, and solid lines show the 

results of our analytical formalism. a, Using perfect contact tracing f = 0, the probability of 

sustained transmissions goes down monotonically with more contact tracing, but without 

undergoing the usual sharp epidemic transition. b, With f = 0, the regime of smeared 

epidemic transition increases with the frequency of contact tracing. At a high frequency of 

contact tracing, we find the probability of sustained transmission remains low, even for high 

values of transmissibility well beyond the epidemic threshold. c, We fix transmissibility at T 
= 0.3 and look at the robustness of different contact tracing probability P to imperfect tracing 

by varying the probability f that isolation fails.
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