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Abstract

Cloud computing is a common platform for delivering software to end users. However, the process 

of making complex-to-deploy applications available across different cloud providers requires 

isolated and uncoordinated application-specific solutions, often locking-in developers to a 

particular cloud provider. Here, we present the CloudLaunch application as a uniform platform for 

discovering and deploying applications for different cloud providers. CloudLaunch allows 

arbitrary applications to be added to a catalog with each application having its own customizable 

user interface and control over the launch process, while preserving cloud-agnosticism so that 

authors can easily make their applications available on multiple clouds with minimal effort. It then 

provides a uniform interface for launching available applications by end users across different 

cloud providers. Architecture details are presented along with examples of different deployable 

applications that highlight architectural features.
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1. Introduction

As cloud technologies and platforms become more mature, modern Infrastructure-as-a-

Service (IaaS) clouds are broadly converging in terms of functionality and scope [1]. 

Nevertheless, as others have noted elsewhere [2], subtle differences in providers can easily 

lead to vendor lock-in. This is a significant problem in both academic and commercial 

settings, where heterogeneity in resource access, funding models, and geography can make it 

difficult to share cloud applications developed in one setting, with cloud infrastructure 

running in a different setting. As clouds increasingly become the de facto means of software 

delivery to end-users, it becomes just as important to support multiple cloud infrastructures 

operated by different vendors and communities.

There has been a proliferation of private and community clouds; in the academic 

community, there are a number of national-scale academic community clouds including, the 
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NeCTAR cloud in Australia, the ELIXIR cloud in Europe, the Jetstream cloud [3] in the US, 

the CLIMB cloud [4] in the UK, and efforts in Canada, South Africa, and others. Many 

vendors have emerged in the commercial space with some stable big providers such as 

Amazon, Google, and Microsoft.

Users tend to be generally tied to whatever cloud infrastructure their hosting company or 

funding model allows them access, or on whichever cloud their data happens to reside. 

Despite the potential promise of ubiquitous cloud access, the reality is that users are often 

siloed within their institutional cloud, with no way to marry software available on a 

particular cloud, with the data and resources they have access to in their institutional cloud.

As a result, the burden increasingly falls upon cloud application developers to make their 

applications available on multiple clouds. This is somewhat analogous to how desktop 

application developers must support different operating systems to reach their target 

audiences. This requires that the developer:

1. Build and test their application against multiple clouds;

2. Provide a means by which a user can discover and launch an application on a 

cloud infrastructure of their choice;

3. Ensure that the application is orchestrated, monitored, and managed on the target 

infrastructure.

In previous work on CloudBridge [1], we addressed the first issue, noting that many existing 

solutions to the problem, such as Apache Libcloud [5] and Ansible [6], do not provide a 

unified abstraction for IaaS clouds, requiring that developers test their applications against 

individual cloud infrastructures. It is only at a level higher that containerization frameworks 

such as Kubernetes and Docker Swarm have alleviated this problem somewhat by letting 

developers deal with a Platform-as-a-Service (PaaS) level of abstraction.

In this paper, we discuss our work in addressing the second aspect of this problem, building 

upon previous work done in BioCloudCentral [7]. For this purpose, we built CloudLaunch - 

a web portal and an API platform for discovering and launching applications on multiple 

cloud infrastructures. Novelties introduced by CloudLaunch include the ability to describe 

an application once using open technologies and have it uniformly deployable on multiple 

cloud infrastructure providers using a web interface or a REST API. With the API driven 

approach, CloudLaunch can be used as a deployment engine for external applications to 

provide cloud abstraction and orchestration capabilities. In this context, we identify at least 

four potential beneficiaries of the CloudLaunch science gateway:

1. End users who want to easily discover and launch applications on multiple 

clouds;

2. Application deployers who want to make applications available on multiple 

clouds through CloudLaunch’s centralized catalog;

3. Application developers who need an API-driven deployment engine to use within 

a custom application, say for constructing a higher-level science gateway;
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4. Institutions that want to have their own catalog of applications for internal users.

2. An overview of CloudLaunch

For an end-user, the initial entry-point to CloudLaunch is a web interface for browsing a 

catalog of appliances (Fig. 1A). An appliance represents a deployable system, which can be 

as simple as an operating system running on a virtual machine or as complex as a virtual 

laboratory (e.g., GVL [8]). A key benefit of an appliance is that it comes with ‘batteries 

included’ - it provides the necessary infrastructure, applications, and configurations to 

deliver a functional system to the user. Next, CloudLaunch is a deployment platform that 

allows users to instantiate a chosen appliance on any one of a range of cloud providers via 

the web interface or its REST API (Fig. 1B). The deployment process instantiates the 

necessary resources on the given cloud provider and creates an environment necessary to 

start the software making up the appliance. Each appliance can implement its own launch 

logic and hence create the appropriate environment (see Section 4). Finally, CloudLaunch is 

a dashboard for managing launched appliances, such as checking the health status of an 

appliance or deleting it (Fig. 1C). Overall, the CloudLaunch application acts as a gateway 

for launching applications into a cloud.

The key differentiators of CloudLaunch are its uniform interface toward multiple 

infrastructure providers and support for integration of arbitrary applications. While other 

application repository services exist from a number of vendors and academic institutions 

(e.g., AWS Marketplace [9], Google Launcher [10], CyVerse Atmosphere [11]), none have 

uniform support for multiple cloud providers. They each offer a different and proprietary set 

of application deployment recipes to be launched on their respective infrastructure. This is 

undesirable for the end users because they must manually search for the desired application 

across multiple repositories, switch between the providers, and deal with non-uniform 

interfaces. For the application developer or deployer that wishes to make their application 

available for deployment, they must learn a proprietary format for adding their application to 

a repository - assuming such functionality is even supported (e.g., Google Compute Engine 

does not support public custom images) - and do so multiple times.

Instead, CloudLaunch appliances are based on open, well-documented, and cross-cloud 

technologies. This allows anyone to integrate their cloud application into a deployable 

appliance and do so once for multiple infrastructure providers. Because of the cloud 

abstraction layer implemented in CloudLaunch (via the CloudBridge library [1]), multi 

cloud functionality can be confidently used across multiple providers. This implies that an 

appliance deployment does not need to be explicitly tested against each provider yet it will 

dependably work. Simultaneously, end users experience a consistent process for launching 

any appliance on any supported infrastructure. While it may appear that users get locked into 

CloudLaunch instead, we have done our best to preempt such a situation by keeping its plug-

in interface extremely simple, so that appliances could be easily ported to different 

technologies, and existing technologies can be easily wrapped into a CloudLaunch 

appliance. In future, we also plan to support other existing technologies such as the TOSCA 

standard [12].
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3. Architecture

The design of CloudLaunch is focused on flexibility and extensibility. By flexibility, we 

mean the ability to support a range of usage scenarios. This can mean usage via the web 

frontend or the API as well as the ability to integrate with a variety of infrastructure 

providers or applications. While we focus on deploying applications to IaaS cloud 

infrastructures here, the application is designed such that appliances can be launched on 

other infrastructures as well, for example cloud container services or HPC clusters (under 

the assumption that the appropriate deployment implementation is provided). By 

extensibility, we mean the ability to support arbitrary appliances, at the user interface level 

as well as the launch process level. For example, a basic virtual machine (VM) with just an 

operating system requires only the appropriate firewall ports to be opened (e.g., ssh) and an 

instance to be launched. An appliance with a web interface, an FTP server, additional system 

users, persistent storage, etc. would require additional user interface elements (such as 

selecting the size of persistent storage) and a more complex launch-process actions to take 

place (e.g., creating a block store volume, attaching it to an instance, and formatting it as a 

file system).

As previously discussed, CloudLaunch currently focuses on deploying appliances on IaaS 

clouds. The appliance deployment process is captured in a CloudLaunch plugin as native 

Python code with an option to make external calls to deployment tools such as Ansible. The 

deployment process can be as complex as required by the appliance; for example, it can 

capture the simple creation of a virtual machine with just an operating system or create a 

complex runtime environment with a cluster manager and attached storage. The complexity 

of a deployment is entirely captured within the appliance plugin while CloudLaunch 

orchestrates steps required to run the plugin. In addition to the launch process, CloudLaunch 

plugins implement three additional actions: health check, restart, and delete. The health 

check task can perform basic checks of liveliness of a virtual machine or a complex query of 

the deployed application to make sure necessary services are operating as required. The 

restart task can implement a controlled and/or partial reboot of the system, including 

restarting any containers or the host virtual machine. Similarly, the delete task performs the 

appropriate termination of the launched appliance.

CloudLaunch does not attempt to operate outside of these boundaries. For example, 

CloudLaunch does not manage the deployed applications to offer runtime environment 

reconfiguration, perform scaling steps, or handle ongoing storage management. Those 

features are part of the third issue identified in the “Introduction” section and left as future 

work. Further, of particularly relevance to multi-cloud deployments, it is important to note 

that CloudLaunch focuses only on the deployment process; it requires that the required 

appliance resources (e.g., machine image, file system) be available on target clouds. This 

may require the application deployer to build necessary resources on every cloud or rely on 

containerization technologies to make the appliance more portable.

Technically, CloudLaunch is implemented as separate front- and back-end applications. The 

front-end layer interfaces with the back-end through a REST API. The back-end is 

structured around a core framework that brokers the interactions between requests and 
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appliances. The persistent data (e.g., clouds, appliances) are stored in the model while the 

appliance logic runs as asynchronous, distributed tasks using a Celery task queue. 

Appliances being deployed via CloudLaunch are treated as standalone plugins. This high-

level architecture is captured in Fig. 2. We have implemented CloudLaunch in Python using 

the Django web framework [13] with the Django REST Framework plugin [14], so that the 

REST API is a browsable, self-documenting interface. The front-end is implemented as a 

Single Page Application using the Angular framework and is written in TypeScript. At 

deployment, the front-end is entirely static content and can be effectively served using a 

scalable web server, such as Nginx. Long running, asynchronous back-end tasks are farmed 

to a task queue, implemented using Celery [15]. As already mentioned, interfacing with 

multiple cloud providers is accomplished through the CloudBridge library.

The modularity of the application hinges on the separation between the front-end, the back-

end, and the appliance plugins. This leads to a simple yet flexible and powerful model for 

encapsulating appliances while decoupling the front- and back-ends. It further allows other 

applications to build custom interfaces and communicate with CloudLaunch via the backend 

API directly. Details of each are discussed next.

3.1. Front-end Layer

The frontend is in charge of obtaining necessary information from the user while the back-

end processes the information and interfaces with the infrastructure provider via the 

appliance plugins (Fig. 3). Each appliance is implemented as a self-contained plugin. The 

front-end communicates with the back-end over a REST API, passing application 

configuration as a flexible dictionary data structure of arbitrary complexity. Each appliance 

front-end needs to produce this appliance-specific JSON data structure containing any 

information deemed necessary for the back-end to perform its functions, which is duly 

conveyed by CloudLaunch to the appliance-specific back-end plugin component for 

processing.

3.1.1. Front-end Plugin—On the front-end, an appliance is implemented as an Angular 

component and the UI elements are hence reusable outside CloudLaunch. To integrate with 

the CloudLaunch framework, the plugin component needs to implement the interface 

defined in Fig. 4. A BasePluginComponent exists in the framework that can be used as a 

base class for providing much of the core functionality. In return, a most basic plugin 

implementation can extend that base class and provide an implementation with just one 

method, configName, to indicate the top-most element of the appliance JSON data structure. 

Appliances with custom launch forms also need to implement a form group that captures the 

necessary data from the user interface.

3.2. Back-end Layer

The back-end of the framework is exposed through a self-documenting, browsable REST 

API. The API defines four top level endpoints: applications, infrastructure, deployments, and 

authentication. Resources exposed via the infrastructure endpoint map to cloud provider 

IaaS resources uniformly through CloudBridge, allowing for the manipulation of the 

underlying IaaS resources. Therefore, the structure of the infrastructure endpoint closely 
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mirrors that of CloudBridge and provides nested endpoints for browsing or creating 

compute, storage, security, and network resources. Note that this endpoint is completely 

decoupled from CloudLaunch itself, and can be used irrespective of the rest of the 

CloudLaunch functionality; it is available as a separate, pip-installable API for interfacing 

with cloud providers, maximizing reusability and modularity (https://github.com/CloudVE/

djcloudbridge).

The remaining endpoints (applications, deployments, and authentication) interact with the 

CloudLaunch database to expose and manage stored information. The applications endpoint 

represents the catalog of registered appliances, each including the necessary linkage to 

realize the concept of an appliance (e.g., clouds where the application is available with 

relevant machine images, required security group and ports, a pointer to which backend 

plugin to use for the appliance as well as a pointer to which front-end plugin to use, launch 

properties, etc.). The deployments endpoint lists appliance deployments that were performed 

by the user. It captures details such as which cloud the appliance was launched on, what 

launch properties were used and what output the deployed appliance produced, such as the 

instance IP address or the URL through which to access the deployed appliance. On each 

deployment, it is possible to initiate tasks. These tasks perform health check actions, restart, 

or delete actions on that deployment. The list of tasks can also be extended as the need arises 

in the future. Finally, the authentication endpoint handles user registration and credential 

safekeeping. The user registration is handled via Django Social Auth library, which allows 

for pluggable authentication mechanisms. The cloud credentials are stored in the database as 

encrypted fields. The encryption is handled directly in the database using fernet keys, which 

allow for regular key rotation.

3.2.1. Back-end Plugin—The back-end appliance plugin needs to provide an 

implementation for the interface defined in Fig. 4. The core functionality provided by the 

plugin is parsing the JSON data (provided by the front-end via the API) and managing the 

appliance processes (launch, health check, restart, delete). The actions performed by the 

plugin run as asynchronous tasks, which CloudLaunch will instantiate and monitor (via the 

deployment endpoint). Notably, the back-end plugins were designed to be independent of the 

CloudLaunch framework. This is particularly interesting from the developer’s perspective 

because it avoids developing plugins exclusively for CloudLaunch. Instead, once developed, 

the plugin can be used as a standalone module for handling captured application deployment 

actions or integrated with other deployment solutions. The opposite is also true, assuming 

the application deployment process has been captured using the CloudBridge library for 

multi-cloud compatibility, it becomes very straightforward to also integrate that application 

with CloudLaunch by simply implementing the defined interface.

3.3. Plugin Composition

Because most of the appliances will share some aspects of the interface and the launch 

process, we have designed the plugins to be composable. This is true of both the front-end 

and back-end. Users can reuse existing plugins to create more powerful components without 

duplicating effort. For example, the Galaxy CloudMan appliance, in addition to some 

optional elements, requires the user to choose the type of storage they want to use and a 
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desired storage size. The Genomics Virtual Lab (GVL) [8] appliance represents a superset of 

this functionality allowing users to also launch additional services on the deployed system, 

for example, use of the remote desktop or Jupyter Notebook [16]. Hence, the GVL plugin is 

composed of the CloudMan plugin component and extended to offer the additional choices. 

As a result, the implementation of the GVL plugin as a complex appliance is quite 

straightforward counting of the order of 100 lines of code across the back-end and front-end 

pieces. The CloudMan plugin that implements much of the details counts approximately 300 

lines of code, which itself depends on the base-plugin plugin that counts about 350 lines of 

code.

In addition, the front-end contains a number of reusable components that span all appliances, 

such as for gathering cloud credentials for users, and selecting target cloud settings. Since 

these components are reusable and configurable, it can significantly save on the time 

required to implement a new appliance plugin for CloudLaunch.

Building on this feature, we hope that this composable plugin architecture will foster an 

ecosystem of plugins and extensions where a community of application developers and 

deployers can quickly and easily assemble a more complex application out of existing 

plugins and integrate their application into CloudLaunch with minimal effort. As part of 

future work, we plan on entirely separating plugins from the CloudLaunch codebase and 

have them instead be self-installable plugins, which will further promote reuse of plugins 

and decrease dependencies on CloudLaunch.

3.4. Scalability

Some of the launch tasks require significant time to complete all the necessary actions, 

implying that the launch server resources are occupied for that duration. We have hence 

designed CloudLaunch to be highly scalable, with no centralized state other than a relational 

database for simple metadata, and is built out of well-known components with proven 

scalability, enabling high horizontal scaling. For example, the backend Django web-server 

does not use session state, and can be easily distributed over multiple servers if required. All 

long-running tasks are farmed out to a Celery distributed task queue, which in turn can be 

horizontally scaled as required. Postgres is used as the preferred database, and is a database 

with proven scalability characteristics. The front-end Angular application is a Single Page 

Application (SPA) that can be compiled entirely into static content and served in a 

distributed fashion through highly scalable and proven web-servers like NGINX. As a result, 

we do not see any obvious bottlenecks to the performance and scalability characteristics of 

CloudLaunch.

4. Demonstrations

To showcase the described features of CloudLaunch, we have implemented a number of 

appliance plugins. These include an appliance for launching a simple VM with a base 

operating system, launching an arbitrary container from Docker Hub, a complex virtual lab 

deployment, and several more as combinations thereof. These can be explored and launched 

from a live instance of CloudLaunch available at https://launch.usegalaxy.org/. Instaed of 

using a public server, CloudLaunch can be deployed locally - the front-end (https://
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github.com/galaxyproject/cloudlaunch-ui) and the back-end (https://github.com/

galaxyproject/cloudlaunch/tree/dev) code repositories on GitHub have required instructions. 

There is also an Ansible playbook available for automated deployment of the server in a 

production environment (https://github.com/galaxyproject/ansible-cloudlaunch). Complete 

implementation details for each appliance and their integration with CloudLaunch is 

available on GitHub: https://github.com/galaxyproject/cloudlaunch-ui/tree/master/src/app/

catalog/plugins for the front-end and https://github.com/galaxyproject/cloudlaunch/tree/dev/

django-cloudlaunch/baselaunch/backend_plugins for the back-end.

4.1. Base VM appliance

A majority of appliances deployed in a cloud environment will require that a virtual machine 

be provisioned. The Base VM appliance consists of a simple front-end component that 

implements the configName interface method, returning the desired top-level name of the 

appliance in the JSON response (e.g., config_ubuntu). Because no custom user interface 

elements are defined by the appliance, no appliance-specific data is sent to the backend. Fig. 

5 shows the appliance interface (in this case just the default CloudLaunch framework 

interface for launching cloud appliances) while Fig. 6 captures an example data sent to the 

backend.

The back-end plugin receives the launch data and implements all of the details required to 

launch a virtual machine. These tasks include creating or reusing a key pair, creating a 

security group and ensuring appropriate rules are enabled, configuring private network 

setup, launching an instance, waiting for it to start, and associating a public IP address with 

the instance. As indicated earlier, all of the plugin steps run as separate asynchronous tasks, 

allowing the process to be of arbitrary complexity and duration.

4.2. Genomics Virtual Lab (GVL) appliance

The GVL appliance allows instances of the GVL platform [8] to be configured and 

launched. The GVL is a middleware layer of machine images, cloud management tools, and 

online services that enable researchers to build arbitrarily sized compute clusters on demand, 

pre-populated with fully configured bioinformatics tools, reference datasets, workflow, and 

visualization options; it is a complex appliance requiring a number of user options to be 

selected, or defaults provided. On the first page of the launch wizard (Fig. 7), the appliance 

user interface is the same as the base VM appliance and captures the appliance version and 

user cloud credentials. The second page of the wizard however, includes GVL-specific 

elements. The most basic ones just include the password, but the optional advanced ones 

(not shown for brevity) include a number of configuration options tailored for the GVL 

platform.

On the front-end, the GVL component extends the Base VM appliance and includes the 

CloudMan component. It then extends those components with its own settings, specifically, 

the SMRT portal application and the Command Line Utilities. Despite being a complex 

appliance, the implementation is succinct, shown in Fig. 8. For simplicity of user experience, 

most of the appliance options are hidden under the advanced toggle but a key realization 

here is that the entire implementation of the CloudMan appliance is included here with just a 
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few lines of code (middle panel in the figure); yet, the CloudMan appliance contains 

additional half dozen advanced application controls that are automatically included.

The back-end appliance plugin is also a composition of other plugins (see Fig. 9). The 

appliance plugin simply implements the required interface, offloading much of the 

complexity onto the lower-level appliances. The key aspect is to realize that the modular and 

composable architecture permits definition of arbitrarily complex and independent 

appliances. Further, building appliances on each other, the complexity can be effectively 

evaded through reuse.

4.3. Docker Launch appliance

With an increasing number of appliances being delivered as containerized infrastructure, we 

have developed an appliance for launching arbitrary containers from Docker Hub (a public 

repository of container images). Through CloudLaunch, a user can interactively search 

Docker Hub, modify exposed properties of available containers through the appliance launch 

wizard, and launch a VM instructing it to start the chosen container (see Fig. 10). The front 

end of the Docker Launch appliance is a relatively complex Angular component because it 

requires data to be fetched from a remote service, deals with the cross-origin requests, 

formats the responses, and allows the user to configure image properties. However, the 

backend plugin is still an extension of the Base VM appliance where the only extensions 

include ensuring the proper firewall ports are open and the container start command is 

composed. Complete implementation details are available in the GitHub repository.

5. Related Work

CloudLaunch sits on the intersection of application deployment tools and a cloud API. 

Application deployment actions involve provisioning, management, and configuration of 

resources to make them suitable for application execution. Tools such as Ansible [6], Chef 

[17], Puppet [18], and SaltStack (see [19] for a comprehensive review) perform these tasks 

well and represent a suite of configuration management tools, with each having a slightly 

different approach to state and resource management. Appliance plugins integrated with 

CloudLaunch can internally leverage any of those tools for the relevant resource state 

management. CloudLaunch facilitates the entire appliance lifecycle, from deployment to 

deletion including resource provisioning and initial configuration but not directly state 

management, which can be handled internally via application plugins.

Tools such as OpenStack Heat [20], AWS CloudFormation [21], and HashiCorp Terraform 

[22] focus on the entire application lifecycle via configuration files. The configuration files 

specify required resources and their state while the underlying framework ensures the 

required state is reached. These tools are more closely related to CloudLaunch and where 

CloudLaunch differentiates is the deployment uniformity across cloud providers. These 

existing tools require that appropriate configuration files be developed repeatedly for each 

provider. Terraform can interface with multiple clouds but requires specific resource 

requirements to be defined for each cloud. In contrast, appliance plugins developed for 

CloudLaunch operate uniformly across any supported provider without conditionals on the 

target cloud provider. A somewhat comparable approach is followed by Cloudify [23], 
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which implements the TOSCA standard [12] for application deployment. TOSCA is an 

OASIS standard for deploying application blueprints in a manner similar to OpenStack Heat, 

or AWS CloudFormation. Cloudify provides an implementation of TOSCA. The main 

difference is that CloudLaunch follows a more imperative approach, whereas the TOSCA 

standard defines a declarative approach. We believe that having an imperative model allows 

for a declarative system to be built on top, but the reverse is not true, making CloudLaunch 

more flexible for systems that require a fine degree of control over what IaaS components 

are provisioned. CloudLaunch also does not preclude a standard such as TOSCA being 

implemented on top.

From the cloud API perspective, some of the tools mentioned earlier (e.g., Ansible), as well 

as some language-specific libraries (e.g., Apache Libcloud, jClouds), offer multi-cloud 

resources management capabilities via an API. A unique position for CloudLaunch is the 

fact it offers a language-agnostic REST API that is entirely uniform regardless of which 

cloud provider is accessed. While interfacing with the REST API requires lower-level 

requests to be handled when compared to a language-specific library, the API has the benefit 

of being language-agnostic. It is also foreseeable that language-specific bindings could be 

developed for CloudLaunch, possibly in an automated fashion via an API specification 

language (e.g., OpenAPI). A project most closely related to CloudLaunch from this 

perspective was Apache Deltacloud (http://deltacloud.apache.org/), also offering a REST 

API for multiple cloud providers. However, the project has been retired.

6. Conclusions and Future Work

As an increasing number of application become cloud-enabled, it is desirable to enable 

application developers and deployers to make the given applications available for launching 

on a variety of clouds without requiring duplicate effort. Similarly, end users should be able 

to discover available applications and deploy those on a cloud to which they have access 

while using a consistent interface. With these aims in mind, we developed and presented 

CloudLaunch as a web application and an API platform for discovering and launching 

cloud-enabled applications. Internally, CloudLaunch implements a modular and composable 

model allowing for arbitrary applications to be added while minimizing the amount of effort 

required to integrate a new appliance.

CloudLaunch has been deployed for public use since Feb 2017 and is seeing on the order of 

200 appliance launches per month. Looking into the future, we intend to make it easier to 

integrate clouds and plugins into CloudLaunch. For plugins, we will make them standalone 

modules that can be dynamically loaded into CloudLaunch; similarly, we will make is 

possible for end-users to define their own cloud provider properties so additional resources 

can be readily used from the hosted service.
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Fig. 1. 
Functionality available through CloudLaunch: (A) browse a catalog of appliances; (B) 

launch a chosen appliance, selecting from a range of cloud providers and launch properties; 

and (C) a dashboard of launched appliances showing the current status of the application 

deployment.
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Fig. 2. 
High-level architecture of CloudLaunch. Along with the framework components that 

provide the core functionality, CloudLaunch is extensible via composable application 

plugins on the user interface and back-end. Note that the composition capability of back-end 

plugins is not captured in this figure.
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Fig. 3. 
Plugin interfaces that need to be implemented by each appliance plugin for the front-end and 

back-end.
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Fig. 4. 
Plugin interfaces that need to be implemented by each appliance plugin for the front-end and 

back-end.
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Fig. 5. 
User interface for launching the Base VM plugin – in this case, a Ubuntu virtual machine. 

Because this type of appliance requires no special input from the user, the shown elements 

represent the default user interface features supplied by the CloudLaunch framework for all 

appliances.
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Fig. 6. 
A sample of data sent from the front-end to launch a base VM instance. The request includes 

all the information required to launch the selected appliance, such as the appliance version 

details, appliance configurations, user’s credentials, and target cloud properties. In this case, 

no appliance-specific data is necessary so only CloudLaunch-framework data is transferred 

(visible under config_app → config_cloudlaunch).
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Fig. 7. 
The user interface when launching the GVL platform, which offers appliance-specific 

launch parameters in addition to the ones for a basic VM.
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Fig. 8. 
The user interface implementation of the GVL appliance. The top panel shows the elements 

visible by default; the middle panel includes the CloudMan appliance interface (hidden 

under the advanced options); and the bottom panel shows the optional, advanced GVL 

appliance options.
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Fig. 9. 
Implementation of the GVL appliance back-end plugin.
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Fig 10. 
Docker Launch appliance showcasing the ability to search for arbitrary container images on 

Docker Hub and configure exposed image properties for editing. CloudLaunch will then 

launch a virtual machine, instructing it to start the selected container with specified 

properties.
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