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Abstract

We present the first deep learning method to segment Multiple Sclerosis lesions and brain 

structures from MRI scans of any (possibly multimodal) contrast and resolution. Our method only 

requires segmentations to be trained (no images), as it leverages the generative model of Bayesian 

segmentation to generate synthetic scans with simulated lesions, which are then used to train a 

CNN. Our method can be retrained to segment at any resolution by adjusting the amount of 

synthesised partial volume. By construction, the synthetic scans are perfectly aligned with their 

labels, which enables training with noisy labels obtained with automatic methods. The training 

data are generated on the fly, and aggressive augmentation (including artefacts) is applied for 

improved generalisation. We demonstrate our method on two public datasets, comparing it with a 

state-of-the-art Bayesian approach implemented in FreeSurfer, and dataset specific CNNs trained 

on real data. The code is available at https://github.com/BBillot/SynthSeg.

Keywords

MS lesion; segmentation; contrast-agnostic

1. INTRODUCTION

Multiple Sclerosis (MS) is a presumed autoimmune disorder affecting one in ten thousand 

people in western countries [1]. MS attacks the central nervous system via a demyelinating 

process, which causes physical and mental disabilities. Additionally, MS correlates with 

abnormally fast cerebral atrophy, especially for the cortex and deep grey matter structures 
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[2]. Because of its remarkable ability to image soft tissue and reveal white matter lesions, 

magnetic resonance imaging (MRI) is the technique of choice to diagnose MS and monitor 

its progression. Moreover, MRI is arguably the best technique to evaluate brain atrophy, and 

volumetric measurements obtained from MRI scans can be used to assess the efficacy of 

treatments [3]. For these reasons, joint segmentation of lesions and brain structures from 

MRI scans is of high importance in tracking MS progression. Although manual delineation 

is the gold standard, it remains time-consuming and suffers from inter- and intra-rater 

variability issues [4]. Therefore, there is great value in automated tools for accurate, fast, and 

reproducible segmentation of lesions and brain anatomy.

State-of-the-art methods for MS lesion segmentation mostly build on recent advances in 

convolutional neural networks (CNNs) [5, 6]. However, CNNs generalise poorly to test 

scans of unseen resolution or contrast, even within the same modality. Even if augmentation 

strategies can improve their robustness within modality [7, 8], supervised methods still need 

to be retrained for every new combination of contrast and resolution, often requiring new 

labelled data. This is especially problematic when analysing MS data, which are often 

acquired in clinical settings and thus may vary considerably in terms of resolution, pulse 

sequence, hardware, etc.

In comparison, Bayesian segmentation methods are robust to changes in contrast, and their 

unsupervised variants can segment lesions in any modality [9]. State-of-the-art results have 

been achieved with an atlas-based approach [10], where a variational autoencoder (VAE) is 

used as prior to model the spatial distribution of the lesions. However, these methods are 

slow compared to CNN-based approaches, and may be fragile when used on clinical scans 

with high slice thickness and thus subject to partial volume (PV) effects.

Here we present the first CNN to segment MS lesions and brain regions from (possibly 

multimodal) MRI of any contrast and resolution, without requiring any new data. Building 

on our recent work [11, 12], we train contrast-agnostic CNNs on synthetic scans with 

simulated lesions, to segment at any target resolution, by adjusting the amount of 

synthesised PV. Since the synthetic scans are built from training label maps, and thus 

perfectly aligned with them, we can use noisy segmentations obtained with automated 

methods. This enables us to train with public datasets, which have labels for MS lesions, but 

not for the brain anatomy. The results show that our method is more robust than CNNs 

trained with real scans, and segments lesions as accurately as the state-of-the-art in Bayesian 

contrast-adaptive methods, while being more accurate for brain regions and running 2 orders 

of magnitude faster.

2. METHODS

Segmenting MS lesions is challenging due to their highly varying appearance and location. 

We build on our recently proposed segmentation framework, which achieves great flexibility 

by training CNNs with synthetic scans [11, 12]. These scans are sampled on the fly with a 

generative model inspired from Bayesian segmentation, which uses a Gaussian mixture 

model (GMM) conditioned on label maps. Here, we adapt this method to MS lesions by 

modelling their appearance with a separate Gaussian component, while learning their spatial 
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distribution from manual lesion annotations available from public datasets [4, 13]. Since the 

synthetic scans are perfectly aligned with their labels, we complement the training 

segmentations with automated rather than manual labels.

2.1. Generative model

In training, we assume the availability of a pool of 3D segmentations of J voxels at high 

resolution rh, with labels for MS lesions and brain structures (Fig. 1a). Image-segmentation 

pairs are generated at every minibatch as follows. First, we randomly select a segmentation S 
from the pool, and spatially deform it into L with a diffeomorphic transform ϕ, parametrised 

by θϕ: L = S ∘ ϕ(θϕ) (Fig 1b). The transform ϕ is the composition of three rotations, 

translations, shears, scalings, and a nonlinear transform obtained by integrating a random, 

smooth stationary velocity field [14].

We then generate an intensity image G (possibly multimodal), by sampling a GMM of K 
classes conditioned on L, which we corrupt with a random, smooth bias field B defined in 

logarithmic domain and parametrised by θB:

P(G|L, θG, θB) = ∏
j = 1

J
N(Gj − Bj(θB); μLj, ∑Lj), (1)

where j indexes voxels and θG = {μk, ∑k}1≤k≤K groups all the parameters of the GMM. 

Next, we normalise G between 0 and 1, and raise its voxel intensities by a random power γ 
(centred around 1) to yield an image Ih at high resolution rh.

We then model resolution and PV by forming a low resolution image Il defined on a coarser 

grid of J′ < J voxels. We first simulate voxel thickness by independently blurring each 

channel n of Ih with a Gaussian kernel of standard deviation σn that divides the power by 10 

at the cut-off frequency:

σn = 2 log(10)/(2π)αrnl /rℎ ≈ 0.75αrnl /rℎ, (2)

where rnl  is the target low resolution of the n-th channel, and α is a random factor (centred 

around 1) that increases the variability of σn, thus making the method robust to deviations 

from the nominal target resolution. Il is obtained by down-sampling each blurred channel to 

rnl  to simulate slice spacing. Finally, we upsample Il back to rh (I ℎ, Fig. 1c). This 

upsampling step, also applied at test time, enables to train the CNN with (I ℎ, L) pairs, so it 

learns to segment at high resolution.

2.2. Parameter sampling and lesion modelling

The parameters of the generative model are all independently sampled at each minibatch for 

enhanced augmentation. In practice, θϕ, θB, γ, α are drawn from uniform distributions of 

wide range to expose the segmentation CNN to highly varied samples, thus improving its 

generalisation ability.
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For the GMM parameters θG, modelling the contrasts of lesions and anatomy, we consider 

three sampling strategies:

SynthSeg: means and variances are drawn from uniform priors U(25, 255) and U(5, 25). 

This approach yields scans of random contrast, which we use to train modality-agnostic 

networks [11] to segment anatomy and lesions of any contrast.

SynthSeg-rule: θG is sampled from modality-specific normal prior distributions with 

hyperparameters coarsely estimated from a few scans of the target contrast and resolution. 

Specifically, we (i) segment them with a publicly available tool [10], (ii) use these labels to 

robustly estimate means and variances for each label class, (iii) correct the variances to 

account for the resolution gap between rh and rnl , and (iv) artificially increase the variances 

by a factor of 5 for improved generalisation. SynthSeg-rule aims to simulate realistic 

contrasts for lesions and anatomical regions in a given target modality.

SynthSeg-mix: we randomly select between the two previous strategies at each minibatch 

with equal probability. This method combines the tailored contrast modelling of SynthSeg-

rule with the higher generalisation of SynthSeg.

2.3. Learning

We train a different network for each new target resolution (and modality, depending on the 

sampling of θG), using the same architecture as in our previous works [11, 12]. Specifically, 

we use a 3D UNet [15] with 5 levels, each consisting in 2 convolutional layers (3×3×3 

kernels, ELU activations) and batch normalisation. The first layer counts 24 kernels, and this 

number is doubled after each max-pooling and halved after each upsampling. Probabilistic 

predictions are obtained by appending a softmax activation layer. The loss function is the 

average soft Dice computed over all predicted labels. Both the generative model and the 

network are coded in Tensorflow.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

We use two publicly available datasets in our experiments:

MSSeg: 15 unpreprocessed T1 and FLAIR scans of varying resolution, resampled to 1 mm 

isotropic, with consensus lesion tracings obtained from seven human raters [4]. We use these 

to apply a lesion filling method to the T1 scans [16], which are then processed with 

FreeSurfer to obtain whole-brain segmentations [17]. These are combined with the 

consensus tracings into “silver standard” labels for evaluation.

ISBI15: 15 skull-stripped T1 (0.82 × 0.82 × 1.17 mm) and FLAIR scans (0.82 × 0.82 × 2.2 

mm), resampled to 1 mm isotropic [13]. Using distance maps, we combine manual labels of 

the lesions from two raters into consensus tracings. These are merged with FreeSurfer 

segmentations (computed as above) to obtain silver standard labels for evaluation.
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We evaluate the three variants of our method, namely SynthSeg, SynthSeg-rule and 

SynthSeg-mix, with two experiments. First, we conduct a cross-validation study on the 

MSSeg dataset, by dividing it in 3 folds of 5 subjects each. We separately segment the T1, 

FLAIR, and multimodal T1-FLAIR scans of each fold after having trained our method on 

the labels of the two remaining folds. Importantly, we train two SynthSeg models for each 

fold (one for the unimodal scans, and one for the T1-FLAIR pairs), whereas we train 

SynthSeg-rule and SynthSeg-mix three times each (once for every modality) with intensity 

distributions estimated on the scans of the corresponding training folds. We assess 

performance by computing the Dice scores for the MS lesions and 12 representative brain 

regions of interest (ROI).

In the second experiment we evaluate the robustness of our method by retraining every 

model on all MSSeg scans, and testing them on the held-out ISBI15 dataset. As before, we 

compute Dice scores obtained for 1 mm resolution segmentations of the T1, FLAIR and T1-

FLAIR scans. However, we now train different SynthSeg models for the T1 and FLAIR 

scans, as they do not have the same native resolutions.

We compare the proposed approach against two competing methods. First, we train 

supervised CNNs on real annotated images of the target contrast and resolution. Importantly, 

we use the same 3D UNet architecture and apply the same augmentation as for our method. 

We emphasise that this approach requires supervised training data, which is seldom available 

for a given combination of contrast and resolution. We also compare our method against the 

state-of-the-art Bayesian tool for MS lesion and anatomy segmentation “SAMSEG-lesion” 

[10], which does not require any retraining. Even if its lesion model is trained on a private 

dataset of 212 scans (more than 10 times larger than any of our training sets) [10], 

SAMSEG-lesion is a natural competitor to the SynthSeg variants as it is fully contrast 

adaptive, only requires label maps to be trained, and segments most brain regions.

3.2. Results

The box plots of Figure 2a and 2b show that SynthSeg and its variants accurately segment 

MS lesions and brain ROIs, despite having only been trained on synthetic data generated 

from automated segmentations of brain anatomy. These scores also approach the inter-rater 

precision median Dice score of 0.68 (computed on the seven manual delineations). 

Interestingly, training with random or realistic contrasts yields very similar results (no 

statistical difference for two-sided non-parametric Wilcoxon signed-rank test), while mixing 

both strategies leads to significant improvements (p < 0.01 for all scores). Compared to the 

state-of-the-art tool SAMSEG-lesion, our method obtains similar results for MS lesions (no 

statistical difference, except with SynthSeg-mix for FLAIR), and is more accurate for brain 

ROIs while running two orders of magnitude faster. Being trained on the exact intensities, 

the supervised CNNs considerably outperform the other approaches (except SynthSeg-mix 

for the lesions, where no statistical difference can be inferred), but are only an option when 

supervised training data are available.

The robustness of the proposed method is demonstrated in the second experiment, where 

SynthSeg and its variants sustain their high performances when tested on the ISBI15 dataset 

(Fig. 2c,d and 3). In contrast, the scores of the supervised CNNs drastically degrade 
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compared to the first experiment, thus showing poor generalisation abilities, even within the 

same modality (Fig. 3b). Although it was trained on a much larger dataset, SAMSEG-lesion 

achieves a level of performance similar to our method for MS lesions (no statistical 

difference), but is significantly outperformed for the brain ROIs. For example, SAMSEG-

lesion segments the cerebral cortex poorly (red arrows in Figure 3c), which is remarkably 

well recovered by all the variants of SynthSeg.

4. CONCLUSION

We have presented the first deep learning method for joint segmentation of MS lesions and 

whole-brain regions for scans of any contrast at any predefined resolution, without requiring 

any new supervised data. Despite being trained on partly automated labels, our method 

achieves state-of-the-art results in contrasts-agnostic segmentation, and remarkably 

generalises to unseen datasets. While mixing synthetic scans of realistic and random 

contrasts in training gives slightly more accurate results for a fixed contrast and resolution, 

we found that using totally random contrasts enables to readily segment scans of any 
contrast at a given resolution. Future work will focus on extending the proposed method to 

other types of white matter lesions (e.g., in stroke), and further enriching the model by 

replacing manual segmentations of lesions with randomly generated masks. Thanks to its 

flexibility, we believe that the presented approach has the potential to facilitate large studies 

on the progression of MS with clinical data.
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Fig. 1. 
Generation of a FLAIR scan: (a) Training label map with MS lesions (bright purple); the 

segmentation of the brain regions are automated and thus imperfect. (b) Spatial 

augmentation. (c) GMM sampling, artefact and PV modelling.
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Fig. 2. 
(a) Box plots of the cross-validation Dice scores for the MS lesions and (c) for the average 

over 12 brain ROIs: cerebral cortex and white matter, lateral ventricle, cerebellar cortex and 

white matter, thalamus, caudate, putamen, pallidum, brainstem, hippocampus, and 

amygdala. (b) and (d) show the results obtained when training on MSSeg and testing on 

ISBI15.

Billot et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Segmentation of an ISBI15 FLAIR scan: (a) ground truth, (b) supervised, (c) SAMSEG-

lesion, (d) SynthSeg, (e) SynthSeg-rule, (f) SynthSeg-mix. MS lesions are in bright purple. 

Arrows indicate major segmentation errors (yellow for MS lesions, red for brain ROIs).
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