Skip to main content
. 2021 Aug 5;3(3):lqab066. doi: 10.1093/nargab/lqab066

Table 6.

ARG-SHINE outperforms existing ARG classification programs and the component methods in terms of classification mean accuracy and weighted-average F1-score on the COALA100 test data

Methods Accuracy Macro-average F1-score Weighted-average F1-score
BLAST best hit 0.9066 0.9131 0.9221
TRAC 0.9043 0.8963 0.9020
ARG-CNN 0.9219 0.9176 0.9206
ARG-InterPro 0.8689 0.8135 0.8654
ARG-KNN 0.9112 0.9215 0.9266
ARG-SHINE 0.9286 0.9225 0.9276

The best results among all the methods and best results among the stand-alone methods are in bold.