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Abstract

Three-dimensional (3D) refractive index (RI) tomography has recently become an exciting new 

tool for biological studies. However, its limitation to (1) thin samples resulting from a need of 

transmissive illumination and (2) small fields of view (typically ~50 μm × 50 μm) has hindered its 

utility in broader biomedical applications. In this work, we demonstrate 3D RI tomography with a 

large field of view in opaque, arbitrarily thick scattering samples (unsuitable for imaging with 

conventional transmissive tomographic techniques) with a penetration depth of ca. one mean free 

scattering path length (~100 μm in tissue) using a simple, low-cost microscope system with epi-

illumination. This approach leverages a solution to the inverse scattering problem via the general 

non-paraxial 3D optical transfer function of our quantitative oblique back-illumination microscopy 

(qOBM) optical system. A theoretical analysis is presented along with simulations and 

experimental validations using polystyrene beads, and rat and human thick brain tissues. This 

work has significant implications for the investigation of optically thick, semi-infinite samples in a 

non-invasive and label-free manner. This unique 3D qOBM approach can extend the utility of 3D 

RI tomography for translational and clinical medicine.

1. INTRODUCTION

Quantitative phase imaging (QPI), the fundamental tool behind three-dimensional (3D) 

refractive index (RI) tomography, is a powerful tool in biomedicine due to its ability to 

produce high-contrast, non-invasive, label-free two-dimensional (2D) images of biological 

samples with subcellular detail based on endogenous, spatially dependent variations in RI 

[1]. Once quantified, RI gives rise to valuable biophysical information related to cell dry 

mass [2], sample thickness [3], and real-time cell activity [4,5]. Until recently [6], however, 

the need for a transmissive illumination in QPI has limited investigations to relatively thin, 

transparent samples, thereby limiting the biological utility of this technology to mostly ex 
vivo histology slides or cell preparations [3,7,8].

The shortcomings of QPI have naturally extended to 3D RI tomography [including optical 

diffraction tomography (ODT), or more generally, tomographic phase microscopy (TPM)]. 
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ODT relies on acquiring multiple interferograms using QPI with diverse illumination and 

reconstructing a volume, typically in a similar fashion to x ray computed tomography [9,10]. 

Thus, while 3D RI tomography has recently become an interesting and powerful tool for 

biological studies—given its unique high-resolution, label-free 3D insight [9,11–13]—its 

limitation to samples of thickness no more than a few cells has also significantly hindered its 

overall utility. Again, this limitation to thin samples is mostly rooted in a need for 

transmissive illumination, which has made bulk or in vivo tissue imaging fundamentally out 

of reach for these technologies. Other limitations of ODT also include small fields of view 

and the need for coherent laser sources and specialized equipment [9,14].

Indeed, label-free 3D tomographic imaging with epi-illumination is widely available using 

optical coherence tomography (OCT) [15] or confocal reflectance microscopy (CRM) [16]. 

However, these methods derive contrast from backscattered light, which primarily arises 

from large variations in RI. Thus, while both OCT and CRM enable 3D imaging in 

arbitrarily thick samples, they lack critical structural detail encoded in the forward-scattered 

field [17]. On the other hand, QPI and ODT collect the forward-scattered information and 

recover structural detail that much more faithfully depicts subtle internal cell structure, at the 

cost of being restricted to thin, transmissive samples.

To resolve this trade-off, we recently introduced quantitative oblique back-illumination 

microscopy (qOBM), which recovers quantitative phase information in thick scattering 

samples using epi-illumination [6]. The approach is based on principles of oblique back-

illumination microscopy (OBM) [18], which uses a conventional bright-field microscope 

with epi-illumination to produce a transmissive virtual light source within a thick sample by 

way of multiply scattered light [see Figs. 1(a) and 1(b)]. This illumination scheme permits 

the imaging of samples that are optically thick, including effectively opaque semi-infinite 

scattering media such as tissue samples in vivo or excised in bulk, which would pass little to 

no light in a typical transmissive illumination configuration. In qOBM, this general 

framework was advanced to produce 2D quantitative phase images of thick tissues with 

subcellular resolution by leveraging the method’s inherent cross-sectional capabilities [6]. 

However, in analogy to the transition from QPI to ODT, the finite extent of the 3D point 

spread function (PSF) of the system must be explicitly addressed to properly transition from 

a system that produces 2D phase images to one that maps RI in 3D.

In this work, we expand the capabilities of qOBM to recover wide field-of-view 3D RI 

tomographic maps of arbitrarily thick scattering (i.e., opaque) samples using epi-

illumination. These capabilities are achieved by first adopting a solution to the 

inhomogeneous Helmholtz equation, which leads to the general non-paraxial 3D optical 

transfer function (OTF) of our optical system. Then, together with a through-focus stack of 

intensity images from two pairs of diametrically opposed light sources, we are able to 

recover 3D RI maps with subcellular resolution, via direct deconvolution. Compared to 

previous ODT methods [9–13], qOBM provides clear benefits, including (1) use of a 

conventional bright-field microscope without additional complex/expensive components, (2) 

wide fields of view, and (3) most importantly, the ability to recover the same quantitative 

biophysical information in previously inaccessible environments, namely optically thick 

scattering samples that cannot be imaged with transmission-based systems. A theoretical 

Ledwig and Robles Page 2

Optica. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis is presented, along with simulations and experimental validations using polystyrene 

beads, and thick rat and human brain specimens. The results of this work show that qOBM 

can greatly expand the utility of 3D RI tomography to many areas of biomedicine, including 

translational and clinical medicine.

2. qOBM OVERVIEW AND MICROSCOPE SYSTEM

qOBM integrates principles of OBM [18] with a novel photon transport approach to model 

the optical system and enable reliable quantitative image reconstructions [6]. In OBM, two 

images are obtained with illumination from diametrically opposed LED light sources. Then, 

the two images are subtracted from one another to produce a differential phase contrast 

(DPC) image, similar to that of differential interference contrast (DIC) but in thick samples 

with epi-illumination [18,19]. In order to produce quantitative images of phase with qOBM, 

the original OBM setup was modified and additionally equipped with a novel intensity-

based phase recovery algorithm [6]. First, qOBM introduces a second pair of LED light 

sources, orthogonal to the first pair to recover phase information in that direction. Second, 

the phase recovery algorithm initially applied for qOBM was based on numerically 

modeling the angular distribution of light at the focal plane of the system within the thick 

sample, thus leading to the (transmission-like) effective source distribution in that plane. 

This distribution is insensitive to microscopic variations within the sample and largely 

invariant for biological tissues given the relatively long scattering path length and near unity 

anisotropy of most biological materials [20]. Ultimately, the source distribution enables us to 

produce a 2D OTF of the system (see Fig. 1), which is applied to recover en face quantitative 

phase images of a thin slice within a thick object (i.e., produce a virtual cross section).

In the section below, we provide a formal mathematical picture of this 2D reconstruction 

strategy and compare it to the proposed 3D model, which provides a more complete 

depiction of the system. The 3D model incorporates a robust solution to the inverse 

scattering problem for our qOBM system. Results of the 3D reconstruction not only show 

improved image quality, but also enable 3D RI tomography.

The qOBM system [Fig. 1(a)] has been previously described in Refs. [6,21,22]. In brief, the 

overall system comprises a standard inverted bright-field microscope configuration with epi-

illumination from four LEDs (far-red Luxeon Rebel ES, 720 nm), each coupled into a 

multimode fiber (1 mm diameter) affixed around a long working distance microscope 

objective (Nikon S PLAN, 60×, NA 0.7) using a custom-made 3D printed adapter. The light 

delivery fibers are held at a canted angle (45°), 7 mm away from the center of the objective 

(see Fig. 1). When compared to coherent sources, incoherent LEDs reduce the cost of the 

system and preclude the possibility of photodamage due to their relatively low power on the 

sample (30 mW of diverging incoherent light). Images are captured with a sCMOS camera 

(pco.eddge 42LT) at 20 Hz. The objective is mounted on a motorized z-stage (Thorlabs, 

ZFM2020), and the sample is mounted on a motorized xy-stage (Optics Focus Instruments 

Co,. Ltd.). The stages, LEDs, and camera are coordinated with in-house software (National 

Instruments LabView 2019).
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3. THEORY AND RECONSTRUCTION METHODS

In general, to translate phase (a quantity of the light field) to RI (a quantity of the object), 

volumetric spatial information is needed. Thus, in principle, the original framework for 

qOBM, which applies a 2D deconvolution to recover phase from a thin slice within a thick 

object, can produce volumetric images of RI by stacking individual images of phase at 

different planes and accounting for the effective thickness of each slice. However, as we 

show below, rendering 3D RI maps in this fashion has the unintended consequence of 

incorrectly mapping certain frequency components and amplifying components outside the 

axial frequency-support of the first-order system, which primarily contributes to noise. 

Together, these errors lower the signal-to-noise ratio (SNR) and suppress low-frequency 

information. Therefore, an analysis of the microscope as a 3D system is needed for a more 

complete reconstruction of the RI distribution of thick objects.

A. 2D Quantitative Phase Images with qOBM

We start our discussion with the framework of our 2D approach and then build up to the 3D 

model. The 2D analysis may proceed from the propagation of the angular spectrum of 

incident light across a thin object or thin slice within a thick object with complex 

transmittance [23],

o(x) = exp( − μ(x) + iϕ(x)) (1)

≈ 1 + iϕ(x), (2)

where μ(x) and ϕ(x) are the object’s absorption and phase properties, respectively, along a 

thin slice, and x is a 2D transverse coordinate vector in the object space. Here an 

approximation is made for a weak scattering object (see Supplement 1, Section 4) with 

negligible absorption. Note that in the biological samples under investigation, absorption 

certainly occurs on the scale of the bulk tissue as a whole. However, the approximation takes 

absorption to be negligible only on the scale of the effective cross-sectioning thickness 

afforded by the partial coherence of the illumination, which is just a few micrometers.

The phase term here can be related to the RI of the object by taking the 2D screen of 

infinitesimally small thickness δz to instead represent an average transmittance over a finite 

thickness Δz, which yields the familiar form

ϕ(x) = 2π
λ Δz n(x) − n0 , (3)

where n0 is the background index of refraction, λ is the wavelength, and n(x) is the locally 

varying index of refraction of the object. Without loss of generality and for the rest of this 

work, we scale the object’s varying index of refraction according to n′(x) = n(x)/n0, and let 

the quasi-monochromatic wavenumber be given by k =
2πn0

λ , allowing us to represent Eq. (3) 

according to ϕ = kΔzΔn, where Δn(x) = (n′(x) − 1).
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The light incident on a detector can be evaluated by decomposing an incident incoherent 

light field into constituent illumination angles, along the wavelength-normalized 2D 

direction cosine vector u, then propagating the field, E(u), from the object, o(x), to the pupil, 

P(f), and once again into the plane of the camera. Finally, all angles illuminating the sample 

are summed incoherently. This procedure may be summarized as

I( r ) = ℱ2
−1 P (f)ℱ2 o(x)ℱ2

−1 E(u) 2, (4)

where u, x, f, r  are wavelength-normalized coordinates in the source, object, pupil, and 

camera planes, respectively, and ℱ2 represents a 2D Fourier transform operation. This 

function can be evaluated into a convolution of the object and its own complex conjugate 

with a four-dimensional transfer function scaling factor [24]. After substituting the pupil 

plane coordinates of integration m and n for f, and introducing a Fourier space coordinate 

vector q = m − n at the detector plane, the Fourier transform of Eq. (4) can be expressed as 

(see Ref. [6] for details)

I(q) = ∫ O(m)O*(m − q)C(m, m − q)d2m, (5)

where O(m) is the object transmission function in Fourier space and C(m, m − q) is the four 

dimensional partially coherent transfer function of the form

C(m, n) = ∫ S(u)P (u + m)P*(u + n)d2u, (6)

where S(u) = |E(u)|2 is the light angular intensity distribution illuminating the object. Next, 

for a weak phase object, O(m) ≈ δ(m) + iΦ(m), where Φ(m) is the Fourier pair of the 

object’s phase term, Eq. (5) can be simplified to

I(q) = δ(q)C(0, − q) + i Φ(q)C(q, 0) − Φ*( − q)C(0, − q) . (7)

Equation (7) again assumes a weak phase object, and for simplicity, negligible absorption 

(the subtraction process in OBM and qOBM eliminates this term regardless [6]). Because 

ϕ(x) is real, its Fourier counterpart exhibits Hermitian symmetry, Φ(q) = Φ*(−q). Without 

the DC term in the right-hand side (RHS) of Eq. (7),

I(q) = iΦ(q)[C(q, 0) − C(0, − q)] . (8)

Finally, we may recast the subtraction term in brackets on the RHS of Eq. (8) as a linear 2D 

weak phase object transfer function Tϕ
2D(q) by evaluating Eq. (6) in Eq. (8), and making a 

change of variables u = u′ − 1
2q in C(q, 0) and u = u′ + 1

2q in C(0, −q), so that
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Tϕ
2D(q) = − i ⋅ ∫ S u′ + 1

2q − S u′ − 1
2q

× P u′ + 1
2q P* u′ − 1

2q d2u′,
(9)

where S(u) is the effective, and arbitrary, source intensity distribution in incident angle.

Therefore, the linear image formation for this weak phase object is modeled as 

I( r ) = o(x) * * t(x), where t(x) is the net PSF of the system and Fourier pair of the phase 

transfer function given by Eq. (9), and ** represents a 2D convolution operation. This 

transfer function can be seen to depend on two system-dependent factors: (1) the exit pupil 

function of the system P(u), which for qOBM is taken as a discrete mask for angles that fall 

within the acceptance angle of the objective (i.e., the objective’s NA); and (2) the effective 

source angular distribution S(u). Note that the quantity in brackets in Eq. (9) selects the odd 

portion of the illumination, indicating that for an effective odd illumination (such as that 

synthesized by a difference image between two symmetrically opposed illuminations in 

qOBM), the phase information is selected. Absorption information, even if present and non-

negligible to a first order, is also rejected when the net illumination is odd [6].

This approach can produce volumetric phase images (and hence RI volumes assuming some 

known Δz) given the cross-sectioning capabilities provided by the highly incoherent nature 

of the effective illumination in qOBM [25]. However, the cross section is not an ideal 2D 

thin screen, and thus a more complete model is needed to account for the finite axial extent 

of the 3D PSF of the system. This ultimately leads to a drastically more faithful, high-

resolution volumetric recovery of the RI properties of complex, thick, 3D biological 

structures.

B. 3D Refractive Index with qOBM

Now consider a 3D image intensity distribution consisting of a stack of 2D images with 

different parts of a 3D object in focus (i.e., through-focus stack of intensity images). We 

assume again that the object is non-absorbing and has a spatially varying RI distribution of 

n( r ), where r  is the 3D spatial vector (the vector arrow is used here in addition to the bold 

typeface to more clearly distinguish a 3D vector from a 2D vector). We begin this analysis 

with the the inhomogeneous Helmholtz equation,

∇2 + k2 E( r ) = V ( r )E( r ), (10)

where V ( r ) is the scattering potential given by

V ( r ) = k2 1 − n′( r )2 , (11)

where n′( r ) has been scaled according to the discussion following Eq. (3). The 3D linear 

transfer function of a microscope, which relates the 3D image intensity distribution to the 

scattering potential, was first treated in this way in the seminal work by N. Streibl [26], 

where it was developed in the paraxial regime according to the propagation of mutual 
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intensity. Alternatively, it may be reproduced by an analysis of the angular spectrum of the 

field incident on the target, and then integrating the incoherent contributions from the source 

in a manner analogous to the 2D treatment summarized above. This analysis may proceed 

from the angular spectrum representation of the first-Born scattering potential [27], or as an 

extension of the 2D theory [28] by noting that for a weak phase object (|Δn( r )| ≪ 1),

V ( r ) = k2 1 − (Δn( r ) + 1)2 ≈ − 2k2Δn( r ) . (12)

While the scattering potential and RI may in general be complex, as before, here we only 

treat the real part without loss of generality. Any contributions from the imaginary part (i.e., 

absorption) are eliminated in the subtraction process in qOBM.

To produce a 3D OTF for an arbitrary source distribution, which links the measured intensity 

image stack, I( r ), to the scattering potential, V ( r ), we evaluate the general non-paraxial 

OTF [29],

TV
3D q, qz = iλ

4π∫ P u′ + 1
2q P* u′ − 1

2q

× S u′ + 1
2q − S u′ − 1

2q

× δ qz + λ−2 − u′ − 1
2q

2
− λ−2 − u′ + 1

2q
2

d2u′,

(13)

where q =[qx, qy], and qz is shown as separate variables to maintain clarity in the formalism 

between 2D and 3D formulations. Note that this treatment applies to both low and high NA 

imaging conditions. Further, this 3D OTF is of a similar form to the 2D OTF in Eq. (9) with 

the added delta function, which is effectively a consequence of conservation of energy, and 

forms two spherical (Ewald) shells [30]. The first Ewald shell has radius λ−1 centered 

around −λ−1u0, where u0 is the wavelength-normalized direction vector of illumination for a 

particular component of the source S(u). The second shell has a Hermitian symmetry with 

the first and probes the corresponding complex conjugate portion of the scattering potential.

To more clearly connect the 2D and 3D theory, we can adopt a modified pupil function [30–

32] given by

Π u ′ ± 1
2 q = P u′ ± 1

2q δ uz ± qz
2 − λ−2 − u′ ± 1

2q
2

, (14)

where uz represents the z-frequency component in the pupil space. A thorough discussion on 

the transition from 2D to 3D diffraction theory can be found in Ref. [28], but for the 

purposes of this work, we note that, according to Eqs. (3) and (12), for a thin diffracting 

screenwhere Δz ≈ δz,

V ( r )δ(z) = − 2k(kΔn(x)Δz) = − 4π
λ ϕ(x) . (15)
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By scaling the coefficient on the RHS of Eq. (13) according to the results of Eq. (15), we 

obtain an effective transfer function for the phase,

Tϕ
3D(q ) = − i ⋅ ∫ S u′ + 1

2q − S u′ − 1
2q

× Π u ′ + 1
2 q Π* u ′ − 1

2 q d3 u ′ .
(16)

Equation (16) can be seen to evaluate to Eq. (13) by using the relations δ*(x − β) = δ(β − x) 

and ∫ δ(α − x)δ(x − β)dx = δ(α − β) in the product of the two forms of Eq. (14) in Eq. (16), 

and by integrating Eq.(16) along the uz dimension.

The resulting 3D transfer function of ϕ(x) [Eq. (16)] has exactly the same form as Eq. (9), 

but with the modified pupil function from Eq. (14), and a 3D integration (instead of 2D) in 

frequency space. While this makes it clear that the 2D and 3D theories are fundamentally 

linked, the absence of the explicit z axis dependence in the delta functions of Eq. (9) (2D 

form) compared to Eq. (16) (3D form), demonstrates the well-known inability of the 2D 

theory to accurately represent diffracted phase contributions from outside the focal plane. 

Given the curvature of the modified pupil function in Eq. (16), both a 3D data volume and 

3D reconstruction are necessary to more faithfully recover the properties of the scattering 

object. Otherwise, in the 2D model, improperly assigned and/or unaccounted frequency 

components can pollute the reconstructed en face 2D image.

Finally, the 3D image intensity stack can be expressed in terms of the scattering potential 

convolved with the 3D PSF according to I( r ) = V ( r ) * * * tV3D( r ), where the operator *** 

represents a 3D convolution and tV3D is the 3D scattering potential PSF.

C. Numerical Evaluation of the 3D OTF

The numerical evaluation of this transfer function was accomplished by looping through 

discrete points in the pupil plane, shifting the source distribution, and windowing in z axis 

spatial frequency by treating the delta function in Eq. (13) as a scaled Kronecker delta. The 

angular distribution of the source, S(u), is derived from Monte Carlo simulation using bulk 

tissue scattering properties from the literature [6,33,34] (see Supplement 1, Section 2 for 

more details). An example 3D transfer function produced in this way is given in Fig. 1. 

Quantitative reconstruction is therefore achieved by an appropriate deconvolution technique 

[35,36]. Iterative approaches to linear deconvolution can also be applied (as explicitly shown 

here) but trade computational cost for reconstruction fidelity [10]. We note that for the wide 

volumetric fields of view achieved here (e.g., 243 μm × 243 μm × 104 μm), direct inversion 

via Tikhonov regularization provides the most efficient reconstruction,

V ( r ) = ℱ−1 ∑k I3D
k q, qz TV* q, qz

∑k TV q, qz
2 + α

. (17)
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Here I3D
k  represents the Fourier transform of the 3D intensity stack of the kth illumination, 

and α is the regularization term, here determined heuristically. Lastly, we use Eq. (11) to 

recover the 3D RI distribution from the scattering potential.

In this work, k = 2 for the two odd effective sources at orthogonal shear directions, each 

produced from the subtraction of two diametrically opposed sources, in a differential phase 

configuration. The four (or more) illumination sources can be deconvolved independently, in 

which case k ≥ 4, but we find that subtracting opposed images first yield better results. This 

may be due to a better rejection of non-phase information in the subtraction process, 

compared to that achieved in the least squares process for the independent Tikhonov 

reconstructions.

Additionally, to show the benefits and trade-offs of an iterative reconstruction method, we 

apply a total-variation (TV) nonnegativity constrained iterative deconvolution in small select 

reconstruction volumes [37]. This iterative approach seeks to find a compromise between 

data fidelity and a total sum of directional gradients and is commonly used in coherent 

tomographic phase methods [9]. A discussion of the appropriateness of this approach in 

dense wide-field volumes of unperturbed tissue is taken up in Section 3 of Supplement 1. 

This approach provides a higher fidelity reconstruction compared to the direct inversion at 

the cost of computational time (>500 times slower than a Tikhonov reconstructions; see 

Supplement 1, Section 3).

4. RESULTS

To validate our 3D RI tomography approach, we first use polystyrene microspheres (n = 

1.581 at 720 nm) suspended in a thermoplastic medium (Cargille, Meltmount, n = 1.533 at 

720 nm), and placed in a 100 μm well on a glass slide. The surrounding medium was 

selected such that the bead produced adequate contrast without higher-order scattering 

artifacts, such as lensing, providing an environment similar to that of a biological sample.

A 1% intralipid-agar phantom was placed over the bead preparation [38], and a through-

stack of qOBM images was taken with Δz = 0.5 μm. The 3D RI distribution was produced 

by first stacking 2D images produced from the 2D model, and then by deconvolving the 

volume with the 3D OTF (Eq. 17). As described above, two types of 3D reconstructions 

were implemented: Tikhonov and iterative deconvolution. As an additional step in this 

validation, the 3D microscope image stack of the bead was simulated using a partially 

coherent first-Born simulation of the microscope developed in MATLAB (MathWorks, Inc). 

RI volumes were also computed with the 2D and 3D models for comparison with the 

experimental results. A discussion of the validity of the first-Born approximation for the 

beads with the chosen RI contrast is given in Section 4 of Supplement 1.

Simulation and corresponding experimental results of polystyrene microsphere are shown in 

Figs. 2(a) and 2(b), respectively, which show excellent agreement. Data are presented in four 

formats: The first column shows the OBM images produced from subtracting raw captures 

from one diametrically opposed light source pair. The second column shows the RI 

reconstructed from 2D phase images axially stacked, with Δz = 0.35 μm. The third column 

Ledwig and Robles Page 9

Optica. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shows the RI distribution obtained for the direct Tikhonov 3D deonvolution of the entire 

stack. Finally, the fourth column shows the RI distribution for the iterative TV 

reconstruction. It can be seen by comparing the 2D and 3D reconstruction methods that 

deconvolving with a 3D OTF results in a fuller, more consistent bead reconstruction with the 

shape of a solid structure with a level cross-sectional profile. On the other hand, the 2D 

reconstruction shows a hollow structure. This is a consequence of the 2D model not 

correctly accounting for the curvature of the pupil function (i.e., Ewald sphere) as described 

in Eq. (13), resulting in a loss of low-frequency content. Both the 2D and 3D Tikhonov 

deconvolution reconstructions retain some degree of axial spread due to the difficulty of 

restoring frequencies with a direct deconvolution in the high-axial frequency “missing cone” 

region. This issue is largely mitigated with the iterative TV reconstruction, which shows a 

near perfect 3D reconstruction. However, this comes at the significant cost of computational 

resources, which for this small volume translates to a factor of 372 times slower compared to 

the direct 3D deconvolution (see Supplement 1, Sections 1 and 3 for more details). As 

computational power improves and as more advanced algorithms are implemented and 

developed, we expect this trade-off to be less severe.

Next, the entire validation experiment was repeated using a fresh, thick brain instead of 

intralipid-agar phantom as the scattering media for the bead preparation. Results, described 

in Supplement 1, Section 1 and Fig. S1, are nearly identical to the intralipid-agar phantom 

experiment (Fig. 2). These data further support the quantitative capabilities of 3D qOBM in 

a thick inhomogeneous scattering medium like those natively present in vivo and in bulk 

biological tissue samples.

We proceed to demonstrate the 3D qOBM system in complex, unaltered, semi-infinite 

opaque biological samples, in which qOBM is uniquely suited to resolve diffraction-limited 

3D RI structural information. Figure 3(a) shows a full-field image of a portion of unaltered 

fresh human cortex tissue discarded from surgery at 48 μm of depth. A cross section of this 

depth may be produced with this fidelity due to the high degree of incoherence of the net 

(multiply scattered) illumination source. Further, speckle noise is completely eliminated. A 

select magnified region [Fig. 3(b)] clearly shows an axonal cross section, extracellular 

vesicles, and neuronal cell nucleus, highlighting the ability of qOBM to provide detailed 

subcellular insight. Figure 3(c) shows an X − Z cross section of the same 243 × 243 × 104 

μm volume of cortex, with a magnified version in Fig. 3(d), which captures a red blood cell 

(top) and an axially traversing axon cross section. The benefits provided by the 3D qOBM 

reconstruction compared to the 2D stacks and OBM are clear, with the former showing 

better object conspicuity and image quality (i.e., SNR), and consequently deeper penetration 

depth. Figure 4 is a maximum intensity projection of this volume, with color encoding 

depth. While contrast diminishes with depth, structural features up to 100 μm deep remain 

distinguishable (ca. one mean free scattering path length). This behavior can also be seen in 

Fig. 3(e) with the steady decline of Shannon entropy, an indicator of image information 

content [39] and surrogate for SNR, decreasing steadily with depth due to scattering noise. 

Note that the 3D reconstruction has higher entropy than the 2D reconstruction at all depths, 

in agreement with visual inspection of Fig. 3. Additional examples are provided in Figs. S3 

and S4 of Supplement 1.
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Finally, Fig. 5 shows images collected from choroid plexus of a thick unaltered (fresh) 

coronal section of a rat brain [see Figs. 1(a) and 1(b)]. All protocols were approved by the 

Institutional Animal Care and Use Committee of Georgia Tech and Emory University. This 

tissue consists of mesoscale folds of epithelial cells that mediate the production of 

cerebrospinal fluid in the ventricles of the brain [40]. The reconstructions of bulk tissue with 

the 3D transfer functions in Fig. 5(c) can be seen to preserve low-frequency variations in 

mesoscale structures and reduce noise, when compared to the flatter, noisier images from the 

2D reconstruction and OBM. This effect is directly analogous to the hollow structure 

observed in the 2D reconstruction of the beads in Fig. 2. For the choroid plexus, as with the 

beads, the 3D treatment of RI is necessary to preserve axial structures that vary slowly over 

the course of several frames in a through-stack.

Fourier space images shown in Fig. 5 (insets) demonstrate another important advantage of 

the 3D model. Specifically, the support structure in the 3D reconstruction is well confined to 

the domain of the OTF of the system. On the other hand, the stacked 2D reconstruction 

includes axial frequency components beyond the figure-eight support structure of the 

system. This results from the inherent assumption of the 2D model that it probes a thin Δz 
slice of the thick 3D object. While there may be recoverable structural information in some 

of these higher kz terms, without proper treatment, these components mostly contribute to 

noise in the 2D reconstruction [41]. It is also worth highlighting that the image reconstructed 

with OBM lacks a substantial number of lateral spatial frequencies. Of note, the transverse 

Fourier space image (kx, ky) shows a bow-tie structure, resulting from the use of a single 

diametrically opposed light source pair. The missing information in the orthogonal direction 

ensures that no properly filtered gradient integration or deconvolution can properly recover 

the phase information present in the object without a second, perpendicularly illuminated 

image. This limitation is shared across any modality that uses gradient phase information 

along one direction [42,43].

5. DISCUSSION AND CONCLUSION

By producing 3D maps of RI, qOBM proceeds naturally from a QPI method to a method of 

TPM [9]. Importantly, as we have shown here, qOBM simplifies the instrumentation and 

overcomes many important limitations of TPM. For example, instead of using laser light 

sources, which are expensive and subject to coherent artifacts [44], qOBM uses low-cost, 

incoherent LEDs. The qOBM system also does not require beam scanning or other 

specialized equipment, as is often required in TPM [9]. Rather, tomographic imaging is 

achieved with simple modifications to a bright-field microscope and a through-focus image 

stack. Furthermore, qOBM yields a wide field of view, which is typically restricted in TPM. 

The inherent optical sectioning capabilities of qOBM allow a direct deconvolution to 

produce robust 3D RI results in seconds, even for very large data sets (see Supplement 1, 

Section 3 for more details). If necessary, more complex iterative methods can be 

implemented to achieve higher fidelity reconstructions, at the cost of computational time. 

Finally, the most critical advantage of qOBM is that it is designed to operate in semi-infinite 

opaque scattering samples, which has been a long standing limitation of TPM. In fact, to the 

best of our knowledge, this work presents the first quantitative RI volumetric images of 
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arbitrarily thick biological samples (≫1 cm3) with subcellular resolution and with a current 

penetration depth of ca. one mean free scattering pathlength.

The advancement of the 3D model from the 2D model for qOBM is also substantial. We 

have shown that the RI map produced by concatenating sequentially captured 2D qOBM 

images may be numerically faithful to RI of the object, with minimal out-of-plane 

diffraction artifacts. However, the 2D RI reconstruction limits mesoscale structures due to an 

incorrect mapping of frequency components. Further, the tendency of the 2D reconstruction 

to treat out-of-plane diffraction artifacts as in-plane phase features inadvertently amplifies 

high-axial frequency noise. In light of a complete 3D linear systems interpretation of the 

microscope, a more accurate RI map is produced by deconvolving the intensity image stack 

with the non-paraxial 3D OTF of the system. With this approach, qOBM offers a unique 

ability to investigate biological structures in scales and domains previously unavailable to RI 

tomography techniques.

It is important to note that other recent advances have also sought to overcome some of the 

aforementioned limitations of TPM. For example, dynamic-speckle has been applied to 

overcome coherent artifacts [45], temporally or spatially incoherent illumination has been 

used for depth sectioning [13,46], and implementation of a reflection Nomarski system 

allows investigation of thick samples [43]. Each of these methods addresses an important 

problem with or limitation of conventional TPM, but manages to solve one or two of the 

several difficulties individually that 3D qOBM is able to overcome simultaneously.

The advantages provided by qOBM pave the way for broader usage of 3D RI tomography, 

particularly for in vivo, translational, and/or clinical applications, which have been largely 

out of reach for this technology. Here we have presented images of thick brain tissues, 

demonstrating the ability of qOBM to provide detailed 3D RI biophysical insight of this 

critical organ. Indeed, qOBM can provide clear visualization and quantification of axons, 

neuron soma, blood vessels, and other brain structures in a label-free manner and potentially 

in vivo, which is vitally important for improving our understanding of brain function and 

tracking changes that may occur in the progression of disease (e.g., Alzheimer’s disease). 

Similarly, there are many other biomedical applications that would benefit from label-free in 
vivo or in situ 3D RI tomography, ranging from regenerative medicine to clinical 

applications. Therefore, we expect qOBM to become an important tool in the hands of 

researchers and clinicians alike.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
System diagram and processing overview. (a) LED-illuminated inverted microscope 

configuration with coronally sectioned rat brain on a slide. (b) Log visitation likelihood 

projection through transverse shear axis, demonstrating a high-fidelity Monte Carlo 

simulation geometry. Scale bar is 2.5 mm. (c) Photon angular distribution collected at the 

sample plane. This distribution is shown on the unit sphere surface to indicate that the non-

paraxial angular coordinates represent a 3D unit vector in the direction [ux, uy, η], where 

η = 1 − ux2 − uy2. (d) Source distribution projected onto a planar coordinate grid u = [ux, uy], 

scaled with obliquity factor η. (e) Example 2D phase transfer function in pupil plane 

coordinates q = [qx, qy] corresponding to wavelength-scaled spatial frequency grid. (f) 

Example 3D phase transfer function distribution in the 3D pupil plane coordinates [qx, qy, 
qz].
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Fig. 2. 
(a) Bead simulation and (b) experimental results of z-stacks of 10 μm polystyrene bead 

underneath a 1% intralipid-agar scattering phantom. Cross sections through the imaging 

plane (X − Y) are shown on top and through the axial plane (X − Z) are shown on bottom. 

From left to right, the images show a volume rendition of bead using OBM, 2D effective RI 

reconstruction, direct Tikhonov 3D RI reconstruction, and iterative TV-constrained 3D RI 

reconstruction. (c) Center trace through x axis demonstrating halo-artifact reduction by the 

3D reconstruction. (d) Center trace through z axis.
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Fig. 3. 
Human brain biopsy (cortex). A 243 μm × 243 μm × 104 μm volume is shown embedded in 

a 1 cm bulk sample. (a) Enlarged selected region from (b) a representative en face slice at 48 

μm depth. Scale bar is 50 μm. (b) From left to right, arrows indicate axonal cross section, 

extracellular vesicles, and neuronal cell nucleus, respectively. Scale bar is 20 μm. (c) Side 

central cross section at the yellow dashed line in (b), at the same scale as (b). (d) Enlarged 

selected region from (c). From left to right, the images represent the same region from a 

conventional OBM reconstruction, 2D qOBM, and 3D qOBM reconstructions, respectively. 

Arrows indicate a pooled red blood cell (top) and an axially traversing axon cross section. 

Scale bar is 25 μm. (e) Shannon entropy of image as function of depth.
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Fig. 4. 
Depth coded maximum intensity projection in XY, depth encoded by color. The most 

prominent visible features are myelinated axons, due to their high-RI lipid rich content. 

From left to right, the arrows indicate an axon, a descending blood vessel, and an ascending 

blood vessel. Scale bar is 50 μm.
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Fig. 5. 
Rat brain choroid plexus. A 243 μm × 243 μm × 44 μm image volume is shown from a large 

intact rostral half of the brain. (a) En face (x − y) phase contrast image produced by original 

OBM, cross section at 15 μm depth. Bottom shows x − z cross section. Scale bar represents 

50 μm. Left inset, axial (kx, kz) Fourier space of reconstructed volume. Right inset, 

transverse (kx, ky) Fourier space of reconstructed volume. Spatial frequency axes shown 

span ± 3.7 μm−1 laterally (kx, ky) and ± 1 μm−1 axially (kz). Note missing bow-tie region 

due to lack of transverse shear information. (b) Same regionas (a), 2D reconstruction from 

two orthogonal illuminations. Left and right insets, corresponding Fourier space cross 

sections in x − z and x − y spatial frequencies, respectively. Note cylindrical shape of 

reconstructed support structure, indicating a passage of high z-frequency noise. (c) Same 

region as (b), but with a 3D OTF reconstruction. Note the preservation of low- to mid-range 

frequencies indicating mesoscale structure of epithelial folds in choroid plexus. Left and 

right insets, corresponding Fourier space cross sections in x − z and x − y spatial 

frequencies, respectively. Note that the region of support is roughly limited to frequencies 

predicted by the 3D linear OTF.
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