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Abstract

With the rapid advancement in multiplex tissue staining, computer hardware, and machine 

learning, computationally-based tools are becoming indispensable for the evaluation of digital 

histopathology. Historically, standard histochemical staining methods such as hematoxylin and 

eosin, periodic acid-Schiff, and trichrome have been the gold standard for microscopic tissue 

evaluation by pathologists, and therefore brightfield microscopy images derived from such stains 

are primarily used for developing computational pathology tools. However, these histochemical 

stains are nonspecific in terms of highlighting structures and cell types. In contrast, 

immunohistochemical stains use antibodies to specifically detect and quantify proteins, which can 

be used to specifically highlight structures and cell types of interest. Traditionally, such 

immunofluorescence-based methods are only able to simultaneously stain a limited number of 

target proteins/antigens, typically up to three channels. Fluorescence-based multiplex 

immunohistochemistry (mIHC) is a new technology that enables simultaneous localization and 

quantification of numerous proteins/antigens, allowing for the possibility to detect a wide range of 

histologic structures and cell types within tissue. However, this method is limited by cost, 

specialized equipment, technical expertise, and time. In this study, we implemented a deep 

learning-based pipeline to synthetically generate in silico mIHC images from brightfield images of 

tissue slides-stained with routinely used histochemical stains, in particular PAS. Our tool was 

trained using fluorescence-based mIHC images as the ground-truth. The proposed pipeline offers 

high contrast detection of structures in brightfield imaged tissue sections stained with standard 

histochemical stains. We demonstrate the performance of our pipeline by computationally 

detecting multiple compartments in kidney biopsies, including cell nuclei, collagen/fibrosis, distal 

tubules, proximal tubules, endothelial cells, and leukocytes, from PAS-stained tissue sections. Our 

work can be extended for other histologic structures and tissue types and can be used as a basis for 

future automated annotation of histologic structures and cell types without the added cost of 

actually generating mIHC slides.
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1. INTRODUCTION

Immunofluorescence (IF) microscopy is a powerful technique used to assess the location and 

quantity of specific antigens on tissue sections. Typically, the tissue is first stained with a 

primary antibody targeting a specific protein of interest, followed by a secondary antibody 

tagged with a fluorophore. The secondary antibody specifically recognizes the primary 

antibody, and thus the fluorophore will be localized to the protein of interest. Detection of a 

fluorescence signal indicates the presence and location of that protein, and the intensity of 

the signal is an indicator of relative protein quantity.

Standard IF microscopy is limited by the number of antigens that can be detected 

simultaneously on the same tissue section. More recently, a number of multiplex 

immunohistochemistry (mIHC) techniques have been developed to allow for the 

simultaneous detection of numerous (in some systems >40) antigens. Such methods allow 

for the detection of specific structures and cell types within the same tissue section. 

However, the utility of such mIHC systems is primarily constrained by cost, specialized 

equipment, technical expertise, and time1.

Digital and computational pathology is an emerging area focusing on precise detection and 

quantification of histologic findings within digital whole slide images (WSIs). Typically, the 

WSIs consist of tissue sections stained with histochemical stains (e.g. hematoxylin, eosin, 

etc.) and imaged using brightfield microscopy. Often, the goal is to develop computer 

algorithms that can automate at least part of the pathologist’s assessment of tissue 

specimens. Given the subjective nature of visual evaluation by pathologists, the hope is that 

computational methodologies may offer enhanced precision and accuracy. At the crux of 

developing computational approaches to digital pathology is annotation of histologic 

structure within the WSIs. Being a tedious and time-consuming process, accurate and 

sufficient annotation is often the major bottleneck in developing such digital pathology tools.

In this study, we leveraged the specificity of molecular markers for histologic structures and 

cell types using mIHC to develop a deep learning-based image analysis pipeline to generate 

in silico/synthetic mIHC images from standard histochemically stained brightfield 

microscopy WSIs. The resulting in silico images offer specific labeling of structures and cell 

types within kidney tissue that can be used as a basis for future automated annotation 

without the added cost of actually generating mIHC slides. We demonstrate that our tool is 

able to generate in silico mIHC images that accurately label components of the renal cortex, 

including nuclei, collagen, distal tubules, proximal tubules, endothelial cells, and leukocytes 

from corresponding periodic acid-Schiff (PAS)-stained WSIs. Corresponding fluorescence-

based mIHC WSIs were used as the ground-truth for training and testing the pipeline. The 

compartments detected in this example study have implications in renal pathology, and once 

our proposed tool is more developed with further performance analysis, the resulting method 

may have major impact in automating evaluation and morphometry of renal biopsies.
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2. METHODS

Twenty kidney transplant biopsies showing a spectrum of histologic changes including 

various forms of rejection were used. Each tissue section was first stained and imaged using 

a fluorescence-based mIHC imaging system (Vectra 3 Automated Quantitative Pathology 

Imaging System, Akoya Biosciences, Hopkinton, MA). Subsequently, the same sections 

were stained using periodic acid-Schiff (PAS) and imaged using a whole slide brightfield 

microscope system (Aperio ImageScope, Leica Biosystems).

2.1. Tissue Staining & Imaging:

Preparation of formalin-fixed paraffin-embedded tissue sections was performed by following 

a previously described procedure2. We performed mIHC following a manufacturer’s 

protocol for Opal™ 7-color manual IHC kit (Akoya Bioscience) with additional steps to 

reduce autofluorescence2. The antibodies used for mIHC were anti-CD45 (clone GA751 

from DAKO), anti-CD34 (clone IS632, DAKO), anti-type-III collagen (Abcam), anti-ASS1 

(ThermoFisher), and anti-cytokeratins (clone AE1/AE3, Santa Cruz Biotechnology). The 

Opal fluorescence dye used for each marker was Opal690 (CD45), Opal620 (CD34), 

Opal570 (ASS1), Opal 540 (AE1/AE3), and Opal520 (type-III collagen). Slides stained for 

mIHC were scanned using multispectral imaging microscope (Vectra 3.0), and unmixed 

multispectral images were performed using inForm ver. 2.4.8. Tissue segmentation, cell 

segmentation, and phenotyping were performed as described previously3. Unmixed images 

were converted to multilayered-tag image file format (TIFF) files for further analysis. The 

tissues stained for mIHC were re-used for PAS staining (StatLab). PAS-stained tissue 

sections were scanned using Aperio ImageScope (Leica Biosystems), and digital images 

were viewed using the ImageScope application (Leica Biosystems).

2.2. Stitching:

The mIHC system generates data as several adjacent patches, and therefore the images 

patches were first stitched together in order to conduct analysis across a whole slide. The 

coordinate information for the patches was visually verified by loading the annotation 

eXtensible Markup Language (XML) file and the high-resolution TIFF patches in the whole 

slide contextual viewer Phenochart (Akoya). The stitched whole-slide images (WSI) were 

saved in .mat format for MATLAB processing. The high-resolution TIFF images were 

viewed using the bioformats plugin in MATLAB. Using this plugin, the patches were 

stitched based on the available annotations.

2.3. Image Registration:

The deep learning model used in this study consisted of a generative adversarial network 

(GAN), particularly, pix2pix network model, which performs image-to-image translation 

from the source domain to the target domain. This network is based on a conditioning image 

that is applied as input to the network. The network generates output images based on the 

condition applied to the source image. In other words, the network learns the mapping from 

source to target image. As a result, the dataset for network training should have 

corresponding images from the two domains in order to learn mapping from the source to 
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the target domain. To accomplish this requirement for the training dataset, image registration 

between the fluorescence and brightfield (i.e. PAS) images needed to be addressed.

Registration enables a comparison of multiple images acquired from subjects at varying 

instances and different imaging modalities4. In this study, the stitched fluorescence WSI is 

registered against the corresponding PAS-stained tissue section. We implemented a semi-

automated approach for registration where the control points were selected from the 

reference image (i.e., PAS-stained tissue image) and from the target image (i.e., 

fluorescence-stained tissue image). The points were manually selected based on structures in 

both images. These chosen control points identify the same feature or position in the images, 

which estimate a geometric transformation matrix. This mapping is then applied to the 

fluorescence image that is to be registered against the PAS image. The registration results 

were qualitatively judged by visual inspection using the MATLAB command ‘imshowpair’ 

which overlays the registered image on the reference image and highlights the areas of 

alignment and those that are misaligned. The results were also verified quantitatively by 

calculating the sensitivity, specificity, positive predictive value (PPV), and negative 

predictive value (NPV). To calculate these statistics, binary masks for both the PAS and 

fluorescence image were generated. True positive corresponded to regions overlapping 

between the PAS and fluorescence binary masks. Regions of the PAS mask that did not 

overlap with the fluorescence mask was defined as false negative, and regions of the 

fluorescence mask that did not overlap with the PAS mask was defined as false positive. The 

common background between the two masks was taken as true negative.

2.4. Computational Model:

As discussed in Section 2.3, the deep learning model pix2pix was used to learn the mapping 

of the brightfield PAS to fluorescence domain. The GAN architecture is comprised of two 

networks, a generator and a discriminator model. Each of these models has specific roles; 

the generator model outputs new plausible synthetic images, and the discriminator model 

classifies images as real versus synthetic.

The generator learns the mapping between the two domains through adversarial loss and L1 

loss measured between the generated image and the expected output image. This network is 

based on U-Net architecture, which is built on two networks, the encoder and decoder. U-

Net’s network incorporates skip connections between encoder layers and decoder layers5. 

The encoder network of the generator has seven convolutional blocks, each having a 

convolutional layer, followed by a Leaky ReLU activation function and batch normalization 

layer (except the first convolutional layer). The decoder network of the generator has seven 

upsampling convolutional blocks, each having an upsampling layer, followed by a 

convolutional layer, batch normalization layer, and a ReLU activation function5. The 

discriminator uses patchGAN architecture consisting of five convolutional blocks. The 

patchGAN network takes concatenated input images, and produces an output that of the 

same size as the input image5. To train the model to convert PAS to fluorescence image, we 

fed the network with input (PAS) and target (fluorescence) images. Thus, the network can be 

trained by iterating over the data set, inputting the images one by one or by batch to the 

pix2pix model.
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2.5. Training Data Description:

Six WSIs were used for training the network model, and the training set consisted of 35312 

paired patches of PAS-stained tissue sections and their corresponding fluorescence images. 

The six compartments in the fluorescence image were identified by six different colors based 

on the wavelength of light measured from each component. The image patch sizes were 256 

× 256 pixels.

3. RESULTS

3.1. Stitching:

The first step toward preparing the data for training the pix2pix network is stitching. As 

discussed in Section 2.1, the fluorescence-stained image patches (Figure 1) of the transplant 

kidney biopsy tissue section were stitched together based on the available coordinates of 

each patch in order to generate a whole slide view of the tissue section. The coordinate 

locations were obtained from the imaging system. The results of this task (Figure 2) were 

evaluated based on the performance analysis of image registration of the fluorescence-

stained images over the reference PAS-stained images, detailed below.

3.2. Image Registration:

The stitching step was followed by image registration, where the control points from the 

reference image (PAS) and the image to be registered (fluorescence) were located, and the 

transformation matrix for warping was estimated. The registered image was qualitatively 

verified by overlaying it on the PAS reference image (Figure 3). The sensitivity, specificity, 

PPV, and NPV of the registration results are summarized in Table 1. Sensitivity ranged 

between approximately 80% to 92%, and specificity was more than 94%. These results 

indicate that the fluorescence WSI was well aligned/registered with respect to the reference 

PAS WSI.

3.3. Image-to-image Translation:

The network was trained with a set of 35312 paired patches that were extracted from PAS 

and fluorescence registered WSIs with a 50% overlap between each patch. The purpose of 

overlap was to expose the network to more variation in the edge, which makes the network 

learn better since the model is sensitive to the patch edges when training. Figure 4 shows 

generated in silico image patches from a test WSI, which mimics the original mIHC WSI.

4. CONCLUSION AND DISCUSSION

Our deep learning model appears to be able to faithfully generate in silico mIHC WSIs from 

PAS-stained WSIs, which ultimately indicates that the pipeline is able to detect histologic 

structures and cell types from PAS-stained WSIs. Further development and studies are 

required to translate the in silico mIHC images to annotations that can be used to specifically 

segment renal compartments and to recognize specific entities that are relevant to renal and 

transplant pathology in standard histochemically stained slides such as PAS-stained tissue 

sections.
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Figure 1: Fluorescence-based multiplex immunohistochemistry of six markers in renal cortex.
Type III collagen (green), leukocytes (white), endothelial cells (pink), distal tubules 

(yellow), proximal tubules (orange), and cell nuclei (blue) are shown.
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Figure 2: Stitched fluorescence whole slide image.
Individual image patches from multiplex immunohistochemistry were stitched to create a 

whole slide image.
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Figure 3: Registered fluorescence-stained whole slide image overlaid on reference periodic acid-
Schiff (PAS)-stained whole slide image.
The intensity differences are highlighted in green (PAS) and magenta (fluorescence).
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Figure 4: In silico/synthetic multiplex immunohistochemistry (mIHC) images compared to their 
real counterparts.
The images on the left are from the real fluorescence mIHC WSI of test cases. The images 

on the right are the network predicted (i.e. in silico/synthetic) fluorescence mIHC images 

generated from PAS-stained WSI as network input.
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TABLE 1:

Image registration performance analysis.

Tissue case Sensitivity Specificity PPV NPV

1 0.8837 0.9799 0.8061 0.9889

2 0.9166 0.9776 0.8084 0.9918

3 0.8644 0.9927 0.8011 0.9954

4 0.8633 0.9929 0.8608 0.9930

5 0.8127 0.9946 0.8893 0.9900

6 0.8512 0.9897 0.8547 0.9899

7 0.8743 0.9768 0.8868 0.9937
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