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Abstract

Our understanding of life is based upon the interpretation of macromolecular structures and their 

dynamics. Almost 90% of currently known macromolecular models originated from electron 

density maps constructed using X-ray diffraction images. Even though diffraction images are 

critical for structure determination, due to their vast amounts and noisy, non-intuitive nature, their 

quality is rarely inspected. In this paper, we use recent advances in machine learning to 

automatically detect seven types of anomalies in X-ray diffraction images. For this purpose, we 

utilize a novel X-ray beam center detection algorithm, propose three different image 

representations, and compare the predictive performance of general-purpose classifiers and deep 

convolutional neural networks (CNNs). In benchmark tests on a set of 6,311 X-ray diffraction 

images, the proposed CNN achieved between 87% and 99% accuracy depending on the type of 

anomaly. Experimental results show that the proposed anomaly detection system can be 
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considered suitable for early detection of sub-optimal data collection conditions and malfunctions 

at X-ray experimental stations.

Keywords

X-ray diffraction image; Multi-label classification; Convolutional neural network; Image 
recognition; Crystallography

1. Introduction

X-ray crystallography is the most prominent technique for determining the atomic structures 

of macromolecules, which are of key importance in fields like biology, chemistry, and 

medicine. In particular, crystallography is the most widely used technique for determining 

structures of proteins and their complexes, which ultimately expands our understanding of 

biological processes in a unique and invaluable way.

The physical principle of crystallography (Blundell & Johnson, 1976; Rupp, 2010) is based 

on X-ray diffraction by a network of atoms in a crystalline sample (Fig. 1). X-ray beams can 

be scattered as they pass through a cloud of electrons surrounding an atom. Due to the 

periodic nature of crystals, these scattered X-rays are strengthened in some directions and 

canceled out in others, resulting in diffraction observed as peaks on diffraction images. The 

analysis of these diffraction peaks allows the calculation of the electron density maps, i.e., 

the distribution of the electron cloud of the macromolecule in the crystal. When the resulting 

electron density map is of sufficient quality, it can be used to generate a three-dimensional 

model of the macromolecule (Wlodawer, Minor, Dauter, & Jaskolski, 2008).

The quality of an electron density map and, thus, the final structural model depend on the 

quality of the diffraction image obtained in the X-ray experiment. A number of factors, 

including an imperfect long-distance order in the crystal, improper cryo-protection, or 

inaccurate experiment calibration, may strongly affect the diffraction image. Currently, 

modern experimental synchrotron stations are capable of rapidly collecting thousands of 

images per crystal (McCarthy et al., 2018) from hundreds of crystals, which are then 

automatically processed and analyzed (Collins et al., 2018; Pearce et al., 2017; Grabowski et 

al., 2019). Moreover, millions of images are collected per single X-ray Free Electron Laser 

experiment (Spence, 2017; Johansson, Stauch, Ishchenko, & Cherezov, 2017; Caleman et 

al., 2015).

At many synchrotron stations, the raw diffraction images are only scrutinized if the 

researchers detect processing problems, and the need to efficiently utilize the allocated 

access time means that an extensive manual evaluation of the images is impractical. Even 

with more traditional low-throughput experiments, researchers do not always have the time 

and expertise to thoroughly analyze experiment results in search of flaws in diffraction 

images. Nevertheless, flaws in diffraction patterns such as loop scattering, strong 

background radiation, ice rings, diffuse scattering, or other artifacts are fairly common 

problems in macromolecular crystallography, where the signal to noise ratio is typically 

weak. When left unhandled, such anomalies can often deteriorate the quality of electron 
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density maps and lead to model misinterpretation (Wlodawer et al., 2018; Raczynska, 

Shabalin, Minor, Wlodawer, & Jaskolski, 2018). Although several tools for quality 

assessment have appeared in recent years, most of them focus on electron density maps and 

structural models (Willard et al., 2003; Urzhumtseva, Afonine, Adams, & Urzhumtsev, 

2009; Kowiel et al., 2018; Porebski, Sroka, Zheng, Cooper, & Minor, 2018), whereas those 

that analyze diffraction images only detect ice rings (Thorn et al., 2017).

In this paper, we propose RefleX—a system for automatic anomaly detection in X-ray 

diffraction images. RefleX preprocesses raw diffraction data, transforms them into images in 

Cartesian and polar coordinates, and uses convolutional neural networks to identify seven 

types of flaws: ice rings, diffuse scattering, background rings, non-uniform detector 

responses, loop scattering, strong background, and digital artifacts. Since several anomalies 

can co-occur in one image, the system tackles the problem of multi-label classification.

The main contribution of this paper is the development of an end-to-end anomaly detection 

system for X-ray diffraction images, which includes a novel beam center detection 

algorithm. Moreover, the study compares three alternative image representation approaches. 

Finally, we put forward an open multi-label classification dataset prepared based on 6,311 

diffraction images from the Integrated Resource for Reproducibility in Macromolecular 

Crystallography (Grabowski et al., 2016). To the best of our knowledge, this is the first study 

using machine learning to classify X-ray diffraction images.

The remainder of the paper is organized as follows. Section 2 provides an overview of the 

proposed system, discusses each of the analyzed anomalies in detail, presents a novel beam 

center detection algorithm, and comments on the image representation and classification 

techniques that were studied. In Section 3, we discuss the experimental results of using the 

proposed classification pipeline on 6311 diffraction images. Finally, Section 4 concludes the 

paper and draws lines of future research.

2. Materials and methods

2.1. System overview

Fig. 2 provides an overview of the proposed anomaly detection system. First, raw diffraction 

data are preprocessed to create normalized (similar for various detector models) images, 

suitable for visual inspection and image recognition. Next, the system determines the beam 

center position, i.e., the point on the diffraction image at which the incoming X-ray beam 

would hit the detector. Using the estimated X-ray beam center, the system converts the 

image into three alternative data representations: statistical features of rings around the 

beams center, the image in Cartesian coordinates, and the image in polar coordinates. 

Finally, the system uses the preprocessed data to train a convolutional neural network.

The following sections discuss the main elements of the presented expert system, starting 

with a description of types of detected anomalies and continuing with the proposed 

preprocessing algorithms, data representations, and CNN architecture.
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2.2. Anomalies

Apart from intensity peaks, X-ray diffraction images can exhibit several visual 

characteristics. Some of them are the result of clearly aberrant data collection (e.g. digital 

artifacts), whereas others arise from the nature of the crystalline sample (e.g. diffuse 

scattering). Most of these characteristics are detrimental to the data collection process, but 

some may be useful in certain domains. For example, diffuse scattering can be potentially 

leveraged to model protein motions. Nevertheless, in this study we use the term anomaly to 

denote all diffraction image characteristics other than clear intensity peaks. Using this 

definition, the presented study analyzes seven types of anomalies found in X-ray diffraction 

images:

1. water scattering (Background Ring),

2. diffuse scattering (Diffuse Scattering),

3. ice rings (Ice Ring),

4. loop scattering (Loop Scattering),

5. non-uniform detector responses (Non-uniform Detector),

6. low crystal signal-to-noise ratio (Strong Background),

7. digital artifacts (Artifact).

Fig. 3 shows X-ray diffraction images containing examples of the listed anomalies and Table 

1 describes the visual properties, genesis, and possible remedies for each anomaly.

Some of the anomalies (artifacts, diffuse scattering, non-uniform detectors) are very subtle 

and can be difficult to spot at first glance, whereas other problems (strong background, ice 

rings, loop scattering) are fairly easy to notice. Nevertheless, the anomalies may or may not 

appear on all the gathered X-ray images, meaning that one would have to analyze all 

(usually between 180 and 9,000) experimental images to be sure whether or not a given 

anomaly occurred. Therefore, automatic detection of the above-mentioned anomalies is of 

high practical value compared to manual visual inspection.

2.3. Data selection and preprocessing

To create and evaluate the proposed image classification system, 6,311 diffraction images 

were taken from the Integrated Resource for Reproducibility in Macromolecular 

Crystallography (https://proteindiffraction.org) (Grabowski et al., 2016). The first image 

from every X-ray diffraction dataset stored at proteindiffraction.org (as of March 23, 2018) 

was selected, thereby representing 6,311 different experimental conditions.

Since the X-ray diffraction images were taken at several synchrotrons which use a variety of 

detectors, the images were first converted from their proprietary data formats into 2D 

(numpy Oliphant, 2006) arrays of floats. Next, the numpy arrays were cleaned, by removing 

NaN (Not a Number) values that can appear in readings from some machines on the 

boundaries between detector panels. These readings are the effect of slight gaps between 

these panels, and form a grid, as presented in Fig. 4. Finally, to standardize images recorded 

by detectors of different sensitivity, the values in the numpy arrays were clipped to values no 
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higher than the 95th percentile of a given image and then normalized so that all values are 

represented as integers and fall into the 0–255 range. With the grid removed and intensities 

normalized, the resulting arrays were saved as 512 × 512 PNG files. This size has been 

selected empirically, as it allows the classifier to train fairly quickly, while obtaining 

relatively good classification results. Resizing was done using the Nearest Neighbor 

Interpolation method (Bradski, 2000), which preserves the original pixel values from the 

input image and is computationally efficient. We chose nearest neighbor interpolation 

because it does not introduce anti-aliasing and, therefore, does not blur X-ray intensity 

peaks.

The resulting 6,311 normalized images were manually labeled according to the seven 

anomaly types described in Section 2.2. A given X-ray diffraction image can contain no 

anomalies, a single anomaly, or multiple anomalies, with classes distributed as shown in Fig. 

5a. Interestingly, according to the bias-corrected V-Cramer measure (Bergsma, 2013; 

Cramér, 1946), there is no strong correlation between any pair of classes (Fig. 5b); therefore, 

we used standard random stratified sampling to split the data into training, validation, and 

test sets, while preserving label proportions within each set.

The final dataset containing normalized X-ray diffraction images, including stratified 

division into training, validation, and testing data has been made publicly available through 

Zenodo: https://zenodo.org/record/2605120/ (Czyzewski, Krawiec, Brzezinski, & Porebski, 

2019).

2.4. Beam center detection algorithm

X-ray diffraction images often come with metadata, which specify the primary beam 

position, among other things. However, this information is not always available or is 

inaccurate. This lack of reliable information served as the motivation for the development of 

a center-detection algorithm. In our system, the beam position is required for the generation 

of alternative image representations (discussed in the following section), but the method 

presented below could also be very useful for X-ray data processing packages (Winn et al., 

2011; Adams et al., 2010; Minor, Cymborowski, Otwinowski, & Chruszcz, 2006). The 

pseudo-code of our method is presented in Algorithm 1.
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As the input of our method, we take a grayscale image X (each pixel’s value is an integer in 

the 0–255 range). We create a new, corresponding image Xt by applying the following 

function to every pixel of the original image: t(x) = ⌊255·log255x⌋ (where the brackets 

symbolize rounding to the nearest integer). This normalizes the input image so that outliers 

become less prominent.

We use image moments (Bradski, 2000) to calculate the center of mass of the original image 

(Oo) and the center of mass of the transformed image (Ot). We mark the coordinates of these 

two points on the original image and draw a line of length k·|OoOt| that passes through Oo 

and Ot, and whose center is at Oo, where k is a user-defined parameter. In the final system 

implementation we used k = 4. We use Bresenham’s algorithm (Bresenham, 1965) to obtain 

a raster representation of the line traversing Oo and Ot. All points on this line form a set of 

center candidates C and will be individually evaluated in the next stage. Fig. 6 visualizes the 

mentioned steps.

In the second stage of the algorithm, we attempt to find the beam stop shadow (white strip 

labeled with a red line in Fig. 6). For this purpose, we iterate through C, and for each center 

candidate ci we generate nr = 256 rays. Each ray originates at ci and is of length rimin, where 

rimin is defined as the shortest distance from ci to an edge of the image. The nr rays are 

spaced evenly, α = 360°/nr apart from each other. For each ray, we compute its average pixel 

value bi
j (brightness). We also calculate the difference di between the average pixel value in 

the neighborhood of radius ρ of ci and the average pixel value of the entire image. In our 

experiments we used ρ = 1.

Finally, for each candidate center ci, we compute the fitness of ci as 

f(ci) = max(bi
j, ∀j ∈ 1, 2, …, nr) ⋅ di. Using f(ci), the detected center c* is chosen as the center 

candidate whose computed fitness f was largest: c* = c ∈ C|f(c) = max(f(ci)).

The proposed algorithm is inspired by the fact that most X-ray diffraction images have a 

white strip (beam stop shadow), one end of which covers the primary beam position we want 

to find. The endpoint of this strip is often surrounded by a white area—the beam stop 
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protecting the detector from direct beam exposition. The fitness function f(·) aims to 

promote those center candidates which might be in this strip endpoint area. Some X-ray 

diffraction images, unfortunately, do not have a visible white strip or white center (e.g. the 

beam stop mount is transparent). The proposed algorithm is not specifically designed to deal 

with such cases; however, in the absence of a strip, the centers of mass Oo and Ot are usually 

so close to each other that the set C of candidates is relatively small and contains points 

close to the actual center.

2.5. X-ray diffraction image representations

As input to the classification algorithms, we considered three alternative image 

representations:

1. Numeric feature vectors,

2. Cartesian coordinates,

3. Polar coordinates.

In the numeric vector representation, we decided to use a standard, general-purpose machine 

learning strategy and perform manual feature engineering. Since X-ray diffraction patterns 

are usually circular in nature, the engineered features concentrated on compressing a 2-D 

diffraction image to a 1-D vector. This was done by calculating a selected statistic (e.g. 

median) of all pixels laying at a given distance (layer) from the beam center position (Fig. 6 

D.I). Because the diffraction images are a discrete matrix of points, determining which 

points belong to each layer is a non-trivial task. We used a variation of the Midpoint Circle 

Algorithm (Bresenham, 1977) to find sets of points such that the circles they form are non-

overlapping and leave no gaps in between consecutive layers. If a circle did not entirely fit in 

the image (Fig. 6 D.I blues circles), we used only those pixels which are within the 

boundaries of the image to calculate a given statistic. Moreover, from each layer, we also 

excluded those points that belong to the beam stop shadow (white strip), if one is present. 

This was done by excluding those lines originating from the beam stop position that were at 

least 4·σ from the mean pixel intensity of all lines originating from the image center (Fig. 6 

C). The final feature vectors consisted of 240 numeric values, as this is slightly less than half 

of the side of an image (which would be 512/2 = 256px). For most diffraction images this 

means that even the last layer formed from the largest circle will entirely fit inside the 

image, omitting the corners of the image, which rarely contain any meaningful artifacts. The 

set of 1D vectors computed using this method included the following statistics: minimum, 

maximum, mean, median, variance, 5th percentile, 95th percentile.

The Cartesian coordinates representation did not require any preprocessing and consisted of 

the normalized X-ray diffraction image. Such a representation deemed suitable for 

convolutional neural networks, which extract features during their learning process.

Finally, the polar coordinates representation attempted to ‘unwrap’ the generally circular X-

ray diffraction pattern. For this purpose, we used the LinearPolar method from the OpenCV 

library (Bradski, 2000), specifying the beam center position as the center of the image. We 

tried using two different interpolation methods: min and max. The min interpolation method 

transforms an area bounded by a circle with a center in the beam center position and a radius 
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defined by the distance from the detected image center to the closest image border (Fig. 6 C 

blue line). This means that a significant portion of the original image (namely the peripheral 

area) is no longer represented after the polar transformation. This method does, however, 

have the upside of not containing synthetically produced interpolation artifacts. The max 
interpolation uses a radius defined by the distance from the detected image center to the 

closest image corner (Fig. 6 C orange line). This means that much more of the information 

from the original image is retained after the polar transformation, however, a significant part 

of the transformed area is outside the bounds of the original image. This data needs to be 

somehow filled in, and the LinearPolar function does this by interpolating values from a 

point’s neighborhood (when a point is sufficiently close to points that contain valid data) or 

assigning the value 0 (when the points entire neighborhood is also invalid). Fig. 6 presents 

the difference in the effects of the polar transformation when the min and max interpolation 

parameters are used.

2.6. Classification

For the last step of the proposed anomaly detection system, we tested different classification 

algorithms with different image representations.

The numeric vector representation served as input for four general-purpose classifiers 

implemented in the scikit-learn (Pedregosa et al., 2011) library: Support Vector Machines 

(SVM), Naive Bayes (NB), k-Nearest Neighbors (KNN), and Random Forest (RF). The 

general-purpose classifiers were chosen for their versatility: SVM was selected as a 

representative of linear classifiers, NB as a representative of probabilistic classifiers, KNN 

as a distance-based classifier, and RF as a tree-based learner. The general-purpose 

classification algorithms were trained using the One-vs-All (OvA) strategy (Bishop, 2007), 

i.e., each classifier was trained to predict one class of anomaly at a time. Therefore, 

effectively seven classification models had to be trained per algorithm, giving 4 × 7 = 28 

models in total.

To find the best parameters for the general-purpose classifiers (SVM, NB, KNN, RF), we 

used the GridSearchCV method of scikit-learn and specified the indices of training and 

validation examples (test examples were held out from this procedure). In SVM, we used 

L2-regularization and optimized the regularization penalty C ∈ {1, 5, 10}. In NB, we tuned 

the smoothing ∈ {1e −5, 1e −7, 1e −9, 1e −10} parameter, which determines the largest 

variance of all features that is added to variances for calculation stability of the Gaussian 

approximation of numeric features. In KNN, we tuned the number of nearest neighbors k ∈
{5,7,10,15,20,30,50}. Finally, in RF we tuned the number of trees in the forest trees ∈ 
{10,20,50,100,200}. The remaining parameters were left with default scikit-learn values.

The remaining image representations (Cartesian, Polar min, Polar max) were fed into fast.ai 

implementations of resnet Convolutional Neural Networks (CNNs) pretrained on imagenet 

competition data (He, Zhang, Ren, & Sun, 2016). Contrary to general-purpose algorithms, 

CNNs were trained for the multi-label classification of all seven classes of anomaly 

simultaneously.
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We developed our own implementation of grid search to adjust the hyper-parameters of the 

convolutional neural networks we created using the fast.ai library. This method was written 

as an independent Python script and is available on the project’s GitHub (https://github.com/

aczyzewski/refleX).

We tested each combination of the following hyper-parameters:

• image size (scaling) ∈ {64, 128, 256, 512},

• batch size ∈ {8, 16, 32, 64};

• (pretrained) network architecture ∈ {ResNet-18, ResNet-34, ResNet-50}.

We additionally set the following hyper-parameters, which stayed constant throughout the 

entire training process:

• dropout rate = 0.5;

• early stopping = 12 epochs;

• image augmentation method: RandomLighting + RandomDihedral for Cartesian 

representation; RandomLighting for polar representation; where 

RandomLighting increases or decreases an image’s pixel brightness and contrast 

by random values between −10% and +10%, and RandomDihedral rotates an 

image by random multiples of 90 degrees and/or reflections.

Another hyper-parameter that had to be tuned when training neural networks is the learning 

rate. This parameter, however, was set using a series of selected heuristics that speed up 

network training (Howard & Ruder, 2018; Smith & Topin, 2017; Smith, 2015). The 

heuristics used to dynamically estimate the learning rate, as well as other methods used to 

enhance the predictive performance of the final model are described below.

2.6.1. Pretrained network—We used a pretrained network architecture and adapted it 

to our training images. This way the network did not have to learn image recognition from 

scratch, rather adapt itself to new images. We used resnet architectures with 16, 34, and 50 

layers, pretrained on imagenet competition data (He et al., 2016).

2.6.2. Image rescaling—The model was first trained on images rescaled to a small size, 

and then consecutively on larger and larger images until reaching the original size (Howard 

& Ruder, 2018). Our model was being trained on the following sizes of the same image: 64 

× 64, 128 × 128, 256 × 256, 512 × 512.

2.6.3. Freezing layers—We divided the training process into two stages. In the first 

stage, only the last (fully-connected) layers of the model are being trained, and the rest of 

the weights (convolutional layers) are “frozen”. Once the training is done in the first stage, 

the second stage can be started where all model weights are “unfrozen” and can be updated 

during training (Howard & Ruder, 2018).

2.6.4. Local learning rates—This technique assumes a lower learning rate for the early 

layers of the network, because they isolate the most basic features that do not require full 
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training. In our case, we divided the layers into four sets, where the last group (containing 

the fully connected layers) contains the learning rate parameter determined in the beginning, 

and each “earlier” set of layers has a parameter twice smaller in respect to the next set. 

Cosine annealing with restarts This heuristic involved cyclically changing the learning rate, 

increasing the number of epochs, and restarting the learning process. The training process 

was divided into cycles. In each cycle, the learning rate parameter is slowly decreased 

(linearly or based on the cosine function) along with subsequent epochs, until the final 

iteration is reached, in which it returns to its initial value (restart) (Smith, 2015). Restarts 

allow the optimizer to escape local minima. Prolonging the cycle means that each cycle, 

until it achieves the minimum learning rate, needs n times more epochs than the previous 

one. In our implementation n = 2. The initial learning rate was established using the super-

convergence paradigm proposed in Smith and Topin (2017).

The best parameters for each of the three CNNs are presented in Table 2.

3. Results and discussion

3.1. Center detection algorithm

Out of 6,311 diffraction images analyzed in this study, 2,090 contained verified information 

about exact beam center positions and were used for testing the proposed center detection 

algorithm. Fig. 7 presents a heatmap of beam center positions found in these images. It can 

be noticed that the vast majority of beam center positions were at the center of the detector 

panel or in its near vicinity. Therefore, a naive approach to predicting the beam center 

position would be to return the image’s center. We used such a naive approach as a baseline 

to compare our algorithm against.

Given the true and predicted beam center position, the prediction error was calculated as the 

Euclidean distance between the two. To make the errors comparable, all diffraction images 

were re-scaled to 1024 × 1024 (the size of the smallest raw diffraction image). Individual 

errors were aggregated by calculating the Mean Absolute Error (MAE) and the Root Mean 

Square Error (RMSE).

The proposed algorithm achieved a MAE of 7.67 pixels compared to 12.73 obtained by the 

naive approach. Similarly, the proposed algorithm achieved a RMSE of 11.87 clearly 

outperforming the naive approach which obtained a RMSE of 27.93. Seeing that 7.67/11.87 

pixels correspond to 0.75/1.16% of each side of a test image, the attained average center 

detection performance can be considered sufficient for transforming images to polar 

coordinates.

3.2. Classifier comparison

The analyzed dataset of 6,311 labeled diffraction images was divided into three subsets 

using random stratified sampling: a training set (5048 images), validation set (631 images), 

and testing set (632 images). The proposed system was tested using seven classifier-

representation pairs: Support Vector Machines (SVM), Naive Bayes (NB), k-Nearest 

Neighbors (KNN) and Random Forest (RF) used vector representations, whereas 

convolutional neural networks used the Cartesian (CNN: Cartesian), and polar coordinates 
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(CNN: Polar-min, CNN: Polar-max) representations. Hyper-parameters of each of the above 

classifiers were optimized using the validation set. Reproducible experiment scripts are 

available on GitHub at: https://github.com/aczyzewski/refleX.

The final evaluation was done on tuned classifiers using the test set by calculating 

aggregated (multi-label) and class-specific evaluation measures. Aggregated measures 

assessed classification performance for all seven classes simultaneously, and included 

macro-averaged (M) aggregates of Precision (Prec.M), Recall (Rec.M), F1-score (F1M), F2-

score (F2M), Matthews Correlation Coefficient (MCCM) (Japkowicz & Shah, 2011), as well 

as standard multi-label classification measures, i.e. Jaccard Index (JI) and Exact Match Ratio 

(EMR) (Read & Hollmén, 2014). Class-specific measures evaluated classifier performance 

for each anomaly separately on a one-vs-all basis using: Accuracy (Acc.), Precision (Prec.), 

Recall (Rec.), F1-score (F1), and the area under the ROC curve (AUC).

Table 3 presents classifier performance according to multi-label measures, whereas Tables 

4,5 and Fig. 8 show anomaly-specific results.

Table 3 clearly shows that CNN: Cartesian is consistently better than any other of the tested 

classifiers on all performance measures with the small exception of macro-averaged 

precision, which is 0.01 better for CNN: Polar-max. It is worth noting, that the differences 

between CNNs are generally around 0.01–0.02, whereas general-purpose classifiers have 

significantly lower predictive performance than CNNs.

The above observations are confirmed when looking at anomaly-specific performance 

presented in Tables 4,5 and Fig. 8. One can notice that the biggest differences between 

general-purpose classifiers and CNNs are most visible on anomalies that are the least 

frequent and affect small parts of the diffraction images: Diffuse Scattering and Ice Ring. 

Anomaly-specific results also reveal that CNN: Polar-max is slightly better than CNN: 

Cartesian at detecting Diffuse Scattering, Loop Scattering and Non-uniform Detectors. This 

suggests that, in the future, better performance could possibly be obtained by, for example, 

combining different image representations.

Since general-purpose algorithms and CNNs were trained using different libraries 

(scikitlearn, fast.ai) on different architectures (CPU, GPU), there is no objective way of 

comparing training time. However, regardless of the exact measure used to estimate the 

broadly understood ‘computational cost’ of these training schemes, it is evident that the 

chosen general-purpose classifiers can be trained orders of magnitude quicker than CNNs. In 

our experiments the general-purpose models trained for no more than 10 min each, while 

each CNN took several hours.

3.3. Discussion

The vector representation used by general-purpose classifiers does not convey as much 

information as the image representations used by CNNs. On the other hand, the impact of 

representation choice on CNN performance is relatively small—the three models (CNN: 

Cartesian, CNN: Polar-min, CNN: Polar-max) are within 0.05 of one another on all 

performance measures and every type of anomaly. Interestingly, the Cartesian representation 
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performs better than Polar-min and Polar-max on two of the ‘circular’ anomalies: 

background rings and ice rings. This might be the result of slight inaccuracies in the 

detection of the image center or the fact that the transformation to polar coordinates strongly 

alters image corners, which sometimes are the only area with visible rings. However, polar 

representations are better than Cartesian in detecting non-uniform detectors and, in case of 

Polar-max, diffuse scattering. This performance advantage may be the result of scattering 

intensity differences in a circular way, creating visual artifacts that more closely correspond 

to pre-existing convolutional features found in the ImageNet-pretrained network. This 

finding relates to the problem of domain similarity in transfer learning (Bernico, Li, & 

Zhang, 2019; Zhong et al., 2018), and suggests that abstract experimental images can be 

potentially preprocessed to resemble ImageNet features prior to training.

The results show that convolutional neural networks can be successfully used to detect 

anomalies in X-ray diffraction images. Being a premier on using machine learning to 

analyze raw diffraction data, this study shows that current pattern recognition algorithms can 

prove useful in analyzing images which are rarely examined by humans. Importantly, this 

particular study deals with structural biology data, which provides the structural basis for 

our understanding of life and plays a crucial role at the interface of physics, chemistry, and 

biology (Baker, 2018; Blundell, 2017; Pomés et al., 2015). Seeing that more and more 

elements of drug screening pipelines and other protein analyses are attempted to be done 

without human supervision (Blundell, Jhoti, & Abell, 2002; Bowler, Svensson, & Nurizzo, 

2016), this work may be useful in automating crucial scientific processes even further.

4. Conclusions and future work

In this paper, we have put forward an expert system for the automatic detection of anomalies 

in X-ray diffraction images. To this end, we have described seven types of anomalies, 

collected 6,311 diffraction images, and labeled them according to the proposed anomaly 

definitions. The labeled images served as the basis for an extensive comparative analysis of 

the performance of seven different classifiers using three alternative image representations. 

The best classifier achieved an overall Jaccard Index of 0.83, with 0.87 classification 

accuracy on the most difficult anomaly class. The remaining six classes were classified with 

an accuracy of over 0.92. These values are satisfactory and indicate that the chosen model 

can be feasibly used for automatic anomaly detection at X-ray beamlines. This study lays a 

groundwork for on-the-fly analysis of X-ray diffraction images in high-throughput settings 

that can be used for online decision making and developing data collection strategies that 

maximize data quality without compromising throughput. Careful analysis of artifacts 

presented in this paper may also influence the development of X-ray detectors and help tune-

up existing synchrotron facilities.

Future research directions include the development of more problem-specific classification 

models and data representations. There is still potential for improving the accuracy of the 

center detection algorithm, and one could design other data features, e.g., by employing 

Zernike moment invariants (Khotanzad & Hong, 1990). Furthermore, recent developments 

in image generation techniques (Pathak, Krähenbühl, Donahue, Darrell, & Efros, 2016; Yeh, 

Chen, Lim, Hasegawa-Johnson, & Do, 2016) could be used to automatically remove 
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anomalies from diffraction images. Training of such a system could rely on injected or 

simulated anomalies (Holton, Classen, Frankel, & Tainer, 2014) and potentially represent a 

huge step forward in restoring currently unusable data. Moreover, there are still unexplored 

research topics concerned with machine learning on diffraction images, such as automatic 

selection of diffraction image areas affected by an anomaly or feature transferability 

between real-world and abstract image domains. Our work demonstrates that, with proper 

preprocessing and tuning, images with abstract features can reuse classifiers trained on 

images with real objects and achieve good classification accuracy using a limited number of 

labeled samples. This approach may be considered as a starting point for other raw 

experimental image assessment systems, e.g. for the automatic analysis of power spectra 

images in the rapidly growing field of cryogenic electron microscopy (cryo-EM) (Bai, 

McMullan, & Scheres, 2015; McMullan, Vinothkumar, & Henderson, 2015).
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Fig. 1. 
The principle of crystallography (Mayer, 2017). (a) An X-ray beam hits a crystal. (b) The 

observed diffraction spots (X-ray diffraction image) are the result of the interaction of 

diffracted photons with the active area of the detector. (c) A fragment of electron density 

with the associated molecular model of a RhoGDI-mutant protein (PDB code: 2JHU Cooper 

et al., 2007). (d) A cartoon representation of the entire protein, with the same electron 

density fragment as on the left. (e) An all-atom representation colored by atom type. (f) A 

surface representation colored by electrostatic potential.
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Fig. 2. 
Machine learning pipeline of the proposed anomaly detection system for X-ray diffraction 

images.
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Fig. 3. 
X-ray diffraction images containing the studied anomalies. Images taken from https://

proteindiffraction.org (Grabowski et al., 2016).

Czyzewski et al. Page 18

Expert Syst Appl. Author manuscript; available in PMC 2021 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://proteindiffraction.org
https://proteindiffraction.org


Fig. 4. 
Diffraction image before (left) and after (right) removing the detector-gap grid.
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Fig. 5. 
Training data characteristics: (a) class counts; (b) pairwise class correlation according to 

bias-corrected Cramer’s V measure.
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Fig. 6. 
Detailed schematic of steps C and D of the system’s processing pipeline (Fig. 2). (C): 
Example visualization of the beam center detection procedure. Left top: The set C of center 

candidates is outlined as the green line, the centers of mass (Oo and Ot) are shown with 

orange points, and the red point marks the detected center c*. Left bottom: Rays depicted as 

green lines centered in an example beam center candidate ci (blue point) with the beam stop 

shadow highlighted with a red line. Right: schematic of the results of beam center detection; 

red point marks the detected center, blue and orange lines are the min and max radii used for 

polar coordinate interpolations. (D): Alternative image representations.
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Fig. 7. 
Heatmap of beam center positions. Each point on the heatmap corresponds to a 8 × 8-pixel 

square on a diffraction image.
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Fig. 8. 
Bar plot presenting the class-specific performance (columns) of each of the seven analyzed 

classifiers on each of the anomaly classes (rows). Performance is measured using accuracy 

(Acc.), precision (Prec.), recall (Rec.), F1-score (F1), and the area under the ROC curve 

(AUC). The numeric data used to generate this plot are presented in Tables 4 and 5.
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Table 2

Best hyper-parameters for CNN classifiers.

CNN: Cartesian CNN: Polar-min CNN: Polar-max

Architecture ResNet-34 ResNet-34 ResNet-34

Parameters 21.3 M 21.3 M 21.3 M

Dropout 0.5 0.5 0.5

Image size 64 – > 512 64 – > 512 64 – > 512

Batch size 16 8 8

Validation loss 0.15024 0.1616 0.1639

Early stopping after 12 epochs 12 epochs 12 epochs

Learning rate (last layers) 0.008272 0.008642 0.006792

Learning rates (all layers) [0.001034, 0.002068, 0.004136, 
0.008272]

[0.00108, 0.00216, 0.004321, 
0.008642]

[0.000849, 0.001698, 0.003396, 
0.006792]

Epochs 700 550 650
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Table 3

Multi-label classification performance of four general-purpose classifiers and three convolutional neural 

networks. Performance measured using macro-averaged precision (Prec.M), macro-averaged recall (Rec.M), 

macro-averaged F1-score (F1M) and F2-score (F2M), macro-averaged Mathew’s Correlation Coefficient 

(MCCM), Jaccard Index (JI), and exact match ratio (EMR). Best values for each measure highlighted in bold.

Classifier Prec.M Rec.M F1M F2M MCCM JI EMR

SVM 0.59 0.66 0.52 0.63 0.36 0.41 0.02

NB 0.48 0.69 0.53 0.64 0.31 0.43 0.05

KNN 0.76 0.52 0.55 0.67 0.44 0.60 0.31

RF 0.83 0.60 0.66 0.76 0.60 0.71 0.45

CNN: Cartesian 0.88 0.86 0.87 0.87 0.81 0.83 0.65

CNN: Polar-min 0.88 0.84 0.85 0.86 0.80 0.83 0.63

CNN: Polar-max 0.89 0.84 0.86 0.86 0.81 0.83 0.65
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Table 4

Table of class-specific predictive performance of each of the tested general-purpose classifiers. Performance is 

measured using accuracy (Acc.), precision (Prec.), recall (Rec.), F1-score (F1), and the area under the ROC 

curve (AUC).

Classifier Class Acc. Prec. Rec. F1 AUC

SVM Artifact 0.85 0.81 0.31 0.45 0.65

Background Ring 0.72 0.73 0.85 0.79 0.68

Diffuse Scattering 0.93 0.44 0.25 0.32 0.61

Ice Ring 0.14 0.08 0.98 0.14 0.52

Loop Scattering 0.70 0.79 0.40 0.53 0.66

Non-unif. Detector 0.45 0.39 0.96 0.55 0.56

Strong Background 0.90 0.89 0.90 0.90 0.90

NB Artifact 0.78 0.46 0.62 0.53 0.72

Background Ring 0.61 0.66 0.74 0.70 0.57

Diffuse Scattering 0.45 0.10 0.84 0.17 0.63

Ice Ring 0.80 0.17 0.46 0.25 0.64

Loop Scattering 0.62 0.53 0.71 0.61 0.63

Non-unif. Detector 0.68 0.55 0.63 0.59 0.67

Strong Background 0.87 0.90 0.83 0.86 0.87

KNN Artifact 0.87 0.80 0.48 0.60 0.72

Background Ring 0.72 0.79 0.74 0.76 0.71

Diffuse Scattering 0.93 0.60 0.07 0.12 0.53

Ice Ring 0.93 1.00 0.09 0.16 0.54

Loop Scattering 0.71 0.62 0.79 0.69 0.72

Non-unif. Detector 0.75 0.69 0.53 0.60 0.70

Strong Background 0.89 0.85 0.93 0.89 0.89

RF Artifact 0.91 0.91 0.60 0.72 0.79

Background Ring 0.86 0.87 0.91 0.89 0.84

Diffuse Scattering 0.93 0.50 0.05 0.08 0.52

Ice Ring 0.95 1.00 0.33 0.49 0.66

Loop Scattering 0.83 0.82 0.76 0.79 0.82

Non-unif. Detector 0.81 0.80 0.63 0.71 0.77

Strong Background 0.93 0.92 0.94 0.93 0.93
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Table 5

Table of class-specific predictive performance of each of the tested CNNs. Performance is measured using 

accuracy (Acc.), precision (Prec.), recall (Rec.), F1-score (F1), and the area under the ROC curve (AUC).

Classifier Class Acc. Prec. Rec. F1 AUC

CNN: Cartesian Artifact 0.94 0.91 0.79 0.85 0.89

Background Ring 0.92 0.95 0.93 0.94 0.92

Diffuse Scattering 0.96 0.74 0.59 0.66 0.79

Ice Ring 0.99 0.92 0.98 0.95 0.99

Loop Scattering 0.94 0.90 0.97 0.93 0.95

Non-unif. Detector 0.87 0.83 0.78 0.80 0.85

Strong Background 0.94 0.91 0.97 0.94 0.94

CNN: Polar-min Artifact 0.93 0.88 0.77 0.82 0.87

Background Ring 0.91 0.94 0.92 0.93 0.91

Diffuse Scattering 0.95 0.71 0.50 0.59 0.74

Ice Ring 0.99 0.93 0.93 0.93 0.96

Loop Scattering 0.95 0.92 0.96 0.94 0.95

Non-unif. Detector 0.89 0.84 0.84 0.84 0.88

Strong Background 0.91 0.90 0.93 0.91 0.92

CNN: Polar-max Artifact 0.92 0.90 0.70 0.79 0.84

Background Ring 0.90 0.93 0.90 0.92 0.90

Diffuse Scattering 0.97 0.85 0.64 0.73 0.81

Ice Ring 0.98 0.87 0.89 0.88 0.94

Loop Scattering 0.96 0.94 0.96 0.95 0.96

Non-unif. Detector 0.89 0.84 0.84 0.84 0.88

Strong Background 0.93 0.92 0.94 0.93 0.93
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