Skip to main content
. Author manuscript; available in PMC: 2021 Aug 5.
Published in final edited form as: Expert Syst Appl. 2021 Feb 23;174:114740. doi: 10.1016/j.eswa.2021.114740

Table 2.

Best hyper-parameters for CNN classifiers.

CNN: Cartesian CNN: Polar-min CNN: Polar-max
Architecture ResNet-34 ResNet-34 ResNet-34
Parameters 21.3 M 21.3 M 21.3 M
Dropout 0.5 0.5 0.5
Image size 64 – > 512 64 – > 512 64 – > 512
Batch size 16 8 8
Validation loss 0.15024 0.1616 0.1639
Early stopping after 12 epochs 12 epochs 12 epochs
Learning rate (last layers) 0.008272 0.008642 0.006792
Learning rates (all layers) [0.001034, 0.002068, 0.004136, 0.008272] [0.00108, 0.00216, 0.004321, 0.008642] [0.000849, 0.001698, 0.003396, 0.006792]
Epochs 700 550 650