Skip to main content
. Author manuscript; available in PMC: 2021 Aug 5.
Published in final edited form as: Expert Syst Appl. 2021 Feb 23;174:114740. doi: 10.1016/j.eswa.2021.114740

Table 5.

Table of class-specific predictive performance of each of the tested CNNs. Performance is measured using accuracy (Acc.), precision (Prec.), recall (Rec.), F1-score (F1), and the area under the ROC curve (AUC).

Classifier Class Acc. Prec. Rec. F1 AUC
CNN: Cartesian Artifact 0.94 0.91 0.79 0.85 0.89
Background Ring 0.92 0.95 0.93 0.94 0.92
Diffuse Scattering 0.96 0.74 0.59 0.66 0.79
Ice Ring 0.99 0.92 0.98 0.95 0.99
Loop Scattering 0.94 0.90 0.97 0.93 0.95
Non-unif. Detector 0.87 0.83 0.78 0.80 0.85
Strong Background 0.94 0.91 0.97 0.94 0.94
CNN: Polar-min Artifact 0.93 0.88 0.77 0.82 0.87
Background Ring 0.91 0.94 0.92 0.93 0.91
Diffuse Scattering 0.95 0.71 0.50 0.59 0.74
Ice Ring 0.99 0.93 0.93 0.93 0.96
Loop Scattering 0.95 0.92 0.96 0.94 0.95
Non-unif. Detector 0.89 0.84 0.84 0.84 0.88
Strong Background 0.91 0.90 0.93 0.91 0.92
CNN: Polar-max Artifact 0.92 0.90 0.70 0.79 0.84
Background Ring 0.90 0.93 0.90 0.92 0.90
Diffuse Scattering 0.97 0.85 0.64 0.73 0.81
Ice Ring 0.98 0.87 0.89 0.88 0.94
Loop Scattering 0.96 0.94 0.96 0.95 0.96
Non-unif. Detector 0.89 0.84 0.84 0.84 0.88
Strong Background 0.93 0.92 0.94 0.93 0.93