
Data Processing Workflow to Identify Structurally Related 
Compounds in Petroleum Substances Using Ion Mobility 
Spectrometry−Mass Spectrometry

Alina T. Roman-Hubers†,‡, Alexandra C. Cordova†,‡, Noor A. Aly†, Thomas J. McDonald¶, 
Dillon T. Lloyd$, Fred A. Wright$, Erin S. Baker§, Weihsueh A. Chiu†, Ivan Rusyn*,†

†Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 
77843, United States

¶Department of Environmental and Occupational Health, Texas A&M University, College Station, 
Texas 77843, United States

$Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, United 
States

§Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United 
States

Abstract

Ion mobility spectrometry coupled with mass spectrometry (IMS-MS) is a post-ionization 

separation technique that can be used for rapid multidimensional analyses of complex samples. 

IMS-MS offers untargeted analysis, including ion-specific conformational data derived as 

collisional cross section (CCS) values. Here, we combine nitrogen gas drift tube CCS (DTCCSN2) 

and Kendrick mass defect (KMD) analyses based on CH2 and H functional units to enable 

compositional analyses of petroleum substances. First, polycyclic aromatic compound standards 

were analyzed by IMS-MS to demonstrate how CCS assists the identification of isomeric species 

in homologous series. Next, we used case studies of a gasoline standard previously characterized 

for paraffin, isoparaffin, aromatic, naphthene, and olefinic (PIANO) compounds, and a crude oil 

sample to demonstrate the application of the KMD analyses and CCS filtering. Finally, we propose 

a workflow that enables confident molecular formula assignment to the IMS-MS-derived features 

in petroleum samples. Collectively, this work demonstrates how rapid untargeted IMS-MS analysis 

and the proposed data processing workflow can be used to provide confident compositional 

characterization of hydrocarbon-containing substances.

Graphical Abstract

*Corresponding Author Ivan Rusyn, MD, PhD. Department of Veterinary Integrative Biosciences, Texas A&M University, College 
Station, TX 77845. irusyn@tamu.edu; Phone: +1-979-458-9866.
Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
‡These authors contributed equally.

HHS Public Access
Author manuscript
Energy Fuels. Author manuscript; available in PMC 2021 August 05.

Published in final edited form as:
Energy Fuels. 2021 July 1; 35(13): 10529–10539. doi:10.1021/acs.energyfuels.1c00892.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction.

Products of petroleum refining are substances classified as “unknown or variable chemical 

composition, complex reaction byproducts, or biological materials” (UVCB).1 The 

information on compositional characterization of petroleum substances is highly desired not 

only from a chemistry point of view, but is also required for hazard classification 2,3 and 

product registration.4 Conventional methods for compositional characterization of petroleum 

substances typically rely on physicochemical analyses (i.e., bulk composition, boiling point, 

flash point, metal content) or chemical separation methods (i.e., extraction, distillation, 

chromatography, mass spectrometry). 5 More recently, a number of high-resolution 

analytical methods and data analyses approaches, collectively referred to as “petroleomics,” 

were developed to enable a comprehensive characterization of these very complex 

substances.6–9 For example, two-dimensional (2D) gas chromatography (GC × GC) achieves 

orthogonal separation of molecules in petroleum substances based on volatility and polarity 

and can resolve nearly 10 times the number of features compared to one dimensional GC.
10,11 GC × GC is often coupled with either fluorescence ionization detection (FID) or time-

of-flight mass spectrometry (TOF-MS) detectors.12 Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR MS) is a technique that offers ultrahigh resolving 

power and mass accuracy; however, the complexity of petroleum substances presents an 

analytical challenge to most mass spectrometry methods.13–15 Ion mobility spectrometry

−mass spectrometry (IMS-MS) is an analytical technique that supplements separation of 

complex substances by mass and charge (m/z) with information on the spatial conformation, 

termed collisional cross section (CCS).16 CCS is an orthogonal parameter that can be used 

to distinguish between isomers and improve precision in structural assignments of the 

components in complex samples.17–19

High-resolution analytical methods used for the analysis of petroleum substances yield 

complex data matrices that require special handling, visualization, and statistical analyses.6 

Typical approaches are Kendrick mass defect (KMD) analysis,20 as well as determinations 

of elemental composition and aromaticity.21,22 The traditional Kendrick scale is based on 
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CH2 and normalizes the mass of CH2 (14.01565 Da) to its nearest integer (14.00000), 

sorting compounds with the same mass defect into homologous series.20,23 Alternative 

functional units can be used for KMD analysis of complex data matrices, such as 

hydrocarbon-containing samples (i.e., C6H6),24,25 polymers (C3H6SiO),26,27 and poly- and 

per-fluoroalkyl substances (CF2).28 Overall, while the data analysis methods in petroleomics 

benefit from the developments in data processing workflows and interactive visualizations,6 

many challenges remain in the confident assignment of molecular formulas to the features 

identified by untargeted analytical methods.29

One approach to improve confidence in feature identification of untargeted analytical 

methods is to increase the dimensionality of classification without sacrificing the time 

needed to process each sample. Among many untargeted analysis methods for petroleum 

samples, IMS coupled with mass spectrometry (referred to here as IMS-MS) offers a number 

of benefits as it can separate complex samples into their various molecular ions in 

milliseconds.30–32 Indeed, IMSMS has been used for petroleomics analyses.33–37 The IMS 

based CCS value provides direct information about each ion’s size and shape, enabling 

filtering of potentially mis-assigned features in highly complex petroleum samples. The 

IMS-MS data output consists of m/z, drift time (used to calculate CCS), and abundance for 

thousands of features, allowing for prediction of molecular identities and the discrimination 

between isomeric species. Although these IMS-MS-derived data are amenable to traditional 

data processing methods such as KMD,34 a systematic workflow for processing of IMS-MS 

data for complex petroleum substances has not yet been proposed. In this study, we present 

such a workflow and demonstrate the benefit of including the IMS dimension into data 

analysis.

Specifically, we coupled analysis of the data from untargeted IMS-MS with KMD 

visualizations based on CH2 and H functional units for a workflow that can be used to 

characterize complex hydrocarbon-containing (i.e., petroleum) substances. First, we 

analyzed isomeric hydrocarbon standards to demonstrate IMS-MS-enabled separation and 

the utility of nitrogen gas drift tube CCS (DTCCSN2) for identifying structural isomers. We 

then analyzed a [n-paraffins (P), isoparaffins (I), aromatics (A), naphthenes (N), and olefins 

(O)] (PIANO) gasoline standard and a crude oil sample as representative complex samples 

to demonstrate the application of the proposed workflow. Finally, we illustrate that the 
DTCCSN2 enabled increased confidence in the evaluation of the chemical composition of the 

features in homologous series.

Experimental Section.

Materials.

Representative standards for αββ(20R)-cholestane (cat # 0602.27–100-IO, CAS # 69483–

47-2, Chiron, Trondheim, Norway), αββ(20R,24S)-methylcholestane (cat # 0643.28–100-

IO, CAS #71117–90-3, Chiron, Trondheim, Norway), αββ(20R,24RS)-ethylcholestane (cat 

# 0913.29–100-IO, CAS # 71117–92-5, Chiron, Trondheim, Norway), and βαα(20R,24R)-

ethylcholestane (cat # 0610.29–100-IO, CAS # 4705–29-7, Chiron, Trondheim, Norway) 

were used as analytical standards. Each compound was diluted with high-performance liquid 

chromatography (HPLC)-grade toluene (CAS # 108–88-3, Product # 179418, Sigma-
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Aldrich, St. Louis, MO) and methanol (CAS # 67–56-1, Product # 34860, Sigma-Aldrich) 

50:50 (v/v); see Supplemental Table 1 for final concentrations. A PIANO gasoline mix (part 

# PIANO, Lot No. 217101400, AccuStandard, New Haven, CT) was diluted 10× with 

toluene and methanol (50:50, v/v). A crude oil sample (1 mg) from Louisiana was diluted in 

1 mL of a mixture (50:50, v/v) of toluene and methanol.

IMS-MS Instrumentation and Analysis.

A 6560A ion mobility (resolving power (RP) ≈ 25 000) Q-TOF-MS (RP ≈ 60) drift tube 

instrument with nitrogen gas (Agilent Technologies, Santa Clara, CA) was used for sample 

analysis. The instrument was calibrated prior to running samples according to the Agilent 

protocol, using the APCI-L low-concentration tuning mix solution (part # G1969–85010, 

Agilent). Direct infusion was then utilized to inject 150 μL of sample at a flow rate of 50 μL/

min. This was conducted in triplicate, and an atmospheric pressure photoionization (APPI) 

source in positive-ion mode was used to facilitate the detection of aromatic compounds. 

Instrumental and source parameters were as follows: APPI positive mode, sample analysis 

time 1.5 min; source parameters: gas temperature 325 °C, vaporizer 350 °C, drying gas 10 

L/min, nebulizer 30 psi, VCap 3000, fragment 400V, 110 RF Vpp 750. The following 

acquisition parameters were defined in each instrumental run: mass range 50−1700 m/z, 

frame rate 1 frame/s, IM transient rate 18 transients/frame, max drift time 60 ms, TOF 

transient rate 600 transients/IM transients, trap fill time 20 000 μs and trap release time 300 

μs. QTOF parameters were as follows: firmware version 18.723, rough Vac 2.71 torr, Quad 

Vac 3.68 × (E-05) torr, TOF Vac 3.47 × (E-07) torr, drift tube pressure 3.940 torr, trap funnel 

pressure 3.790 torr, chamber voltage 5.96 μA, and capillary voltage 0.076 μA. Data was 

obtained using the Agilent MassHunter Acquisition software (Agilent, v.09.00).

Data Processing and Filtering.

IMS-MS raw data files for the samples evaluated in this study were processed using 

MassHunter Browser Acquisition data software (Agilent, B.08.00) to calculate individual 
DTCCSN2 values for all detected features.38 Data was then filtered using Agilent 

MassProfiler software (Agilent, B.08.00) with Q-score > 75 (Agilent MassHunter peak 

quality metric that ranges from 0 to 100, which is an algorithmic estimate of how likely a 

feature is an actual molecule) and abundance >5000 or >1000. Filtering parameters were 

selected based on the general consideration of the presence of 13C isotopic partner for 

individual features; however, alternative thresholds may be selected. The data matrix of 

detected features was then cross-referenced to a DTCCSN2 library.39 This was performed 

using Agilent MassHunter ID Browser (B.08.00) matched features with an m/z tolerance of 

±5 ppm and ±2 mDa and DTCCSN2 tolerance of ±1%.

Kendrick Mass (KM) Defect Calculations.

KM was calculated for all features in the filtered data sets by multiplying their observed m/z 
by a factor unique to each functional unit evaluated (Table 1), representing a ratio of its 

nominal mass (NM) to exact mass (EM) (eq 1). KM was then rounded to the nearest integer 

to obtain the Kendrick nominal mass (KNM). KMD was calculated by subtracting KM from 

KNM, in parts per thousand (ppt) (eq 2).
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KM = observed m/z × NM/EM (Eq. 1)

KMD ppt = KM_ Round, 0 − KM × 1, 000 = KNM−KM × 1, 000 (Eq. 2)

Homologous series in KMD-CH2 vs m/z plots were first defined as horizontal rows of 

features lying within a KMD- CH2 tolerance of ±1.00 ppt, based on the error calculated 

using APPI tuning mix (Supplemental Table 2). Features belonging to the series were 

confirmed based on m/z values differing by multiples of 14 Da in their nominal mass 

measurements. Features following this trend were thus assumed to have compositions 

varying only by the addition of one or more CH2 units.

Features that were given molecular formula assignments by DTCCSN2 library39 matching 

served as anchors to identify the elemental composition of other members of that 

homologous series. Elemental KMD shifts based on evaluated functional units (Table 1) 

were then used to navigate remaining homologous series and similarly assign molecular 

formulas. The molecular loss of a H atom resulted in a 6.6996 positive KMD shift, while the 

gain of a C resulted in 13.3993 negative KMD shift (Table 2).

DTCCSN2 values for features within homologous series were then used to provide additional 

confidence of molecular formula assignment as well as identifications for isomeric features. 

Features within a homologous series followed a DTCCSN2 pattern differing by 4−6 Å2. 

Features not following the defined CCS shift were thus assumed to be structural outliers. 

These were verified as potential isomeric species using Agilent MassHunter Browser 

(B.08.00) where 2D IMS-MS spectra revealed the ions as having the same m/z with 

significant drift time differences. Such isomeric features maintained the same molecular 

composition as their original homologous series, but a different structural conformation.

KMD-H vs m/z plots were then used to corroborate CH2-based assigned molecular 

formulas. Here, features appearing as homologous series (±2.00 ppt KMD-H) were 

classified as having the same number of carbon atoms and as belonging to the same 

molecular class. Each feature in a series therefore differs only in its number of hydrogen 

atoms, and features within a series are organized in order of decreasing double-bond 

equivalence (left to right). Homologous series of molecules differing by 1C were separated 

by a shift of ±93.171 ppt KMD-H (Table 2). Elemental shifts calculated for KMD-H were 

again used to identify relationships between homologous series, here representing different 

carbon numbers, molecular classes, and species. These elemental shifts allowed us to further 

assign putative molecular formulas to individual features not within a homologous series 

(non-series features). Heteroatomic shifts including nitrogen, oxygen, and sulfur shown in 

Table 2 gave further insight into possible molecular formulas to assign to these otherwise 

unidentified features.

Results and Discussion.

The comprehensive characterization of UVCB substances is a critical gap in the regulatory 

evaluation of their potential to pose environmental and human health risks. We addressed 
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this challenge through the application of IMS-MS and a petroleomic data analysis workflow 

that can be used to characterize the molecular composition of complex hydrocarbon- 

containing substances.

Combining DTCCSN2 and KMD for Isomer Identification.

Four hydrocarbon biomarkers were used for illustrative purpose to demonstrate the 

advantage of KMD visualization and isomeric discrimination using multidimensional IMS-

MS data (m/z and DTCCSN2) (Figure 1). First, KMD (y-axis) plotted against m/z (x-axis) 

presents a homologous series composed of cholestane (C27H48), methylcholestane (C28H50), 

and ethylcholestane (C29H52) (Figure 1A). Incorporation of DTCCSN2 (z-axis) values for 

each homologue enabled the discrimination of stereoisomers otherwise indistinguishable by 

m/z or elemental composition alone (Figure 1A). IMS-MS analysis of both isomers (Figure 

1B,C) identified ethylcholestane (m/z 400.4020). Isomeric peaks were also detected for 

β,α,α(20R,24R)-24-ethylcholestane at a drift time of 26.47 ms (Figure 1B) and for 

α,β,β(20R,24R)-24-ethylcholestane at a drift time of 26.26 ms (Figure 1C).

Application of IMS-MS to a PIANO Gasoline Standard Sample.

To demonstrate our KMD and IMS-MS workflow, we first analyzed a PIANO gasoline 

standard, which is a representative sample that has been evaluated using traditional GC-MS 

methods. The nested two-dimensional IMS-MS spectra (Figure 2) illustrate the mass-

mobility correlation of ions (a total of 7863, Supplemental Table 3) detected in the PIANO 

gasoline standard. Ions with higher m/z also have higher drift time, as expected, because 

larger ions take longer to travel through the drift tube. The drift time is directly proportional 

to DTCCSN2 (Å2), indicating that ions with higher m/z and drift time encounter more 

collisions with the stationary buffer gas, and are spatially larger. This study utilized APPI for 

selective ionization of polycyclic aromatic compounds (PACs). Analysis of the raw spectra 

(Figure 2, top and Supplemental Table 3) revealed that 13C isotopic partners for several ions 

with abundance <5000 and quality scores (Qscore) <75 were undetectable. Therefore, to 

increase confidence in feature characterization, the raw data was filtered based on these 

thresholds, yielding a filtered m/z range of 91− 450 and a DTCCSN2 range of 108−223 Å2 

(Supplemental Table 4). Visual inspection highlighted the presence of one feature (m/z 
∼150, drift time >30) that was later characterized as an outlier by our analysis.

The filtered IMS-MS data (a total of 202 features, Supplemental Table 4) from the PIANO 

gasoline standard were visualized using KMD (Figure 3). Conventional KMD versus m/z 
plots (Figure 3A) derived using the CH2 scale show homologous series by their degree of 

similarity to a saturated alkane composed entirely of CH2 groups (KMD-CH2 ∼0). Features 

of the same molecular class and base unit differing only by multiples of CH2-alkyl units 

align into unique horizontal rows within ±1 ppt, with individual ions spaced by ∼14 Da. 

Increasing aromaticity and double-bond equivalence (DBE) within features of the same 

molecular class (i.e., loss of a C) exhibit a KMD-CH2 shift of +13.39931 ppt. Vertically 

shifted features with KMD-CH2 inconsistent with that shift belong to heteroatom classes 

(Table 2). Cross-referencing of these data with the DTCCSN2 library39 matched three 

features. These were used as “anchor features” to assign the molecular formulas to other 

features within the same and neighboring series were identified (181 features in homologous 
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series). KMD-CH2 shifts were then applied to assign chemical identities to features not 

within homologous series (13 of features were not in homologous series).

Figure 3B shows the application of KMD-CH2 analysis in combination with DTCCSN2 as an 

orthogonal parameter for the characterization of homologous series. Derived for each 

feature, DTCCSN2 measurements corroborated homologous series assignments (Figure 3A) 

and increased confidence in feature identification. When used in conjunction with traditional 

KMD vs m/z analysis, DTCCSN2 data enables identification of the features that are 

structurally incongruent with the features in m/z-based series. The aforementioned outlier 

feature with m/z ∼150 Da and DTCCSN2 ∼225 Å2 is one example. Thus, inclusion of KMD- 
DTCCSN2 analysis distinguished isomeric features that may be mis-assigned to the 

homologous series characterized with m/z alone (Figure 3B, red rectangle).

KMD calculations based on the hydrogen “unit” were also performed (Figure 3C,D). This 

analysis was based on the proposed use of the individual elements (e.g., C or H) for KMD 

data processing.27 Specifically, each feature’s location is based on the vertical separation of 

features of the same elemental composition and heteroatom class. Analogous to CH2 series, 

features align into horizontal rows of carbon number-based series, varying only by the 

number of hydrogen atoms. Carbon number series of the same molecular class have a KMD-

H shift ±93.717 ppt along the KMD-H scale. This analysis was especially useful to 

corroborate the molecular formula assignments derived from KMD-CH2 and to inform 

additional assignments for features previously unidentifiable with KMD-CH2 alone. The 

combination of CH2- and H-based KMD analysis using m/z and DTCCSN2 provides 

additional evidence to support the putative molecular assignments of features in complex 

samples.

Two-dimensional KMD analysis with m/z and DTCCSN2 determined the presence of features 

with the same m/z and differing mobility parameters. This enabled discrimination of 

isomeric species that were formerly indistinguishable by the traditional KMD- vs m/z 
analysis (Figure 4). Figure 4A shows a KMD-CH2 vs m/z plot for a homologous series at 47 

ppt, where two pairs of ions overlap at m/z of 105.0699 (arrows) and 119.0853 

(arrowheads). Using DTCCSN2 values (Figure 4B) to plot these series, the shift of isomeric 

species allows for structural discrimination of the features with the same elemental 

composition but different spatial conformations. KMD-H analysis further corroborated 

findings from KMD-CH2, showing the overlap in isomeric pairs with m/z alone (Figure 4C). 

The KMD-H vs m/z plot also illustrates each isomeric pair within its respective carbon 

number series, increasing the confidence in molecular assignments with KMD-CH2. When 

plotting KMD-H vs DTCCSN2 (Figure 4D), the migration of features from each isomeric 

pair with DTCCSN2 again reveals structural discrepancies. Alignment of these features with 

their respective carbon number series of equal KMD-H provides additional confidence for 

molecular formula assignments. KMD-H with m/z and DTCCSN2 analyses also show 

different ion types within the same carbon number group, namely, [M]+ and [M + H]+. Ions 

of the same carbon number but different ionization have different KMD-CH2 values and can 

be difficult to distinguish based on the KMD-CH2 scale. KMD-H analysis aligns features of 

the same carbon number into series, regardless of ionization type, and increases confidence 

in assignments.
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The workflow was applied to the PIANO gasoline standard using data filtered as shown in 

Figure 2. Out of 202 total features used for the analysis, 195 were assigned a molecular 

formula with confidence using CH2 and H base unit analysis, 6 were without assignment, 

and 1 was a structural outlier (in terms of m/z− DTCCSN2 relationship). The PIANO 

gasoline standard is an informative case study because detailed GC-MS analyses are 

available on this sample; in this standard, 214 low mass compounds (MW 56−212) out of 

the 263 compounds detected by GC-MS were identified (https://www.accustandard.com/

piano). Compared to GC-MS, the IMS-MS analysis enabled characterization of a broader 

mass range, up to m/z∼450. Therefore, while both techniques detect the C6−C15 

hydrocarbons, IMS-MS identified additional substances in the C15−C36 range. While the 

GC-MS analysis of the PIANO gasoline standard identified 42 unique molecular formulas, 

IMS-MS analysis coupled with the data analysis workflow yielded 195 unique molecular 

formulas; 10 were in common to both analyses (Supplemental Table 10). Furthermore, the 

APPI ionization used in the IMS-MS analysis enabled identification of additional aromatic 

hydrocarbon compounds that are difficult to resolve using gas chromatography, providing an 

additional benefit with respect to the fingerprinting of the molecules that are of concerns 

with respect to human health.42

In addition, we note that lowering data processing thresholds will yield many additional 

features that can be also evaluated through the data analysis workflow. For example, when 

an abundance threshold was lowered to 1000 in the data from the IMS-MS analysis of the 

PIANO gasoline standard, a total of 921 features passed the criteria. Of these, 726 (79%) 

could be assigned molecular formulas and 141 are potential multimers or isomers 

(Supplemental Table 11). Depending on the goals of the data analysis, lower thresholds and 

larger data matrices may be appropriate; however, care needs to be taken to maintain 

confidence in feature quality through isotope pattern verification and other analyses.

Evaluation of Different Functional Units for KMD Analysis of Hydrocarbon Substances.

KMD analysis of high-resolution petroleomics data may be performed with a variety of 

functional units.20,24,43 Because previously detailed analysis (Figure 5) of the PIANO 

gasoline standard failed to assign a molecular formula to 6 features, we tested whether other 

functional units can be more informative for the KMD part of the data analysis workflow 

(Figure 6).

We found that incorporation of other functional units in KMD analysis yielded similar 

findings regarding molecular formula assignments (Supplemental Table 12). With the C4H2 

functional unit, we characterized 195 of 202 features, almost all of which were previously 

characterized by CH2 and 6 were unique features. Interestingly, the C6H6 and C10H8 

functional units did not add to the characterizations but confirmed previously assigned 

formulas of 189 and 85 features, respectively. The C10H8 functional unit KMD analysis was 

the least informative, with the smallest contribution to molecular formula assignments 

(42%). Therefore, we conclude that CH2-based KMD analysis is the most time-efficient and 

robust approach for feature identification by molecular class, type, and hydrocarbon family. 

These results support our hypothesis that KMD-CH2 effectively deconvolutes the high 

resolution spectra associated with petroleum substances enabling detailed feature 
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characterization and identification. The error (ppm) was calculated for all matched and 

assigned features (Supplemental Table 13). The average error for all molecular assignments 

was 2.10 ± 2.95 ppm, and all but three features fell under the defined mass tolerance that 

was established for DTCCSN2 library matches.

Application of the Data Processing Workflow to a Crude Oil Sample.

To further demonstrate the utility of untargeted IMS-MS and the proposed data processing 

workflow for analyzing very complex hydrocarbon-containing substances, we performed an 

analysis of a crude oil sample from Louisiana (a total of 30 357 features detected, 

Supplemental Table 14). Overall data processing and filtering parameters that were applied 

to this sample were consistent with those used for the PIANO gasoline standard to enable 

direct comparisons between two samples (abundance >5000, Q-score >75). The filtered 

IMS-MS data (a total of 1258 features, Supplemental Table 15) were visualized using 

different KMD plots as shown in Figure 7 and Supplemental Table 16. Both KMD-CH2 

(Figure 7A, B) and KMD-H (Figure 7C, D) were plotted against m/z (Figure 7A, C) or 
DTCCSN2 (Figure 7B, D). As expected based on the complexity of the oil sample, a far 

greater number of features is displayed compared to the PIANO gasoline standard (Figure 

3). In this crude oil sample data, among filtered features, there were a total of 21 that 

matched to the chemical standards in the DTCCSN2 library.39 The library matches included a 

number of petroleum biomarker molecules characteristically present in crude oils, such as 

17α(H)-21β(H)-30-norhopane and 5β(H)-androstane, further demonstrating the utility of 

this untargeted rapid IMSMS analyses for petroleomics (Supplemental Table 16). Out of 

1258 filtered features, 1200 (95%) were assigned confident molecular formulas using the 

data processing workflow (Figure 5).

As demonstrated previously with the PIANO gasoline standard (Figure 4), the additional 

benefit of DTCCSN2 data lies in the ability to identify isomeric compounds that are otherwise 

difficult to separate using MS alone. Figure 8 shows an example of isomers in the crude oil 

data -two pairs of ions (arrow and arrowhead) that can be separated using DTCCSN2. 

Overlapping at m/z of 77.0382 (arrows) and 91.0538 (arrowheads), the two pairs of ions 

cannot be distinguished with KMD-CH2 (Figure 8A) or KMD-H (Figure 8C) when plotted 

against m/z. Using DTCCSN2 values to plot these series against KMD-CH2 (Figure 8C) or 

KMD-H (Figure 8D), the shift in DTCCSN2 allowed us to determine these compounds are 

isomeric. The two-dimensional IMS-MS spectra (Figure 8E) for the isomeric pair at m/z of 

77.0382 confirms the presence of two ions with the same elemental composition and 

separate ion mobility peaks (Δdrift time = 0.994 ms) indicating a difference in conformation.

Conclusion.

Overall, this study presents a novel data analysis workflow that can be used to considerably 

expand the utility of IMS-MS as a rapid untargeted technique for rapid analysis of petroleum 

derived complex samples. While multidimensional data from IMS-MS and other high-

resolution MS methods are informative with respect to fingerprinting and source 

identification, more detailed characterization of the molecular composition of these samples 

is needed to inform human and environmental risk assessments. Here, the traditional KMD-
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based analyses6 were combined with the additional KMD analysis using H unit, and 

structure confirmation verification step based on DTCCSN2, an orthogonal metric that is 

critical for confident feature identification in untargeted analyses.31,44

This study also addresses the analytical challenges posed by petroleum substance 

complexity. Traditional GC-MS analysis of petroleum samples requires several involved 

steps, including peak integration and cross-reference with multiple libraries and references 

for data interpretation. The untargeted IMS-MS analysis followed by the proposed workflow 

is of particular relevance to the characterization of complex petroleum substances, such as a 

PIANO gasoline standard or a crude oil, as it uses CH2 and H functional units that allows for 

confident characterization of ∼95% of the high abundance features. This study also opens 

new applications for IMS-MS and the proposed data processing workflow for the analysis of 

samples in complex matrices (i.e., environmental contaminants, complex mixtures, etc.). 

Modifications to the workflow can be made at user discretion, including other instrumental 

couplings (LC-IMS-MS), choice of ionization source(s), or the selection of study-specific 

data filtering workflows or other KMD functional units.

There are a number of limitations to the proposed approach. First, while this approach is 

suitable for molecular fingerprinting analysis of complex petroleum substances, caution is 

needed in terms of confidence in formula assignments because of the inherent imprecision in 

mass accuracy especially as the mass of the molecules increases. Second, the exclusion of 

low molecular weight compounds with defined parameters is another limitation; detection of 

smaller and heteroatomic sample fractions may be addressed through the use of other sample 

ionization techniques. Third, future work to streamline and automate this data analysis 

workflow is needed to develop a user-friendly software application.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Analysis of stereoisomers using KMD coupled with m/z and DTCCSN2 (Å2) parameters. (A) 

Three-dimensional (3D) scatter plot showing cholestane homologous series, where x-axis is 

m/z, y-axis is KMD-CH2, and z-axis is DTCCSN2. (B−C) IMS-MS spectra and their 

respective drift times for stereoisomers β,α,α(20R,24R)-24-ethylcholestane (B) and 

α,β,β(20R,24R)-24-ethylcholestane (C).
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Figure 2. 
IMS-MS spectra for PIANO gasoline standard. Raw data (top, Supplemental Table 3) in 

APPI positive-ion mode and features filtered (bottom) by abundance >5000 and Q-score 

>75. X-axis is m/z, and Y-axis is drift time. Density plots for each parameter are shown. A 

summary table of the feature characteristics is shown for both raw and filtered data sets.
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Figure 3. 
KMD analyses of IMS-MS data for PIANO gasoline standard. Filtered features 

(Supplemental Table 4) were plotted based on CH2 and H KMD analyses (Supplemental 

Tables 5–6). (A) The KMD-CH2 vs m/z plot shows homologous series as horizontal series 

of features (n = 202). (B) The KMD-CH2 vs DTCCSN2 plot with DTCCSN2 library-matched 

features (n = 3) shown as black circles. (C) KMD-H vs m/z plot showing homologous series 

based on the carbon number. (D) KMD-H vs DTCCSN2 plot identifies isomeric features (×) 

in their respective homologous series (red rectangles and Figure 4) based on DTCCSN2. 

Elemental shifts were used to assign formulas to homologous series (open circles) from 

nonseries features (open triangles). Features without molecular formula assignments are 

shown as open squares.
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Figure 4. 
Verification of the molecular formula assignments for the isomeric species in PIANO 

gasoline standard using DTCCSN2. A close inspection of data from Figure 3 (red rectangles) 

illustrates two pairs of isomers: arrows (m/z 105.0699) and arrowheads (m/z 119.0853). (A) 

Traditional KMD-CH2 vs m/z plot shows a homologous series of hydrocarbons with 

isomers. (B) The KMD-CH2 vs DTCCSN2 plot separates isomers and (C) the KMD-H vs m/z 

plots of ions based on a carbon group, showing the overlap of isomers. (D) KMD-H vs 
DTCCSN2 plot illustrates discrimination between isomers, [M]+, and [M + H]+. (E, F) 2D 

IMS-MS plots confirm the detection of isomers exhibiting the same m/z but varying drift 

times (ms). (E) DTCCSN2 - dimension separation of features with m/z 105.0699 identified 

with an arrow in (A−D): the light gray circle (drift time 16.45 ms) and its isomer (black ×, 

drift time 17.78 ms). (F) The second isomeric pair (arrowheads, m/z 119.0853): the dark 

gray circle (drift time 17.31 ms) and its isomer (drift time 18.26 ms).
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Figure 5. 
Data processing workflow for complex hydrocarbon-containing samples using IMS-MS data 

followed by CH2 and H KMD analyses.
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Figure 6. 
KMD evaluation of the IMS-MS data on the PIANO gasoline standard using different 

functional units. The filtered dataset (Supplemental Table 4) was analyzed using the IMS-

MS data processing workflow (Figure 5) with different functional units (as shown, 

Supplemental Tables 5 and 7–9). For each analysis, the total number of features with 

confident molecular identification is plotted. Features identified with CH2 are shown in 

green and used as a reference for other functional units (see color legend). Functional unit 

structures are also shown.
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Figure 7. 
KMD analyses of IMS-MS data for a Louisiana crude oil. Features (Supplemental Table 16) 

were plotted for analyses using CH2 and H KMD scales. (A) KMD-CH2 vs m/z plot 

showing horizontal homologous series of filtered features (n = 1258). (B) KMD-CH2 vs 
DTCCSN2 plot shows library-matched anchor features in black (n = 24). (C) KMD-H vs m/z 
plot organizes homologous series by carbon number and molecular class. (D) KMD-H vs 
DTCCSN2 plot. Consistent with PIANO gasoline standard KMD plots (Figure 3), red 

rectangles (see Figure 8) depict features in isomeric series (×, n = 4), distinguishable by 
DTCCSN2. Elemental shifts were used to assign formulas to homologous series (open 

circles) from nonseries features (open triangles). Features without molecular formula 

assignments are shown as open squares.
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Figure 8. 
Identification of the isomeric features in Louisiana crude oil using DTCCSN2 values. Zoom-

in on data from Figure 7 (red rectangles) shows two pairs of isomers: arrows (m/z 77.0382) 

and arrowheads (m/z 91.0538). (A) Traditional KMD-CH2 vs m/z plot shows homologous 

series of crude oil biomarkers with overlapping isomers. (B) KMD-CH2 vs DTCCSN2 plot 

shows separated isomers. (C) KMD-H vs m/z plot illustrates the same biomarker series and 

overlapping isomer features separated by molecular class and carbon number group. (D) 

KMD-H vs DTCCSN2 plot depicts discrimination between isomeric features that remain in 

the same carbon number groups, increasing confidence in molecular formula assignments. 

(E) An example of feature separation by DTCCSN2 via drift time measurements. DTCCSN2 

dimension separation of features with m/z 77.0382 identified by arrows in (A−D) (light gray 

circle drift time 15.758 ms; red × drift time 16.752 ms).
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Table 1.

Mass defect multiplication factors for each functional unit evaluated. Kendrick mass (KM) was calculated by 

multiplying the observed m/z of features in the data by a ratio of Nominal Mass/Exact Mass (NM/EM).

Molecular Formula Nominal Mass (Da) Exact Mass (Da)

CH2 14.00000 14.01565

H 1.00000 1.00783

C4H2 50.00000 50.01565

C6H6 78.00000 78.04695

C10H8 128.00000 128.06260
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Table 2.

Elemental KMD shifts (in parts per thousand, ppt) based on CH2 and H functional units. Elemental mass 

defects were calculated as the difference between the elemental nominal mass and its corresponding Kendrick 

mass (Table 1).

Element Exact Mass (Da) Nominal Mass (Da)  KMD [CH2] (ppt) KMD [H] (ppt)

12C 12.0000 12.00000  13.39931 93.17141

1H 1.00783 1.00000  −6.69969 0.00000

16O1 15.99491 16.00000  22.94506 129.27407

16O2 31.98983 32.00000  45.89113 258.54912

14N 14.00307 14.00000  12.56196 105.64985

32S 31.97207 32.00000  63.62630 276.16627

35Cl 34.96885 35.00000  70.19253 302.65412
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