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Abstract

Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to 

determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-

solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid 

systems. The fundamental nuclear spin interactions and the effects of magnetic fields and 

radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of 

the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state 

NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the 

types of radiofrequency pulse sequences required to extract structural and dynamical information. 

We describe the most common MAS NMR experiments and data analysis approaches for 

investigating biological macromolecules, organic materials, and inorganic solids. Continuing 

development of sensitivity-enhancement approaches, including 1H-detected fast MAS 

experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, 

is described. We highlight recent applications of solid-state NMR to biological and materials 

chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and 

points to future avenues of development to further enhance the capabilities of this sophisticated 

spectroscopy for new applications.
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Introduction

NMR spectroscopy probes the atomic-level three-dimensional (3D) arrangement and motion 

of molecules and materials. Nuclear magnetic resonance is the oscillatory response of nuclei 

with non-zero spins in a magnetic field to resonant excitation by radiofrequency (RF) 

irradiation. When atoms containing non-zero nuclear spins (Table 1) are placed in an 

external magnetic field, the degeneracy of the nuclear spin states is lifted, with an energy 

difference ΔE given by equation (1).

Δ E = γℏ 1 − σ B0 (1)

Here, γ is the gyromagnetic ratio, a fundamental property associated with each isotope; B0 

is the strength of the static magnetic field; and σ is the chemical shielding around a nucleus. 

Transitions can then be induced by electromagnetic irradiation between these nuclear-spin 

states (Fig. 1) 1. With typical magnetic fields of 5–28 Tesla used in NMR today, the 

transition frequencies lie in the RF regime of the electromagnetic spectrum (213–1200 MHz 
1H Larmor frequencies). The NMR transition frequencies are sensitive to the electron 

distribution around the nucleus, which shields the nucleus from the applied magnetic field. 

The shielding constant, σ, varies for different nuclei of a given isotope in a molecule, 

causing slightly different frequencies. Thus, NMR frequencies directly report on the 

chemical structure of the sample 2,3. NMR frequencies are commonly reported as the 

chemical shift, δ, which is the fractional difference between the frequency of a particular 

nucleus and a standard compound such as trimethylsilane. For a given isotope, chemical 

shift differences can range from 10 parts-per-million (ppm) for 1H to 200 ppm for 13C to 

1000 ppm for 17O. In addition to chemical shifts, NMR frequencies are modified by a series 

of couplings: spin-spin scalar couplings, which depend on covalent bonding and which are 

typically in the 0–1 kHz range; spin-spin dipolar couplings, which depend on internuclear 

distances and are typically in the 0–20 kHz range; and for nuclear spins greater than 1/2, 

quadrupolar couplings between the electric field gradient at the nucleus and the charge 

distribution of the nucleus, which range from 100 kHz to tens of MHz. All these NMR 

interactions are anisotropic, that is they depend on the sample orientation relative to the 

magnetic field direction. Because of these orientation-dependent chemical shifts, 

internuclear couplings, and quadrupolar couplings, NMR spectra encode three-dimensional 

structural information. Molecular rotations partially average these anisotropic interactions, 

thus, measurement of motionally averaged NMR spectra and motionally induced nuclear 

spin relaxation reveal the geometries and rates of motion.

The RF regime of the electromagnetic spectrum is orders of magnitude lower in frequency 

than the microwave, infrared, and ultraviolet frequencies employed in rotational, vibrational, 

and electronic spectroscopies. The low NMR frequencies mean that the energy levels of 

nuclear spins are nearly equally populated at room temperature, according to the Boltzmann 

distribution in equation (2).

N+
N−

= e−ΔE/kT = e−γℏ 1 − σ Bo/kT
(2)
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For example, at room temperature in a 10 T magnetic field, the population of the ground 

state (N+) is in excess to that of the upper state (N−) by only 1 in 10 000. This small 

population difference leads to intrinsically weak NMR signals and hence low signal-to-noise 

ratios in the spectra. These weak signals put stringent constraints on NMR sample volumes, 

methods of detection, and instrumentation. Much of the development of modern NMR 

spectroscopy has focused on increasing sensitivity. One approach is to use higher magnetic 

fields to increase ΔE, which has been very successful, but this is limited by both technology 

and cost. Another approach is to record NMR spectra in the time domain following an RF 

pulse, and obtain the spectrum by Fourier transformation (FT) rather than by sweeping the 

frequency and measuring absorption or emission as in classical spectroscopy 1,4. With 

pulsed FT NMR, one can sum the time-domain signals of many acquisitions to increase the 

signal-to-noise ratio of the NMR spectra. The introduction of pulsed FT NMR yielded an 

order of magnitude increase in sensitivity and opened the avenue to multi-dimensional 

NMR. Further background for these fundamental aspects of modern NMR spectroscopy is 

outside the scope of this article, and the reader is referred to many excellent introductory 

textbooks such as the texts by Keeler 4 and Levitt 1. The small frequencies of NMR, 

although causing low sensitivity, give the important advantages that NMR experiments are 

non-destructive, and nuclear spin coherence times can be very long (up to seconds). This 

long coherence time permits the study of slow molecular motions and the design of 

sophisticated trains of RF pulses, whose exact timing and phases can be controlled to extract 

highly specific structural and dynamical information.

The application of NMR to rigid or semi-rigid solid samples spans an inexhaustible variety 

of systems, from membrane proteins and amyloid fibrils in biochemistry, to polymers, 

battery materials, photovoltaic perovskites, and cements in chemistry and materials sciences. 

In solids, the orientation dependence of NMR frequencies causes powder patterns for each 

nuclear spin. In most cases, this anisotropic contribution needs to be removed to obtain site-

resolved spectra. This is accomplished by magic-angle spinning (MAS), where samples are 

physically spun around an axis that is tilted by 54.7° from the static magnetic field (Fig. 1c) 
5,6. This angle results from the fact that the anisotropy of NMR interactions is given by a 

second rank tensor, whose time average vanishes at 54.7°. Today, MAS rates of 5 kHz to 100 

kHz are conducted using cylindrical rotors with diameters between 7 mm and 0.7 mm. 

Faster MAS averages out the stronger anisotropic interactions. Currently, the vast majority 

of solid-state NMR experiments are carried out under MAS. Because MAS averages out the 

information-rich anisotropic chemical shift and dipolar interactions, many RF pulse 

sequences have been designed to selectively reintroduce the desired spin interactions while 

retaining spectral resolution, Such multi-pulse and multi-dimensional experiments are the 

basis of many modern solid-state NMR experiments 2,7.

Modern NMR spectra are obtained from Fourier transformation of the time-domain 

responses of the nuclear spins to RF pulses. In the simplest case, a single pulse is followed 

by acquisition of a time-domain signal that decays back to equilibrium in microseconds to 

seconds. However, multiple pulses can be applied sequentially in so-called pulse sequences, 

whose timings can be adapted to precisely control the dynamics of the nuclear spins 

(Experimentation). 1,2,7 These pulse sequences can be designed so as to average out certain 
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inter-nuclear interactions, and retain only others. They can be combined and recorded in a 

multi-dimensional fashion through almost unlimited combinations. As a result, multi-

dimensional NMR spectroscopy can be tailored and adapted to a given chemical system to 

yield precise information about inter-atomic interactions that cannot be discerned from other 

techniques such as diffraction and microscopy. The detailed design of multi-pulse multi-

dimensional NMR experiments is outside the scope of this Primer, and is treated elsewhere 
2,7. By understanding the nuclei whose frequencies are being correlated and the mechanism 

of correlation, whether through bond(s) or through space, users can readily apply these 

robust multidimensional correlation NMR experiments to obtain information about chemical 

structure and three-dimensional structure.

The interpretation of NMR spectra can be less intuitive than microscopy or diffraction data, 

because structural information is encoded in frequency spectra rather than spatial density 

maps. The frequency peaks need to be assigned to individual atoms, which can be a 

significant challenge. However, the multitude of peaks in NMR spectra represents an 

exquisite chemical fingerprint of molecules, thus making NMR the eye of chemists. The 

shifts and couplings in the NMR spectra also contain three-dimensional structure and 

dynamics information, thus revealing the mechanisms of action of a variety of biological and 

chemical systems.

This Primer describes the most common solid-state NMR experiments with their 

accompanying pulse sequences (Experimentation). We discuss how solid-state NMR spectra 

and data can be interpreted (Results). We highlight recent applications of solid-state NMR to 

biomolecular and materials chemistry (Applications). This is followed by a description of 

common guidelines for data sharing, reproducibility, and reporting standards 

(Reproducibility and data deposition), and a discussion of the current limitations of solid-

state NMR as well as areas of active advances (Limitations and optimizations). Finally, we 

look into the future of solid-state NMR spectroscopy and point out new and exciting areas of 

potential applications (Outlook).

Experimentation

In the following we discuss the key steps involved in carrying out a solid-state NMR 

experiment. Specifically, this involves sample preparation, setup, acquisition of NMR 

spectra, spectral assignment, and the choice and implementation of experiments to measure 

structural or dynamic parameters. The experimental choices are tailored to the systems of 

interest, whether they are biomolecules, inorganic solids, or if the samples are paramagnetic, 

and are further guided by sensitivity considerations.

Sample preparation and isotopic enrichment

Many solid-state NMR spectra are recorded on un-modified samples at natural isotopic 

abundance. A major advantage of NMR is the ability to analyze samples in their native 

states, including powders, pastes, gels, fibrils, and membranes, all of which do not have to 

be crystalline.
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Samples are directly packed or centrifuged into the sample holders, which for MAS 

experiments are usually airtight and watertight ceramic rotors, so that air-sensitive and 

hydrated samples can be studied. The rotors are standard sized cylinders that typically have 

7, 4, 3.2, 2.5, 1.3 or 0.7 mm outer diameters, which are filled with between 500 mg (for 7 

mm) and 1 mg (for 0.7 mm) of sample. Small rotors are used for higher MAS speeds (~100 

kHz for 0.7 mm) as compared to the larger rotors (~5 kHz for 7 mm).

Depending on the nature of the sample, isotopic enrichment can be paramount for obtaining 

high spectral sensitivity as many NMR-sensitive nuclei occur at low natural abundance 

(Table 1). A variety of 13C and 15N-enriched biological compounds such as amino acids and 

sugars are commercially available. Proteins can be uniformly or site-specifically 13C, 15N-

enriched using such precursors during recombinant bacterial expression 8–10. Proteins can 

also be perdeuterated and back-exchanged with protonated solvent to allow 1H-detected fast 

MAS experiments for studying structure and 2H NMR experiments for studying dynamics. 

In addition to enhancing spectral sensitivity, isotopic enrichment distinguishes the molecule 

of interest from the unlabeled matrix. For example, 13C, 15N-labeled membrane proteins can 

be distinguished from unlabeled phospholipids, and 13C, 15N-labeled amyloid proteins can 

be distinguished from unlabeled brain tissues 11.

In materials chemistry, 29Si is commonly enriched using tetraethyl orthosilicate, while 17O is 

commonly enriched using gaseous 17O2 and liquid H2
17O 12. The high cost of 17O-enriched 

reagents has motivated the development of more efficient synthetic approaches such as high-

temperature exchange with oxygen gas, ionothermal synthesis 12, dry gel conversion 

reactions, small-scale hydrolysis and mechanochemistry.

1D and 2D correlation NMR

NMR spectroscopists apply multiple RF pulses with specific timings, phases, and 

amplitudes (Fig. 2) to manipulate the nuclear magnetic moments in order to obtain the 

structural information of interest. The first experiment for analyzing most samples is a one-

dimensional MAS experiment involving either direct excitation of the nuclear spin or cross 

polarization (CP) from protons (CPMAS shown in Fig. 2a) 6,13. CPMAS is the workhorse 

experiment for 1H-rich organic compounds because it enhances the signal sensitivity of a 

rare and low-γ nucleus X by transferring magnetization from the abundant and high-γ 
protons. 1H decoupling (Box 1) is applied during X-nucleus (any nucleus other than 1H) 

acquisition detection to enhance spectral resolution. 1D CPMAS spectra show one peak for 

each chemically distinct site. At moderate MAS rates (less than 20 kHz), sites with large 

chemical shift anisotropies (CSA) exhibit spinning sidebands, whose intensities can be fitted 

to extract the principal values of the CSA tensor 3,14. At conventional MAS rates (up to 

about 50 kHz), 1H solid-state NMR spectra of organic compounds cannot be directly 

detected due to the line broadening caused by multi-spin 1H-1H dipolar couplings. Instead, 

they can be measured in the indirect dimension of 2D correlation spectra by applying 1H-1H 

homonuclear decoupling sequences 15–18 At ultrafast MAS rates of ~100 kHz, the 1H 

linewidths narrow sufficiently that high-resolution 1H spectra can be measured directly 19.

A core strength of NMR spectroscopy is the ability to produce versatile and structurally 

informative multidimensional correlation spectra. In materials chemistry, the most widely 
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used 2D solid-state NMR experiment is heteronuclear chemical shift correlation (HETCOR), 

shown in Fig. 2b, particularly involving 1H. The correlation is mediated by either through-

bond J coupling or through-space dipolar coupling (Box 1). 1H correlation to 13C, 29Si, 31P 

and other nuclei have been widely applied. HETCOR experiments can also be conducted for 

non-proton spins, provided that the NMR probe can be tuned to the two frequencies of 

interest.

Homonuclear 2D correlation NMR spectra also contain rich information. When both 

dimensions encode isotropic chemical shifts, which are referred to as single-quantum shifts, 

the spectra report conformational dynamics, chemical exchange, and spatial proximities 

(Fig. 2c) 20. Homonuclear 2D NMR spectra can also be measured by correlating the single-

quantum chemical shifts of each nucleus with the sum chemical shift of two nuclei, which 

are manifested by a double-quantum coherence between the two spins (Fig. 2d). This 

incredible-natural-abundance double-quantum transfer experiment (INADEQUATE) 

sequence 21 adapted for spinning solids 22 has been applied to many nuclei such as 13C, 31P, 

and 29Si to determine, for example, the structure of pharmaceutical compounds, 23 network 

structures in phosphates 24, and structure distributions in materials such as cellulose 25.

A third class of 2D NMR experiments correlates an anisotropic interaction such as CSA and 

dipolar coupling with the isotropic chemical shift. The anisotropic interaction is usually 

recoupled under MAS by rotor-synchronized pulses. Dipolar recoupling (Box 1) is the basis 

of many modern solid-state NMR experiments 26. Anisotropic interactions can also be 

measured by switching the rotor axis away from the magic angle 27,28. This variable-angle 

spinning approach is now less common due to its requirement of specialized probes.

Unlike spin-1/2 nuclei, solid-state NMR spectra of quadrupolar nuclei (spin >1/2) are 

usually MHz wide because of the large size of quadrupolar interactions.29,30 This 

quadrupolar broadening is inversely proportional to the magnetic field strength, thus high 

magnetic field is advantageous for obtaining high-resolution spectra of quadrupolar nuclei31. 

MAS removes quadrupolar broadening to first order; but significant sidebands remain at 

moderate spinning rates. Moreover, when the quadrupolar interaction is large, its effect 

needs to be considered to second order, which cannot be averaged by MAS due to additional 

higher-order angular dependence. The most common method for removing the quadrupolar 

broadening is the multiple-quantum MAS (MQMAS) experiment 32, which correlates 

different transitions within the spin system and yields an isotropic spectrum from the 

projection onto the indirect dimension, as shown in Fig. 2e. When the quadrupolar 

broadening is too large even for MQMAS to overcome, 1D “wideline” NMR spectra are 

measured for static samples (for example, with no sample rotation) as a series of sub-spectra 
33, each measured with different frequency offsets to yield an undistorted lineshape.

Unlike most half-integer quadrupolar nuclei, 2H is a spin-1 nucleus whose NMR spectra are 

relatively simple to measure because of the small quadrupolar coupling constant (~200 kHz) 

and the relative ease of deuteration. Both static and MAS 2H NMR spectra can be measured 

using the two-pulse quadrupolar echo sequence. 2H NMR spectra are commonly measured 

in specifically deuterated systems as a function of temperature to extract the geometry, rates 

and energetics of molecular motion. Static 2H NMR has been widely applied to study 
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polymer dynamics 2,34 and lipid membrane dynamics.35, For the latter, acyl chain order 

parameters can be quantified in the absence and presence of proteins using chain-

perdeuterated lipids 36,37. Recently, indirectly 13C and 15N-detected 2H MAS NMR 

experiments have been developed to study uniformly labeled proteins and carbohydrates to 

determine molecular motion in a site-resolved and multiplexed manner 38–40.

3D correlation NMR

For 13C, 15N-labeled proteins, sets of 2D and 3D correlation experiments are now 

established for measuring the 13C and 15N chemical shifts and assigning them to specific 

amino acid residues. For resonance assignment of small proteins (< 20 kDa) with high 

structural homogeneity, 2D 13C-13C and 15N-13C correlation spectra are usually measured 

first to serve as fingerprints of the protein conformation. Three 3D 15N-13C correlation 

experiments, intra-residue NCACX, inter-residue NCOCX, and inter-residue CONCA, are 

then conducted to obtain sequence-specific assignment (for correlation patterns measured, 

see Fig. 3a). 41 For larger proteins, low spectral sensitivity limits the applicability of these 
13C-detected 3D experiments, thus 1H-detected 3D experiments are increasingly used 

instead. These 1H-detected experiments are usually conducted on perdeuterated proteins for 

MAS rates of less than 60 kHz and protonated proteins for MAS rates of 100 kHz or above. 

Perdeuteration reduces the 1H density while 100 kHz MAS yields highly efficient averaging 

of the 1H-1H dipolar couplings, both yielding high-resolution 1H spectra. These 1H-detected 

NMR experiments use either J couplings or dipolar couplings to achieve spin polarization 

transfer. 42,4319 The long coherence lifetimes at the fastest MAS rates make certain J-based 

polarization transfer steps the most efficient 44–46. Higher-dimensional (4D, 5D) 

experiments have also been proposed that employ automated projection spectroscopy 47 and 

non-uniform sampling 48,49 to produce peak lists from lower-order spectra 50, and enable 

semi-automated resonance assignment 51–53.

Distance measurement

Inter-atomic distances (through space) can be measured in NMR through the effect of spin-

spin dipolar couplings. Qualitative inter-proton or inter-carbon distance restraints can be 

obtained from cross-peak intensities in spin-diffusion mediated multidimensional correlation 

spectra. Weak and strong cross peaks indicate long and short distances, respectively.54 In 

biomolecules, 1H-1H or 13C-13C distances are commonly measured via 2D 13C-13C or 
13C-15N planes in 3D correlation spectra and are used to derive short, medium and long 

distance restraints.55,5644 This yields distance restraints on the order of <7Å for 13C-13C 55, 

< 13 Å for 1H-1H 57, and < 16 Å for 19F-19F 58 distances.

Heteronuclear distances can be measured more precisely using rotational-echo double-

resonance (REDOR) (Fig. 2f) 59, which is one of the most versatile and robust techniques in 

solid-state NMR. The experiment uses a train of 180° pulses spaced half a rotor period apart 

to re-introduce heteronuclear dipolar couplings that would otherwise be eliminated by MAS. 

There are many variants of the experiment, but usually, two experiments, with (S) and 

without (S0) 180° pulses on the unobserved channel are conducted, and the resulting 

intensities are divided (S/S0) to yield relaxation-free dipolar dephasing curves. These 

dephasing curves have a universal shape regardless of the coupling strengths, and differ only 
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in the modulation time. REDOR has been applied to a large number of spin pairs 60 such as 
13C-15N, 61 13C-31P 62, and 13C-19F 63,64 in organic compounds, and 27Al-31P, 27Al-1H 65 or 
17O-1H 66 in inorganic compounds.

Nuclear spin dipolar couplings depend not only on internuclear distances but also on the γ 
of the spins. High-γ nuclei give stronger dipolar couplings, thus their distances are easier to 

measure. REDOR between the high-γ 19F and other nuclei such as 13C and 1H has recently 

been extended to high-field fast MAS conditions, and are incorporated into 2D experiments 

to obtain many nanometer-range distances rapidly 67,68. Similarly, 2D 19F-19F correlation 

spectra under fast MAS have been developed to obtain cross peaks indicative of distances up 

to ~2 nm 58,69–71.

Studying molecular motion

Solid-state NMR is ideally suited to characterize the amplitudes and rates of molecular 

motions 72. Typically experiments will be sensitive to slow (milliseconds to seconds), 

intermediate (microseconds to milliseconds) or fast (picoseconds to microseconds) 

dynamics. The anisotropic nuclear spin interactions are averaged by intermediate to fast 

motion, which, in the simplest case of dipolar couplings, depends on the geometry of the 

motion relative to the internuclear vector. The most traditional methods for measuring 

geometry and rates of motion in these intermediate and fast regimes is through lineshape 

analysis of 1D 2H or 13C static or slow MAS spectra measured as a function of temperature. 

This typically provides very accurate information about the geometry of motion, and for 

intermediate motions can yield precise activation energies 73,74. However, this approach is 

limited by low sensitivity and low throughput and requires site-specific isotopic labeling.

A robust and higher-sensitivity approach for measuring amplitudes of intermediate and fast 

motion in multi-site systems where selective labelling is not feasible is the 2D dipolar 

chemical-shift correlation (DIPSHIFT) experiment (Fig. 2g) 75–77. This experiment 

separates heteronuclear dipolar couplings such as 13C-1H and 15N-1H couplings by isotropic 

chemical shifts. Motional averaging of the dipolar couplings is manifested as reduced 

splittings in the frequency spectra.78–80. The motional geometry can also be measured using 

REDOR-recoupled 13C-15N dipolar couplings 81,82. Measurement of motional amplitudes is 

sensitive to RF field inhomogeneity and the presence of remote nuclei. To reduce these 

imperfections, off-MAS experiments, with angle offsets as small as 0.03°, have been 

proposed 83. At 100 kHz MAS, variable-contact-time CP can be used to measure motionally 

averaged dipolar couplings 84. For millisecond-timescale motions, the CODEX technique 
85,86 is especially robust (Fig. 2h), provided that spin diffusion, the relayed transfer of spin 

polarization through dipolar coupling, does not occur on the same timescale.

Fast molecular motions can be characterized using NMR relaxation measurements 72. To 

determine dynamic models, longitudinal relaxation rates 87,88 and rotating-frame relaxation 

rates 89–91 can be measured to probe pico- to micro-second timescale motions. Here, care 

has to be taken to avoid spin diffusion, which can average relaxation rates between 

neighboring sites, especially when fast relaxing methyl groups are present 92,93.
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High temperature and pressure

Today, high-temperature (above 1600 K) NMR experiments can be conducted for static 

samples.94 For MAS, recent approaches use laser heating, where optical fibers transport the 

laser to a sample in a ceramic insert within a bottomless rotor 94. Commercial systems able 

to heat to ~1000 K are now available for 7 or 4 mm MAS rotors. For high pressures, 

progress has been made for static samples using diamond anvil cells and Lenz lenses to 

overcome sensitivity limitations. Experiments up to 90 GPa are now feasible.95 High-

pressure MAS experiments have been performed using sealed rotors and inserts, and a recent 

design has achieved pressures of 0.04 GPa.96

Dynamic nuclear polarization experiments

The intrinsic nuclear spin polarization in NMR is low because of the relatively small size of 

the nuclear γ. At magnetic fields of 9.4–18.8 T, the 1H spin polarization is less than 0.007% 

at ambient temperature. To increase the polarization, one approach is to transfer unpaired 

electron spin polarization to nuclei, since the electron γ is 658-fold greater than the proton 

γ. Dynamic nuclear polarization (DNP) is the electron-to-nuclear spin polarization transfer 

induced by microwave irradiation of the electron paramagnetic resonance. Proposed in the 

1950s 97,98 DNP has been successfully integrated into high-field MAS NMR systems since 

2008 99,100. The most common microwave source for high-field DNP today is the gyrotron, 

a microwave oscillator that outputs 10–100 watts of power at common NMR frequencies 
101. Gyrotrons are now available up to 593 GHz, corresponding to a 1H Larmor frequency of 

900 MHz, with MAS rates up to 65 kHz, thus covering essentially the full range of magnetic 

fields and MAS frequencies. DNP NMR has fueled intense research on how to increase the 

spectral sensitivity of samples from frozen solutions to membrane proteins. In materials 

research, sensitivity enhancements of two orders of magnitude are now routinely achieved 

for solid-state NMR spectra of a range of technologically relevant materials 102,103. Samples 

are wetted or impregnated with a solution containing a paramagnetic polarization source, 

such as the biradical AMUPol dissolved in a mixture of D2O, H2O and glycerol or 

dimethylsulfoxide 104, or the hydrophobic biradical TEKPol dissolved in 1,1,2,2-

tetrachloroethane 105.

Paramagnetic solid-state NMR

In compounds containing paramagnetic centers such as metalloproteins, inorganic oxides, or 

organometallic compounds, the hyperfine interaction between the unpaired electron(s) and 

the nucleus causes large shifts in the NMR frequencies called contact and pseudocontact 

shifts 106,107 This unpaired electron-nucleus interaction also causes paramagnetic relaxation 

enhancement of the nuclear spin in a distance-dependent manner 107,108. Both effects report 

atomic-level structure around the paramagnetic center. Experiments for measuring 

pseudocontact shifts and contact shifts are fundamentally no different from diamagnetic 

NMR, except for assignment of frequency-shifted resonances. Paramagnetic relaxation 

enhancement can be measured using regular relaxation NMR experiments after comparing 

with the relaxation rates of a diamagnetic sample. Paramagnetic ions such as Mn2+ and Cu2+ 

can be incorporated into samples as free ions 109,110, part of a chemical tag 111,112 or a 

metalloprotein complex 113 to serve as distance probes. In addition, paramagnetic doping 
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combined with fast MAS speeds up data acquisition by 1–2 orders of magnitude by reducing 

nuclear spin relaxation times 114.

Results

Peak assignment of multidimensional spectra

Chemical shift assignment is a prerequisite for extracting structural and dynamic 

information from NMR spectra. Small molecules and natural abundance compounds can 

often be assigned from 1D spectra based on characteristic chemical shifts alone. To simplify 

these 1D spectra, experiments that selectively detect CH, CH2 or CH3 groups (sometimes 

called spectral editing experiments) are often used to aid assignment 115–117. For proteins 

and other biopolymers, the large number of peaks can usually only be resolved and assigned 

in multidimensional correlation spectra. This assignment is based on connecting peaks that 

share a common chemical shift in a particular dimension of a 2D or 3D spectrum. For 

example, a Cα-Cβ correlation peak and a Cγ-Cβ peak in a 2D 13C-13C spectrum will 

manifest the same Cβ chemical shift in the F2 dimension of the spectrum. For proteins, the 

NCACX spectrum correlates N, Cα and CO chemical shifts within the same residue, while 

the NCOCX spectrum correlates the N chemical shift of a residue with the CO and Cα 
chemical shifts of the preceding residue 118–120 (Fig. 3a). For 1H-detected 2D and 3D 

experiments such as the hNH experiment (Fig. 2i), the 1H and 15N chemical shifts serve as 

the readout of the Cα and CO chemical shifts of two sequential residues 19. A representative 

strip of 1H-detected 3D spectra of the Alzheimer’s Aβ peptide is shown in Fig. 3c.

Distance measurements

Qualitative distance restraints can be extracted from 2D and 3D correlation spectra based on 

the shortest mixing times when a peak appears. These restraints are typically reported as 

upper bounds, because peak intensities also depend on experimental conditions: cross peak 

intensities generally decrease with increasing B0, MAS rate, and spin diffusion mixing 

times. The upper-bound distance is usually calibrated using model compounds with known 

distances. For uniformly 13C-labeled proteins, on an 800 MHz spectrometer under 10 kHz 

MAS, cross peaks that appear after 100 ms, 250 ms, and 500 ms spin diffusion have been 

estimated to correspond to 13C-13C distance upper limits of 6.0 Å, 7.0 Å and 8.0 Å, 

respectively 55. Longer 13C-13C distances can be probed qualitatively using 1H-mediated 

recoupling experiments such as phase-alternated rotation of magnetization (PAR) and pulsed 

proton-assisted recoupling (PULSAR)121,122. More quantitative 13C-13C distances can be 

measured using recoupling techniques such as finite-pulse radio-frequency-driven 

recoupling (fpRFDR) 123.

Quantitative heteronuclear distances can be extracted from REDOR dipolar dephasing as a 

function of mixing time (Fig. 3d). The shape of the REDOR dephasing curve is invariant to 

the product of the dipolar coupling strength and mixing time. Thus short and long distances 

have the same universal curve 59, which significantly facilitates distance analysis. Even at 

fast MAS rates of ~40 kHz, where the 180° pulses occupy a sizeable fraction of the rotor 

period, REDOR dephasing is still relatively quantitative, and the finite pulse-length effect 

can be treated analytically 124. When the spins have large CSA and the 180° pulses cause 
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incomplete inversion, the imperfection can be accounted for in numerical simulations. This 

approach has been used to analyze 13C-19F REDOR at moderately high magnetic fields 

where the 19F CSA is large 67.

Semi-quantitative long distances to ~2 nm can also be measured effectively using 

paramagnetic relaxation enhancement NMR. 15N and 1H relaxation experiments on Cu2+ 

and Gd3+ tagged proteins have been used to measure solvent accessibility to proteins 112, 

Cu2+ binding sites in influenza M2 125, Aβ40 fibrils 110 and human prion protein fibrils 126. 

Paramagnetic Mn2+ introduced to lipid bilayer surfaces have been used to measure the depth 

of insertion of membrane protein in lipid bilayers 109,127.

Motional amplitudes and rates

Measurement of motionally averaged couplings and nuclear spin relaxation rates provide 

rich information about motional geometry and rates. For characterizing motional amplitudes, 

the DIPSHIFT class of experiments has been used extensively to obtain order parameters in 

membrane-bound helical bundles 128,129, dynamically disordered polymers in biomaterials 
130, and functionally important sidechain motions in ion channels 131. Longitudinal, rotating 

frame, cross relaxation rates and order parameters can be analyzed using a so-called 

“extended model-free” formalism, which yields correlation for fast and slow internal 

motions of the protein 89,132,133. In the absence of overall tumbling, these relaxation data 

have allowed the studies of protein rocking motions in crystals 134135. Temperature-

dependent NMR relaxation data provide information about the energetics of molecular 

motion and have been used to demonstrate coupling between protein dynamics and solvent 

dynamics 136. Relaxation data can also be analyzed in conjunction with molecular dynamics 

(MD) simulations to quantify motion, as shown for heterokaryon incompatibility proteins 

(HETs) amyloid fibrils137. Microsecond to millisecond peptide backbone dynamics can be 

observed through 15N rotating-frame relaxation dispersion experiments 89, as shown for a 

variant of the human prion protein, Y145Stop138. Finally, 1H-detected fast MAS 

experiments combined with tailored isotopic labeling has allowed high-resolution 

characterization of both the amplitudes and rates of phenylalanine ring flips in the large 

(~0.5 MDa) enzyme complex, dodecameric aminopeptidase TET2 139.

In semi-crystalline polymers, the mobility of polymer chains in the crystalline region is 

directly related to the bulk mechanical properties of the materials. For example, poly(4-

methyl-1-pentene)(P4M1P), has a helical 72 structure in crystallites in which chain defects 

travel by discrete rotation and translation around the helical axis that reproduce the original 

structure. The jump angles and activation energies can be determined quantitatively by NMR 

using CODEX experiments (Fig 3d)85. These experiments revealed jump angles of ~103° 

and jump rates with correlation times between 10 s and 15 ms at 305 and 360 K, 

respectively.

Quadrupolar NMR spectra of solids

The NMR spectra of quadrupolar nuclei display broad lineshapes and spinning sideband 

manifolds due to the large anisotropy.29,30,140 Fitting programs that minimize the difference 

between simulated and experimental spectra can be used to extract the magnitude, 
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asymmetry and isotropic shift of the quadrupolar tensor.141,142 If a spin is affected by more 

than one interaction, the lineshape will also depend on the relative orientation of the 

interaction tensors. In some cases, the NMR parameters can be directly related to structure, 

while in others, chemical information is obtained by comparison to similar materials or to 

NMR parameters predicted by first-principle calculations.

The different dependence of the quadrupolar interaction and CSA on the magnetic field 

means that multi-field measurements are vital to structural analysis.33 MQMAS experiments 

resolve the signals of all species in the sample and the individual lineshapes of each species, 

as shown in Fig. 3f for 17O NMR of a silicate mineral. 143–146 The relative amounts of each 

species have to be corrected for the different excitation efficiencies by comparison to 

numerical simulations. From each MAS lineshape, the magnitude and asymmetry of the 

quadrupolar interaction and isotropic chemical shift can be extracted and used as starting 

points for multi-parameter fits of the complete spectrum. The position of the spectral 

lineshape in an MQMAS spectrum provide an alternative source of information on the 

quadrupolar and chemical shift parameters. For disordered materials such as glasses, 

information about structural distributions can be obtained from MAS or MQMAS spectra.
146 As the magnitude and asymmetry are both related to the principal components of the 

quadrupolar tensor, it is often assumed that a joint distribution of these parameters can be 

described using the Czjzek model.147 This is an area where isotropic-anisotropic correlation 

approaches such as dynamic-angle spinning 28 can be highly informative, and have been 

used to extract correlations between quadrupolar parameters in densified silica glasses to 

gain insight into bond-length and bond-angle distributions 148.

Computation of NMR parameters

Computational methods are increasingly used to support interpreting, assigning, and 

predicting the solid-state NMR spectra of materials.149,150 Density functional theory (DFT) 

is the method of choice, owing to its balance of efficiency and accuracy, with many studies 

carried out using periodic planewave codes 151 to exploit the inherent translational symmetry 

of solids. Calculations determine the electronic structure for particular arrangement of 

atoms, and from this the shielding, quadrupolar and J coupling tensors for any nucleus can 

be calculated. In the simplest cases, NMR parameters are predicted from structural models 

obtained from diffraction and matched to the experimental data. Calculations allow the 

assignment of signals in NMR spectra to specific sites (Fig. 3f), and can help identify 

overlapped or missing signals, helping the experimentalist to decide the best next 

experiments to try. The joint use of NMR and computation for structural analysis is often 

referred to as NMR crystallography.149,150

If less is known about the atomic structure of the solid, generating structural models is more 

challenging. When partial structures are available, possible structural models can be 

produced using automated algorithms, structure searching approaches or Monte Carlo 

methods, as demonstrated on proteins, ceramics, microporous materials, pharmaceuticals 

and glasses. 150 Comparison of predicted and experimental parameters can then be used to 

refine the atomic coordinates 152. When no prior information is available, powder 
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crystallography of molecular solids involves the combination of de novo structure 

prediction, DFT calculation and measured chemical shifts 153.

For disordered materials, calculations of manually modified models of ordered analogues 

predict the magnitude and direction of changes in the quadrupolar and/or shielding NMR 

parameters. These changes include variations in the type of atoms present (compositional 

disorder) or variations of the exact atomic arrangements (positional disorder). Multiple 

models can then be compared in terms of their energies and agreement with the measured 

NMR parameters.149,154 For amorphous materials such as glasses, the most successful 

approaches exploit MD simulations, with initial configurations generated using a random 

distribution of the specified number of atoms.155

Applications

Protein structural biology

X-ray crystallography and cryo-electron microscopy (cryoEM) can both provide atomic 

structures of large proteins and protein complexes. However, dynamically disordered or 

heterogeneous systems are not easily amenable to these approaches. As a result, membrane 

proteins that contain large soluble domains, polymorphic amyloid fibrils, or polydisperse 

protein complexes that are conformationally plastic for function, are uniquely suited to 

solid-state NMR analyses.

Membrane proteins—Multidimensional correlation 13C, 15N and 1H NMR has been 

applied to many membrane proteins to elucidate their structure, dynamics, and mechanism 

of action. These membrane proteins include proton channels 128,156,157, potassium channels 
158–160, transporters 161,162, seven-transmembrane-helix proteins 163,164, β-barrel proteins 
165, and antibiotic membrane peptides 166. Assignment of 13C and 15N chemical shifts 

provided the first line of information about backbone conformation. Chemical shifts reveal 

the positions of disordered segments in predominantly α-helical membrane proteins 128 and 

report protein conformational changes 167. Chemical shift changes have been used to detect 

pH-induced conformational changes of the influenza M2 protein (Fig. 4a) 168, coupled 

structural changes between the pH gate and selectivity filter of potassium channels 167, 

conformational changes of an ABC transporter upon binding to nucleotides 169, and light-

induced conformational changes of subunit interfaces in proteorhodopsin (Fig. 4b) 170. To 

detect conformational changes of large membrane proteins, pairwise amino-acid labeling 

combined with DNP is an effective approach 171. With sensitivity enhancement, protonation 

and structural changes of key residues in bacteriorhodopsin are observed that reveal the 

proton transfer mechanism of this light-induced ion pump 172. 1H-detected NMR 

experiments have enabled high-resolution characterization of β-barrel membrane proteins 
165. 15N longitudinal and rotating-frame relaxation experiments have been used to measure 

the amplitudes and rates of slow motions in the seven-transmembrane-helix sensory 

rhodopsin 173. Finally, studies of water interactions with membrane proteins have given 

insights into the mechanism of ion conduction by channel proteins 160.

Ligand binding and dynamics are critical to the function of many membrane proteins. 19F 

NMR is well suited to measure ligand-binding sites in proteins, by orthogonal labeling of the 
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ligand and the protein. Fluorinated cholesterol has been used to identify the cholesterol-

binding site in influenza M2 64. This binding is important for M2-mediated virus budding 

and membrane scission. Mixed fluorinated and 13C-labeled proteins have been used to 

determine the tetrameric structure of the influenza BM2 protein 128.

Amyloid proteins—Solid-state NMR is well suited to the characterization of amyloid 

proteins 174, many of which proteins form as a result of protein misfolding in diseases. 

These proteins form extended cross-β fibrils with high one-dimensional order, which gives 

rise to well resolved NMR spectra. Recent examples of NMR-characterized amyloid 

proteins include: Alzheimer’s Aβ peptide 175–177; α-synuclein 178,179; transthyretin 180; β2-

microglobulin 181; fused in sarcoma (FUS) 182; tau 183; and immunoglobulin light chains 
184,185. In addition to the fibril structure itself, solid-state NMR has been used to investigate 

small-molecule binding to these fibrils. For example, the binding of sulindac sulfide, a 

nonsteroidal anti-inflammatory drug, to Aβ40 fibrils was studied using REDOR NMR 186 

(Fig. 4c). Epigallocatechin gallate, a compound found in green-tea, binds Aβ40 monomers 

to induce the formation of non-toxic spherical aggregates 187. Amyloid intermediates and 

oligomers, which are too dynamically disordered to be studied by cryoEM, have been 

studied by observing chemical shift distribution in NMR spectra 188. The data indicate the 

presence of significant β-strand segments before the formation of mature fibrils. The 

interaction of Aβ, α-synuclein and human islet amyloid protein with lipid membranes have 

been studied to understand the mechanisms of neurotoxicity and fibril transmission between 

cells 189,190. Finally, measurement of the interactions of amyloid proteins with water 191–193 

provides insight into the stability and water-accessibility of these fibrils.

While many amyloid proteins are involved in disease, other amyloid proteins carry out 

biological function and occur during pharmaceutical formulation. For example, the Het-S 

protein of filamentous fungi forms a β-solenoid structure 194. Amyloid fibrils formed by the 

peptide hormones glucagon 195 and β-endorphin 196 have been structurally characterized. 

While most amyloid fibrils exhibit parallel-in-register β-strand structures, glucagon forms a 

novel antiparallel hydrogen-bonded β-sheet structure containing two coexisting molecular 

conformations (Fig. 4d). 195 This showcases the structural diversity of amyloid proteins and 

suggests approaches to design fibrillization-resistant glucagon analogs to improve the 

solution stability of this anti-hypoglycemia drug.

Protein complexes—Solid-state NMR is increasingly applied to heterogeneous and 

dynamic protein complexes. These complexes can be sedimented from solution into MAS 

rotors or directly spun into the rotor to collect the solid 197. This sedimentation NMR 

approach, together with other methods, has been used to characterize microtubule-bound 

motor proteins 198, HIV capsid protein 199, the 20S proteasome 200, the 50S ribosome 201, 

and protein-protein interactions between GB1 and immunoglobulin 112. These studies have 

given insights into the structural stability and activation of these assemblies. For example, 

αB crystallin, which assembles into a polydisperse and dynamic complex, was found to 

interact with amorphous client proteins and fibril-forming proteins at different interfaces 202. 
1H-detected NMR experiments on the 14-subunit complex of caseinolytic protease 203 

revealed the binding site of an inhibitor, bortezomib. Site-specific measurement of the 
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motional amplitudes of the HIV capsid protein revealed the flexibility of a loop domain and 

its rigidification upon binding to a host protein, cyclophilin A 199. For metalloproteins such 

as superoxide dismutase and matrix metalloproteinase-12 (MMP12), pseudocontact shifts 

and paramagnetic relaxation enhancement measurements 204,205 allowed structure 

determination. Other dynamic assemblies involving hydrogels and phase-separated 

biomolecules such as membrane-less cellular organelles are also being investigated 206. Fast 

MAS is instrumental for studying these paramagnetic proteins, by averaging the dipolar-

coupling contribution to the resonance linewidth, especially near the paramagnetic center, 

thus revealing the structure of the metal coordination sphere with high precision 207.

Cell walls and extracellular matrices

The glycan-rich matrix on the cell surfaces of plants, bacteria, and fungi is well suited to 

solid-state NMR studies. Cell walls and extracellular matrices contain carbohydrates, 

proteins, lignin, and other biopolymers. These biomaterials can be investigated using 13C, 
15N and 1H NMR experiments 208. Both isotopically enriched and natural-abundance 

samples can be studied, the latter often requiring DNP 209. For plants, the primary cell walls 

of both dicots and monocots have been extensively studied using 13C NMR (Fig. 4f) 210. 

The refocused INADEQUATE experiment is particularly effective for identifying dynamic 

polysaccharides such as homogalacturonan. 3D 13C correlation NMR experiments further 

resolve the signals 211, and enable the detection of intermolecular contacts. These data have 

revised the conventional model of primary cell wall structures, indicating that cellulose, 

hemicellulose, and pectins exist in a single network rather than two separate networks. High-

field 2D 13C MAS NMR spectra resolved multiple conformations of cellulose 212 and xylan 
213, and distinguished the conformation of the chemically reactive hydroxymethyl groups in 

cellulose 214. DNP-enhanced NMR has been used to determine the site of protein binding to 

cellulose microfibrils to loosen the cell wall for plant growth 215. DNP NMR has also been 

used to investigate lignin interaction with xylan and cellulose in plant secondary cell walls 
216. 2D 13C NMR has been applied to fungal cell walls 217 to show a layered structure 

composed of chitin and diverse glucans 217. For bacterial cell walls, DNP 209 and 1H-

detected NMR experiments 218 have been used to study peptidoglycan structure. Finally, 

bacterial extracellular matrix has been studied using quantitative 13C NMR to determine the 

composition of polysaccharides and proteins 219, and to discover a new form of cellulose, 

covalently linked to phosphoethanolamine, in E. coli biofilm 220.

Organic and molecular solids

One of the main applications of solid-state NMR is the characterization of powdered 

molecular solids. Chemical shifts can be readily measured and compared with those of 

known compounds or calculated shifts to test structural hypothesis. 13C and 1H chemical 

shifts can be measured from 1D 13C CPMAS, 2D 1H-13C HETCOR or 1H fast MAS spectra. 

They can be assigned with 2D 1H-13C HETCOR or 13C INADEQUATE spectra enhanced 

with DNP 221. This approach has been widely applied to crystalline polymorphs of 

pharmaceutical compounds 23,222,223. For example, it was used to elucidate the stabilization 

mechanism of an amorphous form of tenapanor hydrochloride 224. More sophisticated 

approaches for de novo structure determination combine computational structure prediction 

with experimental chemical shifts or distance restraints. This has led to complete 3D 
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structures of microcrystalline drugs and organic CO2 capture materials 225,226. These 

structures can be quantified in terms of probability and precision 227, with average 

displacement parameters of 0.01 Å2 for a recent structure of ampicillin 226. With fast MAS 

and DNP NMR, sensitivity is now sufficient to characterize pharmaceutical polymorphs in 
situ, as embedded in formulations 102,228. These methods can be used to identify interactions 

between the different components of the formulation, leading to better understanding of drug 

release. Because solid-state NMR does not require long-range order to produce high-

resolution spectra, characterizing mixtures and observing impurities is straightforward. With 

sensitivity enhancements by DNP, the detection limit for MAS NMR has improved to ~80 

pmol. For example, the 31P signal of a single phosphodiester in DNA oligomers attached to 

a glass plate has been observed. 229

To characterize supramolecular systems, high-resolution 1H spectra have allowed the 

measurement of inter-atomic distances, often to hydrogen-bonded protons. This approach 

has been used for example to study the structures of self-assembled G quartets, 230 or to 

reveal intermolecular H-bonding and dynamics in a deep eutectic pharmaceutical. 231 

Molecular mobility plays an important role in the properties of these supramolecular 

systems. In addition to 2H NMR lineshapes, isotropic and anisotropic chemical shifts and 

other approaches have been employed to study dynamic processes such as thermally 

activated rotational dynamics of H-bonded and charge-transferred diazabicyclo [2.2.2]octane 

molecular rotors 232.

Domain structures in molecular solids can be characterized using spin diffusion NMR. 233 

Spin diffusion of DNP-hyperpolarized magnetization has been used to characterize API 

distributions within lipid nanoparticles 234, and to identify core-shell structures in organic 

crystalline nanoparticles. 235

Solid-state NMR is currently the best available method for quantitative characterization of 

the chemical composition of complex organic materials and other carbon-rich materials. 

Relative peak areas in multi-cross-polarization spectra 236 or fully relaxed direct-polarization 

NMR spectra provide the relative concentrations of functional groups, unlike in Raman and 

IR spectroscopies. In carbon X-ray photoelectron spectroscopy, the number of resolved 

peaks is usually ten times smaller than in NMR spectra that selectively detect the signals of 

quaternary carbons, CH, CH2, sp3-hybridized C, and N-bonded C 237. Solid-state NMR can 

quantitatively determine functional groups and aromaticity in carbon materials such as char 

residues 238, while the aromatic cluster size can be estimated based on recoupled dipolar 

dephasing. In addition, using dipolar couplings and spin diffusion, proximity between 

different components and domain thicknesses can be determined on the 1 – 40 nm scale, for 

instance in complex materials such as polymer-molecular organic framework (MOF) 

composites 239 or the organic-inorganic nanocomposite in bone 240241.

Inorganic and hybrid materials

Solid-state NMR is a key tool for the structural characterization of oxides, whose chemical 

flexibility allows tuning of physical and chemical properties for a wide range of applications 

such as electronics, ceramics, energy materials, and catalysis.146 Compositional disorder is 

often studied by combining NMR and DFT calculations, as described above, with recent 
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applications to pyrochlores,242 fluorites,243 and oxide catalysts.244–246 Due to the significant 

interest in hybrid perovskite structures, they have recently been the subject of intense NMR 

studies to determine the composition, phase segregation or layer structures in 2D materials.
247–249. Variable-temperature measurements are used to study the dynamics in oxides such 

as ZrW2O8,250 where 2D exchange NMR was used to show that negative thermal expansion 

resulted from a “ratchet-like” mechanism where all O species interconvert. The sensitivity of 

solid-state NMR to dynamics has also allowed extensive studies of lithium-ion batteries.
146,251,252 In situ and in operando 6Li/7Li, 31P, 17O and 23Na NMR experiments 251 have 

used plastic cell capsules to create a working device, allowing the determination of the 

phases formed as batteries are cycled, and tracking dendrite formation and battery failure.251 

Recently, the study of oxides has been extended to nanoparticles and the importance of the 

surface chemistry in processes such as catalysis 253.

Solid-state NMR has found considerable application in the study of silicate minerals and 

clays, with 29Si chemical shifts sensitive to the number and type of coordinating atoms, 

next-nearest neighboring nuclei and chain polymerization.146,254,255 Multinuclear NMR 

studies have explored cation and anion disorder,256,257 the substitution of paramagnetic 

impurities 146,258 and radiation damage in natural minerals.146 For mantle minerals,255 the 

high pressure required for synthesis using multi-anvil presses limits the sample volume. 

Thus, approaches to improve sensitivity such as composite pulses (where multiple pulses are 

used in place of a single pulse to increase efficiency 29, satellite-transition MAS (STMAS) 
259,260, and isotopic enrichment 12,261 are required. Computation augments these 

experiments, as shown in recent work of the hydration of deep Earth silicates using random 

structure searching and 1H, 29Si and 17O NMR (Fig. 5a).261,262

Microporous and mesoporous materials, including zeolites, phosphate-based and MOFs 

(Fig. 5b, c) are important in gas storage, drug delivery, and catalysis. 146,263 The 

combination of compositional, positional and dynamic disorder in these systems makes 

NMR ideal for studying their structure and reactivity. Solid-state NMR is widely used to 

understand the number, distribution and strength of acid sites in zeolites 146 using probe 

molecules. Recent work has exploited 17O enrichment to demonstrate the unexpected lability 

of the framework bonds.264 In situ experiments have been used to probe the reactivity and 

hydrolytic disassembly of zeolites. 146,265 For aluminophosphates, 27Al MAS and MQMAS 

and 27Al/31P heteronuclear multiple quantum coherence (HMQC) experiments have been 

combined with DFT calculations to study cation disorder, anion disorder and dynamics of 

guest molecules within the pores.146,266,267 The chemical flexibility of MOFs allows fine 

tuning of the pore size and chemical properties, 268,269 and NMR can be used to study the 

nodes, organic linkers and guest molecules. Recent work on mixed-linker MOFs 270 used 
13C/15N REDOR experiments to measure internuclear distances. Comparison to MD 

calculations showed alternation of the three different linkers present. The binding of guest 

molecules to open metal sites (particularly CO2) has also been studied using NMR.269

Disordered and amorphous materials such as many ceramics (Fig. 5d), glasses (Fig. 5e) and 

cements, as well as the chemically and structurally heterogeneous inorganic-organic hybrid 

materials 271, pose considerable challenges for structural analysis, and NMR is the method 

of choice for studying these materials. The distribution of structural environments leads to a 
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range of NMR parameters and overlapped spectral lineshapes.146,272 The relation between 

NMR parameters and local geometry has been probed by MD simulations 155 that generate a 

suite of possible structures for which DFT calculations can predict the NMR parameters. For 

example, 89Y NMR of oxide ceramics 242 used an ensemble-based modeling approach, 

considering every possible arrangement of atoms, and simulated the NMR spectra to 

compare with experiment. For cements, 1H, 27Al, and 29Si NMR experiments are widely 

used to probe local structure, and 43Ca NMR is becoming increasingly more viable as 

magnetic field strengths increase, overcoming the dual challenges of low γ and quadrupolar 

broadening. Detailed atomic-level information on the role of water and retardants such as 

sucrose were obtained using 2D correlation NMR. 273 DNP has enabled the measurement of 

correlations between Si atoms and between Si and Al with high sensitivity. By combining 

these results with simulations and DFT chemical shift calculations, the full three-

dimensional atomic structures of cementitious calcium silicate hydrate and calcium 

aluminate silicate hydrate can be determined 274. Also, hybrid materials containing calcium 

phosphate have been of interest, owing to the role they play in biomaterials such as bone, 

bioglasses and synthetic apatites. While most studies exploit 1H, 13C and 31P NMR, 43Ca 

and 17O NMR are becoming increasingly used 241. Recent work performing ex vivo, 

microimaging of an intact mouse tooth under MAS was able to selectively identify and 

locate the mineral and organic components with high spatial resolution (~100 μm) 275.

For inorganic semiconductor and metal nanoparticles (NPs), 13C and 31P NMR give detailed 

information on the composition of the organic capping groups on the surface of NPs that 

govern their size and shape 276. Solid-state 77Se, 31P, 113Cd or 119Sn NMR of InP, GaP, 

CdSe, CdS, and SnO2 NPs show clear differences between the surface and bulk. The 

reactivity of metal NPs has been widely studied using surface probe molecules to understand 

the state of metal atoms at surfaces. Gold NPs have been extensively studied, leading to the 

determination of the complete structures of surface capping groups. 277 Also, the mode of 

ligands binding to the surface of NPs has been determined using 2D NMR. In CdSe NPs, 

detailed analysis of the interactions between hexadecylamine and thiophenol capping ligands 

and the surface Cd and Se atoms using 1H-113Cd and 1H-77Se CPMAS HETCOR indicated 

that thiophenol binds to NPs by occupying a selenium vacancy site. 278

Some of the most interesting features of materials occur on surfaces or at interfaces, which 

have traditionally been studied by CP experiments to exploit the presence of protons only on 

the surface of a material. For example, 1H NMR used in combination with extended X-ray 

absorption fine structure measurements revealed the dissociation mechanism of N2 on 

tantalum surface sites supported on silica surfaces 279. 1H-13C and 1H-29Si HETCOR NMR 

was also used with fast MAS to provide insight into the conformation of allyl groups 

covalently anchored to the surface of MCM-41 silica surfaces 280. Oxygen-17 experiments 

in combination with surface selective isotopic labelling were used to show that 17O 

resonances arising from the first to third surface layers, hydroxyl sites, and oxygen atoms 

near vacancies can be distinguished from the bulk. 281 However, low sensitivity has severely 

restricted such applications. The introduction of DNP surface-enhanced NMR (DNP SENS) 

has largely solved this problem in the past decade 103. DNP SENS has been used to 

determine the structures of organometallic ligands on surfaces 282 and the Brønsted acidity 

of surface hydroxyls in silica and silica–alumina materials. 283,284
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In summary, for biological chemistry, solid-state NMR spectroscopy is well equipped to 

elucidate small-molecule binding to biomacromolecules, functionally important protein and 

ligand dynamics, and chemical processes such as protonation reactions. These applications 

are highly complementary to X-ray and cryoEM approaches. For materials chemistry, the 

sensitivity of NMR to the atomic-scale environment allows elucidation of the types and 

levels of static and dynamic disorder, which are vital to understanding chemical reactivity.

Reproducibility and data deposition

Reproducibility of solid-state NMR data

Solid-state NMR spectra are largely reproducible because they are averaged over multiple 

scans and reflect ensemble averages of nuclear spin properties. Thus, if the same experiment 

is run with the same acquisition parameters, on the same sample, and using the same NMR 

probe, then spectra should be reproducible to within their signal-to-noise ratio. However, 

differences in sample preparation can cause variations in NMR spectra, since NMR chemical 

shifts reflect the environment around each nucleus and are thus sensitive to conformational 

heterogeneity. Second, phase transients and RF inhomogeneity vary between probes, which 

influence pulse sequence performance 285. This probe-specific variation can affect the 

reproducibility of spectral intensities. Similarly, experiments that require precise choice of 

RF fields such as the proton-assisted insensitive nuclei (PAIN)-CP experiment may make it 

difficult to obtain reproducible spectral intensities 286. To achieve high spectral 

reproducibility, it is thus important to report the full sample preparation conditions and 

experimental acquisition and processing parameters when publishing experimental data.

Deposition of solid-state NMR data

It is recommended that all raw NMR data associated with publications are deposited for 

open access. This is a rapidly evolving area, with several initiatives underway, although 

currently there is no centralized database to deposit raw NMR data. The Biological Magnetic 

Resonance Data Bank (BMRB) accepts chemical shifts, distance and orientational restraints 

for biological NMR data. Similar centralized resources will likely become available for 

small molecule and materials NMR data. In the meantime, data can be conveniently 

deposited with services such as Zenodo. At present, we recommend that raw data be 

deposited in the JCAMP-DX version 6.0 standard, together with the original commercial 

format (for example, TopSpin) data, and that data be made available under the CC-BY-4.0 

(Creative Commons Attribution-ShareAlike 4.0 International) license.

Deposition of structural data

NMR-derived structures can be deposited in several databases (Table 2), including the 

Protein Data Bank (PDB) (> 15,000 entries) and the BMRB for biological molecules, the 

Cambridge Structural Database (CSD) (>1,000,000 entries) for organic and metal-organic 

solids, the Inorganic Crystal Structure Database (ICSD) (>200 000 entries) for purely 

inorganic solids.
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Limitations and optimizations

NMR sensitivity and resolution

The main challenge of NMR spectroscopy is its low sensitivity. Significant advances in this 

area include the development of DNP and 1H-detected experiments under fast MAS (up to 

~170 kHz) 287. Compared to 13C-detected experiments, 1H detection can increase the 

experimental sensitivity by 8-fold, which enables the measurement of high-resolution and 

high-sensitivity 1H NMR spectra of undeuterated systems with high sensitivity 44,288. 

Nevertheless, various challenges remain. 1H spectral resolution of solids is still a factor 10–

100 worse than in solution NMR spectra. Most DNP experiments achieve their maximum 

sensitivity enhancements at cryogenic temperatures of 20–110 K where the electron 

relaxation time is sufficiently long for polarization transfer to nuclei 99. At these cryogenic 

temperatures, disordered systems manifest much broader linewidths than at room 

temperature, thus causing spectral overlap unless the number of chemically distinct sites is 

low. Moreover, the efficiency of polarization in continuous-wave cross-effect DNP 

experiments scales unfavourably with B0, making high-field DNP (>9.4 T) a current 

challenge. As a result, DNP NMR has so far been more readily applicable to materials 

research 102 than to biological systems.

Spectral interpretation and refinement

For many solid-state NMR spectra, spectral resolution limits the amount of structural 

information obtainable. This is particularly true for disordered materials and for quadrupolar 

nuclei, where spectral overlap is common.140 Spectral fitting can ameliorate this problem, 

but there are limitations to the accuracy of multi-parameter multi-site fits unless variable 

field measurements or prior information is available. In many cases, particularly for 

anisotropically broadened lineshapes, ideal lineshapes are not relevant and simulation 

programs that include the exact effect of RF pulses on the density matrix (and ultimately on 

the spectrum) need to be used. 142 For quadrupolar nuclei, the complex spin dynamics mean 

that many experiments produce qualitative rather than quantitative information, for example, 

giving relative proximities rather than exact distances.

Similarly, spectral overlap in protein samples complicates structural analysis. Overlap of 15N 

chemical shifts limits the reliability of chemical shift assignment, in particular for 

assignment strategies that rely on NCACX and NCACX experiments. Semi-automated 

assignment programs have been developed to ameliorate this assignment ambiguity 289–292.

DFT calculations can greatly aid in the interpretation of the NMR spectra of materials, 

through the prediction of both quadrupolar and shielding parameters, but the accuracy of 

these calculations are limited by the methods and the functional used. Typically, generalized 

gradient approximation approaches are the method of choice for condensed matter 

simulations.149,150293 In principle, hybrid functionals offer improved accuracy, and some 

(for example, B3LYP) are widely used in molecular systems and have been shown to 

improve predicted 13C NMR spectra of molecular crystals 294. Although these functionals 

come with considerable computational costs, particularly in a periodic approach, recent 

developments in fragment-based techniques have demonstrated a route to exploit the benefits 
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of hybrid functionals in solids while ensuring a reasonable computational cost 294. More 

generally, the biggest limitation of using predicted NMR spectra to solve or refine structures 

is the time and cost of the calculation, which poses challenges to a real-time automated 

solution. To address this problem, machine learning approaches have been introduced to 

calculate chemical shifts in molecular solids that reduce computational cost by orders of 

magnitude while maintaining the accuracy of DFT 295.

Outlook

Higher magnetic fields and faster MAS

Higher magnetic fields and faster MAS have consistently opened up new doors in solid-state 

NMR in the past, and we expect they will continue to do so in the future. Ultra-high 

magnetic fields that are equivalent to 1.2 to 1.5 GHz in 1H Larmor frequency are becoming 

available through the construction of hybrid low- and high-temperature superconducting 

magnets 296 and series connected hybrid magnets 297. These ultra-high magnetic fields 

simultaneously enhance spectral sensitivity and resolution (Fig. 6). Spectral sensitivity 

scales with B0
3/2 and spectral linewidths scale with 1/B0 for homogeneously broadened 

resonances. For protons, sensitivity gains beyond the B0
3/2 factor are expected when the 

isotropic chemical shift difference exceeds the 1H-1H dipolar coupling strength 298. 

Quadrupolar nuclei further benefit from high magnetic fields as a result of the resolution 

enhancement due to the scaling of second-order quadrupolar interactions inversely with with 

B0.33,140,263,299 Even when the magnetic field is not high enough to reduce the quadrupolar 

broadening to fully resolve all sites, multi-field experiments are advantageous for extracting 

structurally informative NMR parameters.

Similar to higher magnetic fields, faster MAS has historically led to higher-resolution and 

more informative solid-state NMR spectra. The maximum achievable MAS frequencies are 

currently limited by the speed of sound at the rotor surface 300, and thus higher rates can be 

achieved only for ever smaller-diameter rotors. This appears to lead to a severe reduction in 

sensitivity, with a 0.7 mm for example only containing ~1 mg of sample 301. However, since 

the detection efficiency, the relaxation times that are effective during the insensitive nuclei 

enhanced by polarization transfer (INEPT) experiment and cross polarization all increase in 

smaller rotors,50 experimentally, small fast-spinning samples give rise to similar sensitivities 

as large slower-spinning samples.44 It has been predicted that this trend will hold up to MAS 

rates of ~300 kHz (Fig. 6) 302. Faster MAS may also be achieved by exploring rotors with 

non-cylindrical geometries 303. Recently, fast MAS has been shown to enhance the 

sensitivity of DNP NMR experiments.288,304: for example, results from 0.7 mm rotors 

spinning at 65 kHz show 2-fold higher DNP enhancements simply due to higher spinning 

rates, yielding sensitivity enhancements of 200 at high field (21.1 T). The combination of 

fast MAS and DNP thus opens up the possibility of 1H-detected MAS DNP.

Further development in DNP NMR

Most current continuous-wave DNP experiments are conducted at cryogenic temperatures 

and moderate magnetic fields to obtain high sensitivity enhancements. Key future directions 

include the development of pulsed DNP techniques 305 to increase the sensitivity gains at 
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high fields, with the concomitant improvement of spectral resolution 306, and development 

of new polarizing strategies suitable for ambient temperatures.

New NMR methods

Continued advances of solid-state NMR will benefit from the discovery of conceptually 

novel experimental methods, as observed since the introduction of pulsed NMR in the 

1970s. Many of these new pulse sequences are expected to capitalize on the increased 

resolution and coherence lifetimes enabled by faster MAS, higher magnetic fields, and the 

increased polarization available from DNP. New methods to measure distances and large-

amplitude motions under these high-field and fast-MAS conditions will be especially 

desirable 39,40.

For quadrupolar nuclei, future challenges lie in the measurement of high-resolution and 

high-sensitivity spectra and the extraction of more quantitative information.30,140 Here, we 

expect to see completely new approaches to provide the step change in sensitivity. For 

extracting quantitative structural information from NMR experiments, we expect that the 

rapid advances in computational methods will enable large-scale calculations of NMR 

parameters and artificial intelligence-based spectral interpretation for direct output of 

molecular or materials properties.

Solid-state NMR is particularly dependent on the development of probe technology. In 

addition to faster MAS, multi-channel NMR probes that allow simultaneous decoupling of 

multiple quadrupolar nuclei will be beneficial for enhancing the spectral resolution of 

inorganic materials. This instrumentation will also facilitate correlation experiments between 

different quadrupolar nuclei. Such experiments will require the development of more 

efficient polarization transfer pulse sequences, which can be aided by efficient simulation of 

larger spin systems.307

In situ, in operando and in vivo experiments

As chemistry, biology and materials sciences move away from studying pure systems 

towards complex systems on living or operational objects, in situ, in operando and in vivo 
NMR become more and more attractive. We expect to see rapid development of experiments 

and technology in this area tailored to new applications in materials research such as 

catalysis, electrochemistry, and solar conversion, as well as in biological chemistry research. 

In parallel, we expect to see an increased interest in trapping methods for ex-situ NMR 

analysis, such as pH jump, rapid mixing, and freeze quenching 308. Some of these trapping 

protocols will be combined with DNP NMR 309. In vivo biological studies by NMR 310 

benefit from the non-perturbing nature of NMR and its capability to detect both immobilized 

and dynamic molecules in cells quantitatively. Emerging topics include bacterial and 

mammalian extracellular matrices 219,311, protein folding and misfolding in mammalian 

cells 312, and membrane proteins in native membranes 313,314.

High pressure and temperature experiments

Measurements at temperatures and pressures that are higher than currently available are 

imperative for many applications in catalysis and materials science. Further miniaturization 
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will be required to enable experiments in smaller and faster-spinning rotors. 94 Performing 

solid-state NMR experiments at higher pressure will require significant development of new 

instrumentation such as possibly integrating miniature diamond anvil cells within a MAS 

rotor.

Miniaturization

Another direction that could enable new applications is related to miniaturization of solid-

state NMR systems. This potentially includes micron-sized rotors arising from new 

geometries for MAS 300 and the reduction in size of NMR magnets and probes from the 

current 1 m scale to the cm range 315. Such developments could transform the ability to 

carry out in situ measurements. The possibility to conduct solid-state NMR experiments in 

open faced systems with spinning magnets 316,317 instead of spinning samples is also being 

explored to enable NMR measurements in many industrial and operando settings.

New horizons

The methodological advances discussed above will expand the applications of solid-state 

NMR spectroscopy to many emerging fields where atomic-level characterization is vital but 

where few other analytical methods are available. For example, in chemical biology, 

increasing interest in mapping brain functions invites the application of solid-state NMR for 

studying protein-RNA interactions; the structurally poorly understood yet disease-significant 

glycan layers of pathogens and cancer cells calls for comprehensive studies of carbohydrate-

protein interactions; the central role of the proteostasis network in diseases suggests that 

solid-state NMR studies of the time course of protein folding and misfolding will likely be 

of interest; and challenges in drug delivery compels solid-state NMR studies of systems such 

as lipid nanoparticles. In these applications, we expect solid-state NMR to be increasingly 

integrated with biochemical techniques, and to complement other methods by providing 

atomic-scale structural, dynamical, and chemical information. In materials science, we 

envision solid-state NMR to play an increasing role in discovering new materials, in addition 

to characterizing materials. Such discovery processes require atomic probes of complex 

multi-scale heterogeneous architectures, which NMR is well positioned to provide. We 

expect conventional solid-state NMR to operate in parallel with new approaches for in situ 

and in operando online analysis, for example combining miniaturized solid-state NMR 

systems with artificial intelligence controlled discovery labs.

Conclusions

We have highlighted the major practices of contemporary solid-state NMR experiments and 

data analysis, and illustrated how these experiments are applied to biological and materials 

chemistry research. The exquisite control of nuclear spin coherence available to researchers, 

through an unlimited number of RF pulse sequences, allows scientists to extract multifaceted 

information from NMR data, including not only static three-dimensional structure, but also 

dynamics, chemical composition, intermolecular interactions, structural disorder, and the 

relation of these atomic and molecular properties to function.
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Glossary

non-zero nuclear spins
nuclear isotopes with a non-zero spin angular momentum

gyromagnetic ratio
the ratio of the magnetic moment of a particle to its angular momentum

anisotropic
orientation dependent

Fourier transformation
A mathematical transformation that decomposes a function (usually of time) into its 

constituent frequencies

paramagnetic
Weakly attracted by an externally applied magnetic field, typically as a result of the presence 

of unpaired electrons

ionothermal synthesis
the use of ionic liquids as both the solvent and potential template in the formation of solids

chemical shift anisotropies
The orientation-dependent component of the chemical shielding interaction

molecular dynamics
Computer simulated method used for characterising the dynamics of atoms and molecules, 

providing an overview of how they move over a set period of time

Density functional theory
Computational quantum-mechanical modelling approach used to investigate electronic 

structure in many-body systems

cryo-electron microscopy
an electron microscopy technique used to determine the three-dimensional structure of 

samples frozen at cryogenic temperatures, which are not in a crystalline form

extended X-ray absorption fine structure
a X-ray absorption spectroscopy technique that is amenable for non-uniform crystalline 

samples

generalized gradient approximation
A type of exchange correlation functional used in DFT that considers the density and the 

gradient of the density
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Box 1.

Coupling terms and methods

through-bond J coupling

The J coupling is the coupling between nuclear spins that is mediated by the electrons in 

the chemical bonds. In solution-state NMR spectroscopy J coupling is responsible for the 

complex splitting of resonance lines. In solids, these splittings are usually not resolved in 

the spectra, but the J coupling can be used to transfer magnetisation between nuclear 

spins. The J coupling has both isotropic and anisotropic components.

through-space dipolar coupling

The dipolar coupling results from the direct through-space interaction of one nuclear spin 

with the magnetic field generated by a proximal spin. The coupling falls off rapidly with 

internuclear distance (proportional to r–3) and so provides information on spatial 

proximity. Unlike the J coupling, the dipolar coupling is purely anisotropic and so is 

averaged to zero in a rapidly tumbling isotropic solution.

Decoupling is the application of either continuous or pulsed RF irradiation on a nuclear 

spin channel in order to remove the scalar and/or dipolar couplings between that nuclear 

spin and other nuclei. Both heteronuclear and homonuclear decoupling can be conducted. 

Decoupling is critical for enhancing the resolution and sensitivity of the observed spin.

Dipolar recoupling is the application of RF pulses that selectively reintroduce 

heteronuclear or homonuclear dipolar interactions under MAS of the sample. In this way, 

dipolar couplings can be used to transfer spin polarization from one nucleus to another, or 

to measure internuclear distances to restrain three-dimensional structures.
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FIG. 1. Basics of solid-state NMR for structural analysis of biomolecules and materials.
a. Nuclear spin magnetic dipole moments (μ) precess around a static magnetic field (B0) at a 

frequency that is identical to the transition frequency between the energy levels of the spins 

(ΔE=ħv0) A radiofrequency (RF) coil wrapped around the sample at the top of an NMR 

probe that is inserted into the center of the magnet allows irradiation of the RF pulses as well 

as detection of the transition frequency of the nuclear magnetic moment. Angular velocity, 

ω=−γB. (b) The NMR frequencies of different nuclear isotopes depend on their 

gyromagnetic ratios (γ) and the magnetic field (B0= 18.8 T, in this example). In addition, for 

spins of the same isotope, the frequency depends sensitively on the electronic environment 

of the individual nuclei. Schematic NMR spectra of a static powder containing three 13C 

nuclei relate to the chemical structure of attached functional groups. The broad powder 

pattern reflects chemical shift anisotropy (CSA), whose geometric average corresponds to 

the isotropic chemical shifts, which are detected when the sample undergoes magic-angle 

spinning (MAS). (c) MAS of the sample in the rotor yields high-resolution NMR spectra of 

solids by averaging the anisotropic part of the interaction to zero.
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FIG. 2. Some common solid-state NMR pulse sequences.
13C is used as an example of a heteronuclear (X) spin. (a) Cross polarization (CP). (b) 2D 
1H-13C heteronuclear chemical shift correlation (HETCOR) with 1H homonuclear 

decoupling. (c) 2D 13C-13C correlation through dipolar spin diffusion. (d) 2D 13C-13C J-

based refocused- incredible natural abundance double quantum transfer experiment 

(INADEQUATE). (e) The multiple-quantum MAS (MQMAS) experiment for quadrupolar 

nuclei. (f) X-Y rotational echo double resonance (REDOR) for heteronuclear distance 

measurement. (g) 2D 13C-1H dipolar shift correlation (DIPSHIFT). (h) Centerband-only 

detection of exchange (CODEX) pulse sequence for studying slow motion. (i) 2D 1H-

detected hNH correlation under fast MAS. WALTZ is applied to yield heteronuclear scalar 

decoupling. In these pulse sequences, the heteronuclear decoupling scheme can be TPPM, 

SPINAL and other sequences, while the homonuclear decoupling scheme can be FSLG, 

DUMBO, and other sequences. The symbols t1, t2 and t3 refer to time domain increments for 

2D and 3D experiments, and 90° and 180° pulses are shown as filled and open narrow 

rectangles, respectively. DARR: dipolar-assisted rotational resonance. FSLG: frequency-

switched Lee-Goldburg. TPPM: two-pulse phase modulation.
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Fig. 3. Representative solid-state NMR results and experiments.
(a) Resonance assignment experiments. The chemical shifts of 13C, 15N, and 1H are 

correlated to obtain sequence-specific assignment of all chemical shifts. (b) Intra-residue 

hCANH and inter-residue hCA(CO)NH correlation spectra of Aβ fibrils 318. (c) 1H-19F 

REDOR to measure internuclear distances to 1.5 nm. The spectra shown is for the model 

protein GB1, where amide protons that are close to the 19F spins manifest intensities in the 

difference spectrum ΔS 68. The REDOR dephasing for the cross peaks is fit to give the 
1H-19F distances. (d) Centerband-only detection of exchange (CODEX) to study slow 

motion as shown with an experiment used to determine the rates of helical jumps in 

isotactic-poly(4-methyl-1-pentene) as shown with helix axis model (right) 319. (e)17O magic 

angle spinning (MAS, left) and multiple-quantum MAS (MQMAS, right) spectra of 

MgSiO3, showing resolution of six distinct O species. Lineshapes simulated using density 

functional theory (DFT) calculated values are also shown (red), enabling assignment of all 

signals 143.
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Fig. 4. Applications of solid-state NMR to biological chemistry.
(a, b) Examples of membrane protein studies. (a) Atomic-resolution structures of the 

influenza B M2 proton channel in its closed and open states 128. The structures, determined 

using interhelical distance experiments such as 13C-19F REDOR and orientation 

experiments, reveal a distinct activation mechanism of the channel compared to influenza A 

M2 protein. (b) Structural changes of a Asp-His-Trp triad in the pentameric light-driven 

proton pump, green proteorhodopsin (GPR) 170. DNP NMR experiments revealed 

tautomeric and rotameric structural changes of His75 to mediate proton transfer. (c, d) 
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Examples of amyloid fibril studies. (c) The binding site of sulindac sulfide to the 

Alzheimer’s disease Aβ peptide is determined by 2D experiments and chemical shift 

perturbation 186. Structure on left generated using PDB: 2LMN. (d) Atomic-resolution 

structure of the glucagon amyloid fibril. The peptide assembles as an antiparallel cross-β 
fibril that contains two coexisting molecular conformations. These two conformations 

manifest as two sets of chemical shifts for each atom in the spectra 195. (e) The 

polysaccharide-rich cell walls of plants, bacterial and fungi can be studied using 2D and 3D 

NMR to understand how macromolecular packing and dynamics explain the properties of 

these biomaterials. The 2D 13C refocused-INADEQUATE correlation spectra 210 resolve the 

chemical shifts of dynamic matrix polysaccharides in Arabidopsis cell walls.
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Fig. 5. Applications of solid-state NMR to materials chemistry.
(a) Prediction of the hydrous defects in wadsleyite, an inner Earth mineral found at depths of 

400–600 km. Structure searching is used to predict possible structures for which NMR 

parameters are calculated using density functional theory (DFT), boxes in spectrum 

represent where structures (colours coordinate) were predicted.261. (b) Determination of the 

mesoscale structure of multivariate molecular organic frameworks (MOFs) containing 

linkers with different functional groups 270. 13C-15N REDOR combined with molecular 

dynamics (MD) simulations allow the distinction of alternating cluster forms from random, 

small and large cluster forms. (c) 13C CPMAS spectra of high-temperature reaction products 

of ethylene-13C2 on zeolite HZSM-5 catalysts beds 320. The spectra elucidated the 

mechanism of methanol to hydrocarbon catalysis, establishing that methanol and dimethyl 

ether react on cyclic organic species contained in the cages or channels of the inorganic host. 

(d) Prediction of 89Y NMR spectra of pyrochlores using ensemble-based modeling. NMR 

parameters of all possible cation arrangements are predicted using DFT and their 
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Boltzmann-weighted contributions to the spectrum are then determined to obtain detailed 

information on the local geometry 242. (e) Pressure induced evolution of the distributions of 

the Si–O distances and Si–O–Si inter-tetrahedra bond angles in vitreous silica quenched 

from high pressure. 2D dynamic-angle-spinning 17O NMR spectra show that with increasing 

pressure, the mean Si–O–Si bond angle decreases while the mean Si–O distance increases 
148. (f) Structure of inorganic–organic hybrid perovskites 321. 5-ammonium valeric acid 

iodide was used to stabilize the structure of α-FAPbI3. MAS NMR in combination with 

DFT was used to determine the atomic-level structure.
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Fig. 6. Outlook for MAS solid-state NMR.
(a) Sensitivities of methyl 1H resonances of a typical selectively methyl protonated protein 

(V44γ1 from α-spectrin SH3) as a function of magnetic field strength expressed as 1H 

Larmor frequencies 298. These sensitivities were measured at different MAS rates. (b) 

Quadrupolar NMR lineshapes of an 17O enriched metal-organic framework measured using 

a 35 T series-connected hybrid magnet illustrate the potential of high magnetic fields 322. 

Blue and red solid lines indicate experimental and simulated lineshapes, respectively. Areas 

on spectrum highlighted in green and yellow correspond to different 17O nuclei.
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Table 1.

Commonly studied nuclei in solid-state NMR.

Nuclei Spin quantum 
number

Natural abundance 
(%)

NMR transition 
frequency at 18.8 
Tesla (MHz)

Examples of Applications

1H 1/2 99.98 800 Organic materials, proteins, lipids, energy materials

19F 1/2 100 753 Organic materials, proteins, pharmaceutical compounds, 
minerals

31P 1/2 100 324 Phospholipids, nucleic acids, phosphate frameworks

7Li 3/2 92.6 311 Lithium ion batteries

27Al 5/2 100 208 Aluminosilicate zeolites and minerals, phosphate 
frameworks

13C 1/2 1.1 200 Organic and biological compounds, metal-organic 
frameworks

29Si 1/2 4.7 159 Zeolites, minerals, silica catalysts

2H 1 0.015 123 Water, carbohydrates, proteins, medicinal compounds

17O 5/2 0.037 108 Water, carbohydrates, proteins, oxides, ceramics, catalysts

15N 1/2 0.37 80 Proteins, nucleic acids, heterocyclic compounds, nitride 
ceramics
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Table 2.

Databases for the deposition of solid-state NMR results

Database Utility Data type Data Format Entry requirements

Protein Data Bank (PDB) 
(https://www.rcsb.org/)

3D structures of 
molecules

Macromolecular 
structure

PDB file format.
Pdb_extract can be 
used to extract data 
from your data file into 
the PDB format.

NMR depositions require one 
coordinate file, one chemical shift 
file, and at least one restraint file. 
Depositors are also encouraged to 
upload a peak list file.

Biological Magnetic 
Resonance Bank (BRMB) 
(https://bmrb.io/)

Data from NMR 
spectroscopy on 
biomolecules

NMR spectral 
parameters, 
Relaxation data, 
kinetic data, 
thermodynamic data

NMR-STAR When preparing a chemical shift 
table for NMR structure 
deposition, residue and atom 
names need to match those in the 
coordinates.

Inorganic Crystal Structure 
Database (ICSD) (https://
icsd.products.fiz-
karlsruhe.de)

Atomic structure 
of inorganic solids

Atomic coordinates 
of solids

Crystallographic 
information file (CIF)

CIF containing formula, space 
group, size and shape of unit cell 
and atomic coordinates. 
Information usually obtained from 
diffraction, but often combination 
of diffraction and NMR.

Cambridge Structural 
Database (CSD) (https://
www.ccdc.cam.ac.uk/
solutions/csd-system/
components/csd/)

Small-molecule 
organic and metal-
organic crystal 
structures

Atomic coordinates Crystallographic 
information file (CIF)

CIF containing formula, space 
group, size and shape of unit cell 
and atomic coordinates
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