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Abstract

Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing 

colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, 

size, color, and texture of polyps, shuttle difference between polyp and its background, as well as 

low contrast of the colonoscopic images. To address these challenges, we propose a feature 

enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the 

proposed network enhances the semantic information using the novel Semantic Feature Enhance 

Module (SFEM). Furthermore, instead of directly adding encoder features to the respective 

decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on 

the encoder’s significant and hard fine-grained features. The integration of these two modules 

improves the quality of features layer by layer, which in turn enhances the final feature 

representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates 

superior performance compared to other state-of-the-art models.
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I. INTRODUCTION

Colorectal cancer is the third most common cancer diagnosed in the United States [1]. It is 

considered the second deadliest cancer in terms of mortality, causing 9.4% of total cancer 

deaths [35]. The primary reason behind colorectal cancer is a polyp that grows in the lining 

of the colon or rectum. Early detection and localization of polyp can reduce the mortality 

rate caused by colorectal cancer. In addition, it could reduce the treatment cost by restricting 

cancer spread to distant organs and the need for biopsy. Colonoscopy is the standard visual 

examination for the screening of colorectal cancer. However, the result of colonoscopy may 

be misleading due to the variant nature of polyps, including their shape, size, texture, and 
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unpredictable factors such as veins and illumination. In addition, the result of colonoscopy 

depends on various human factors including gastrologist’s experience and physical and 

mental fatigue. Therefore, an automatic computer-aided polyp segmentation system is 

required to assist the physician during the procedure and significantly improve the polyp 

detection rate.

Various techniques have been developed for the polyp segmentation task. The available 

methods can be largely divided into two categories: (1) Hand-crafted feature based 

approaches and (2) Deep-learning based approaches [2] [3] [4]. Before the invention of 

neural networks, the polyp segmentation task depends on hand-crafted features such as size, 

shape, texture, and color [5] [6]. However, these approaches are slow and have a high 

misdetection rate due to the low representation capability of hand-crafted features. 

Following the huge success of deep learning-based models on generic datasets [7] [8] [9] 

[10], researchers started using neural networks for polyp detection and segmentation. 

Inspired by the early work [11], where FCN [13] is utilized with a pre-trained model to 

segment the polyp, Akbari et al. [12] proposed a modified version of FCN to improve the 

performance of polyp segmentation. U-Net++ [15] and ResUNet++ [16] upgraded the 

architecture of U-Net [14] and achieved promising results on polyp segmentation. SFANet 

[17] takes the area-boundary constraint into account along with extra edge supervision. It 

achieves good results but lacks generalization capability. Recently introduced ACSNet [18] 

and PraNet [19] propose an attention-based mechanism to focus more on the hard region, 

which leads to improved performance.

U-Net and its variants U-Net++, ResUNet, ResUNet++, and ACSNet have achieved 

appealing results on the polyp segmentation task by using U-shape encoder-decoder 

architecture. However, none of them utilize decoder features to calculate the attention value 

of the respective encoder layer. We believe that utilizing the decoder layer feature to 

selectively aggregate respective encoder layer features could improve the feature quality. 

Moreover, all of the above-mentioned models employ the pooling-based approach to 

enhance the multi-scale semantic features, which may lead to loss of spatial information.

To alleviate these issues, we propose an attention-based UNet for polyp segmentation by 

enhancing the quality of features. The proposed network mainly consists of two modules. 

First, we design a Semantic Feature Enhancement Module (SFEM), which enhances the 

deeper layer features by applying different sizes of patch-wise non-local attention block to 

tackle the different sizes of the polyp and fuse the output of each non-local blocks together. 

These fused features are then sent to each decoder layer. Second, we introduce an Adaptive 

Global Context Module (AGCM), which focuses on more significant features of the encoder 

layer by taking into account the previous decoder layer features. This mechanism suppresses 

the insignificant and noisy features and focuses only on essential features using spatial cross 

attention. It refines the decoder features layer by layer by removing unwanted features and 

adding significant fine-grained features only. Furthermore, to give more attention to the hard 

regions, we apply focal loss at each decoder layer.

In summary, the main contributions of the paper include:
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• The proposed semantic feature enhancement module fully exploits the multi-

scale semantic context without losing spatial information.

• The proposed adaptive global context module attends the significant and hard 

fine-grained features and selectively aggregated them to the respective decoder 

layer.

• The integration of both modules enhances the quality of features layer by layer 

and hence achieves state-of-the-art performance on five publicly available 

benchmark datasets.

The source code of the proposed model can be accessed at https://github.com/rucv/

Enhanced-U-Net.

II. METHOD

The architecture of the proposed enhanced U-Net is shown in Fig 1. It mainly consists of 

four parts: (1) Encoder, (2) Decoder, (3) SFEM, and (4) AGCM. An encoder is made up of 

ResNet-34 [20]. The encoder’s output is fed to the decoder, which consists of five decoding 

layers. Each decoding layer consists of two convolution layers followed by batch-

normalization and ReLU activation. The SFEM module is attached at the top of the last 

encoding layer, which consists of semantic features. We insert one convolution layer before 

the SFEM module to reduce the number of channels. The output of SFEM is sent to all 

decoding layers. The AGCM module is employed in place of skip connection to alleviate the 

effect of background noise. It takes the current encoding layer and the previous decoding 

layer’s feature maps as input and yields the resultant feature map of the same size as the 

current encoding layer feature map. Feature maps produce by SFEM, AGCM, and the 

decoder layer are concatenated and applied to the next decoding layer and AGCM. Each 

decoding layer is attached to the auxiliary loss inspired by deep supervision. The detailed 

description of the two proposed modules are as follows:

A. Semantic Feature Enhancement Module

It is well known that the deeper layers in CNN networks contain the semantic features which 

are most significant to detect and segment the objects. To fully exploit the semantic features, 

we introduce a semantic feature enhancement module (SFEM) inspired by the pyramid 

pooling [21] [22] [23].

Specifically, SFEM consists of three parallel branches of patch-wise non-local blocks as 

shown in Fig 2. It takes the output of the encoder feature map as input and applies non-local 

attention to the patches of a specific window size separately instead of applying adaptive 

average pooling. The first branch divides the image into four patches of size (W/2 × H/2), 

applies non-local spatial attention individually on each patch, and folded them back together 

as shown in Fig 2(b). Similarly, the second branch produces 16 patches of the size (W/4 × 

H/4) and performs the same operation as the first branch on each patch. In our experiment, 

we set the size of the output feature map of the encoder to 8 × 8. Therefore, the first branch 

contains the 4 patches of size 4 × 4, and the second branch has the 16 patches of size 2 × 2. 

The last branch performs a non-local [24] operation on the entire feature map of size 8 × 8. 
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The outputs of these three branches are concatenated, followed by a squeeze and excitation 

block that attends to the most significant channels. The results of SE blocks [25] are then 

sent to all decoder layers. To match each decoder layer’s size, we upsample the output of 

SFEM.

Unlike pyramid pooling, the above SFEM module is capable of enhancing the semantic 

information without losing spatial information. In SFEM, the size of each branch’s output is 

the same, whereas for pyramid pooling, as the window size increases, the output size 

decreases, which requires an upsampling operation that leads to loss of spatial information.

B. Adaptive Global Context Module

Features generated using the SFEM module are at a coarse level and contain noise in it. We 

propose an adaptive global context module (AGCM) to improve these coarse level features 

to fine level features layer by layer using spatial cross-layer attention. The detailed 

architecture of the AGCM module is shown in Fig 3. It takes the current encoder feature 

map as query and concatenated features of SFEM, previous layer AGCM, and decoder layer 

as a key and value pair and applies cross-layer spatial attention [38]. The resultant attention 

features have the same size as the encoder layer feature map, so they can be directly 

aggregated to the encoder feature map without resizing operation. The aggregated features 

are then sent to the respective decoder layer. A detailed explanation has been given below.

In context to our encoder-decoder architecture, the basic non-local block can be formulated 

as:

yi = 1
C el ∀j

f eil, ejl g ejl (1)

where el is the features of the encoder layer. l. eilandejl come from the same encoder layer l 
and produce the relationship matrix of size W H × W H, where W and H denote the width 

and height of the encoder feature map. In contrast, our AGCM can be formulated as:

yi = 1
C el ∀j

f eil, cj l − 1 g cj l − 1 (2)

Here, instead of using the same encoding layer features, we established the global 

relationship between the current encoding layer el and the fusion features cl–1 generated by 

previous decoder layer featuresdl–1, previous AGCM features AGCMl–1 and SFEM features 

SFEMl. This mechanism leads to selectively aggregating fine-grained features of each 

encoding layer to the decoding layer instead of directly aggregating using addition or 

concatenation.

C. Loss Function

Our loss function is defined as:
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L = LIoU + LFocal + LDice (3)

where, LIoU, LFocal and LDice represent the pixel-based IoU loss, focal loss and dice loss 

[32] [34] [36] [37]. To take the individual benefits of each loss function, we have combined 

the above three losses. Focal loss is employed to put more focus on the difficult pixels 

concerning probability score. In addition, we have used the weighted IoU loss to give more 

weight to the harder pixels based on their neighborhood pixels. At last, to focus on the 

foreground object, we use dice loss. Our experiment shows that adding dice loss with 

weighted IoU loss increases the performance by a significant amount. In addition, we utilize 

deep supervision for all decoder layer prediction maps generated by side-out. We 

downsample the ground truth mask to match the size of the prediction generated by the 

appropriate decoding layer.

III. EXPERIMENTS

A. Datasets

We evaluate the proposed model on the following five benchmark datasets for polyp 

segmentation: ETIS [26], CVC-ClinicDB [27], CVC-ColonDB [28], Endoscene [29], and 

Kvasir [30]. ETIS is an old dataset that consists of 196 polyp images. CVC-ClinicDB 

contains 612 polyp images from 29 colonoscopy videos. EndoScence combines the CVC-

ClinicDB and CVC-300 dataset, where CVC-300 consists of 300 images from 13 short 

colonoscopy sequences. CVC-ColonDB is a small-scale database that has 380 images from 

15 short coloscopy sequences. At last, Kvasir is a recently proposed challenging dataset that 

consists of 1000 images with its ground-truth masks. We compare the enhanced U-Net with 

the baseline models: U-Net [14], U-Net++ [15], and ResUNet++ [16]. We also compare the 

performance of our model with the recently proposed ACS [18] and PraNET [19]. 

Specifically, we perform the experiments in two modes of the dataset: Set-1 and Set-2. For 

the first mode, Set-1, we divide the Kavasir-SEG and CVC-ColonDB datasets into Train, 

Val, and Test set individually. In contrast, for the second mode, Set-2, we combine both 

datasets and used them to train the model and evaluate performance on a totally different 

dataset, including ETIS, CVC-300, and CVC-ColonDB.

B. Implementation Details

During training, we resize all images of the Kavasir-SEG dataset to 384 X 288 and the 

remaining dataset to 320 X 320 and then randomly crop the images of size 256 X 256. We 

utilize several data augmentation methods to reduce the overfitting, including horizontal and 

vertical flips, rotation, and zoom. We set the batch size to 4 and train the model for 150 

epochs with an initial learning rate of 0.001. We employ the SGD optimizer with a 

momentum of 0.9 and weight decay of 0.0005.

To evaluate the permanence, we use recall, precision, specificity, dice-score, IoU, and 

accuracy as evaluation metrics. To make a fair comparison, we follow the same procedure to 

calculate the metric as ACM and PraNet.
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C. RESULTS

We compare the performance of our ”Enhanced U-Net” with FCN [13], U-Net [14], U-Net+

+ [15], SegNet [31], SFANet [17], and ACSNet [18] on Endoscene and the recently released 

Kvasir-SEG datasets. Table II and Table III show the results on EndoScene and Kvasir-SEG 

datasets, respectively. Our model outperforms all the above state-of-the-art models with an 

adequate margin on almost all metrics. Specifically, our model increases the Dice and IoU 

by 12.09% and 16.06% on the Endoscene dataset and 9.73% and 13.61% on the Kvasir 

dataset, respectively, compared to the baseline U-Net. It also outperforms the ACSNet by 

improving the majority of metrics by significant amount on both datasets. This indicates the 

effective learning ability of our model to segment the polyp.

To validate the generalization capability of our method, we further evaluate the performance 

of our model using new datasets that have never been seen before. We follow the same 

procedure to calculate the mean-IOU, mean Dice, and Accuracy and utilize the same train 

and test set as PraNet [19] for a fair comparison. We then evaluate and compared the 

performance of different models using the following new datasets: ColonDB, ETIS, and 

CVC-300. The results are shown in Table IV. It is evident that our model improves the 

mean-Dice and mean-IOU by 22.79% and 21.48% on the ColonDB dataset, 25.25% and 

24.7% on the ETIS dataset, and 17.62% and 18.6% on the CVC-300 dataset compare to the 

baseline U-Net. It also outperforms the recently proposed PraNet by increasing the mean-

Dice and mean-IoU by an adequate amount. In short, it outperforms state-of-the-art methods 

on the majority of metrics with a significant margin, which demonstrates the superior 

generalization capability of the method.

Furthermore, we also display the output of segmentation masks generated by our model in 

the Table I. From the result, it can be seen that ground truth masks and the outputs look very 

similar such that they are hard to differentiate.

D. Ablation Study

In this section, we present the ablation experiments to validate the effectiveness of our 

proposed modules individually. We train U-Net baseline on both modes of dataset and test 

on EndoScene and CVC-300 datasets by either including SFEM, AGCM or proposed loss 

function as well as inlcluding all or two modules together. The results of the ablation study 

are shown in Table V.

1) Effect of Losses: We first validate the proposed composite loss function’s 

effectiveness by adding only that loss into the baseline. It can be seen from Table V that the 

proposed loss function with deep supervision tremendously improves the performance. 

Specifically, for set-1, mean Dice and mean IoU increase by 8.46% and 13.13% respectively, 

and for set-2, mean Dice and mean IoU improve by 7.52% and 7.57% respectively. From 

Table V, it can also be seen that adding dice loss along with focal loss and weighted IoU loss 

increase the performance by a significant amount.

2) Effect of SFEM: From the result in Table V it can be seen that only including SFEM 

improves the performance of the baseline network in both test sets. For the set-1 dataset, 
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mean Dice, mean IoU, and Accuracy are increased by 2.62%, 1.65%, and 0.74%, 

respectively, compared to the baseline U-Net, indicating the improvement of our model’s 

learning ability. The SFEM module dramatically improves the performance on set-2. 

Specifically, the mean Dice, mean IoU, and Accuracy on the set-2 dataset increase 

significantly by 5.04%,6.56%, and 0.71%, respectively, compared to the baseline network, 

which indicates the generalization capability of SFEM.

3) Effect of AGCM:: Like SFEM, AGCM also improves the performance on both set-1 

and set-2 datasets compared to the baseline network shown in Table V. Specifically, for 

set-1, mean Dice, mean Iou, and accuracy are improved by 2.54%, 1.53%, and 0.71%. For 

set-2, mean IOU and mean Dice improves dramatically by 4.61% and 6.06%, respectively, 

and accuracy is increased by 0.76%. The improvements prove the model’s earning and 

generalization capability by introducing AGCM, compared to the baseline.

IV. CONCLUSION

This paper has presented a novel architecture to improve the quality of features layer by 

layer for automatically polyp segmentation from colonoscopy images. Our extensive 

experiments prove that our model consistently outperforms the baseline network U-Net and 

its variants: U-Net++ and ResUNet, by a large margin on different datasets. It also 

outperforms the recently published ACSNet and PraNet by a significant margin. The 

experiments demonstrate the strong learning capability and generalization ability of the 

proposed model. The proposed model could also be directly applied to other medical image 

segmentation tasks.
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Fig. 1. 
The overall architecture of the enhanced U-Net: The input image is supplied to the encoder. 

Each encoder layer’s features are sent to the respective decoder layer through the AGCM 

module. The features of the last encoding layer are applied to SEEM to further enhance the 

multi-scale semantic features. The resultant features are sent to all decoder layers to 

concatenate with the features produced by AGCM and each decoder layer. Auxiliary losses 

are applied at the end of each decoder layer.
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Fig. 2. 
(a) The detailed architecture of SFEM. It consists of three branches: the 1st and the 2nd 

branches divide the image into H/2 × H/2 and H/4 × H/4 sizes of patches and apply non-

local attention. The third branch applies basic non-local attention to the whole image. The 

detailed version of the non-local block on an individual patch is described in (b) where it 

first divides the image into patches and then applies non-local attention on each patch 

independently and folds it back to the whole image. The result of each branch is 

concatenated, followed by a SE-block.
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Fig. 3. 
The overall architecture of AGCM. It takes current encoder features El as Query and 

concatenates features (Cl–1) generated from (Dl–1, AGCMl–1, SFEM) as Key and Value to 

perform cross attention.
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