
EDITORIAL

Ten simple rules for teaching applied

programming in an authentic and immersive

online environment

Frances HooleyID, Peter J. FreemanID, Angela C. DaviesID*

School of Health Sciences, The University of Manchester, Manchester, United Kingdom

* angela.davies@manchester.ac.uk

IntroductionAU : Pleaseconfirmthatalltheheadinglevelsarerepresentedcorrectly:
Clinical bioinformatics is an applied discipline combining computer science with genomics in

clinical practice. With the widespread integration of genomics into healthcare, trained clinical

bioinformaticians are in short supply, but high demand, necessitating creative and flexibly-

delivered education to fill the skills gap [1]. Since 2013, The University of Manchester has

taught a masters programme to train clinical bioinformaticians working in the United King-

dom National Health Service (NHS). Following the success of this programme, in 2019, we

expanded our portfolio and launched a fully online Postgraduate Certificate in Clinical Bioin-

formatics [2], designed to teach healthcare professionals and those with an interest in clinical

bioinformatics, using authentic genomic clinical case studies and real-world examples. This

course has now run for 2 cohorts with 45 students to date.

The Introduction to Programming unit was designed to provide a foundation course for

those learning to code within the discipline of clinical bioinformatics. As this field is relatively

new, those taking the course from the 2 cohorts came from a variety of backgrounds with

diverse levels of experience in programming, ranging from novice programmers to those with

professional roles in programming, from non-healthcare disciplines. Importantly, these stu-

dents represented a global cohort, separated by diverse time zones, including UK, Saudi Ara-

bia, and Australia. This course has also been provided for an additional 11 students on the

Scientist Training Programme (STP) [3], training to be clinical bioinformaticians within the

NHS, during emergency transition to remote teaching in 2020 to 2021; therefore, it needed to

provide a diverse level of support to encourage all students to develop their programming

skills. It also needed to be delivered entirely online in a mostly asynchronous way to support

students from different global time zones who were also juggling work, family, and study com-

mitments. It was therefore essential to find ways to build and maintain engagement that didn’t

rely on synchronously delivered webinar-based communication [4]. Following these initial

runs of the course, we would like to share 10 simple rules based on our experiences from deliv-

ering an applied practical course to a diverse set of students in a flexible, supportive, and

engaging online learning environment.

Introducing the 10 rules

The 10 rules are grouped into 3 themes: teaching, applied practice, and the team, as illustrated

within Table 1. The first theme, teaching, incorporates the rules that involve understanding

your student cohort (well), defining your pedagogy, and incorporating authentic tools, accord-

ingly. The second theme, applied practice, relates to designing the content in relation to real-

world problems that the students would likely encounter, in this case, in clinical practice. The

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Hooley F, Freeman PJ, Davies AC (2021)

Ten simple rules for teaching applied programming

in an authentic and immersive online environment.

PLoS Comput Biol 17(8): e1009184. https://doi.

org/10.1371/journal.pcbi.1009184

Editor: Russell Schwartz, Carnegie Mellon

University, UNITED STATES

Published: August 5, 2021

Copyright: © 2021 Hooley et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-1048-4558
https://orcid.org/0000-0002-5838-5404
https://orcid.org/0000-0002-3365-7231
https://doi.org/10.1371/journal.pcbi.1009184
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009184&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009184&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009184&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009184&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009184&domain=pdf&date_stamp=2021-08-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009184&domain=pdf&date_stamp=2021-08-05
https://doi.org/10.1371/journal.pcbi.1009184
https://doi.org/10.1371/journal.pcbi.1009184
http://creativecommons.org/licenses/by/4.0/


third theme, the team, describes the benefits of embracing a multidisciplinary teaching team

and a well-facilitated learning journey.

Rule 1: Know your students

Knowing student preferences, requirements, and motivations has been a guiding principle for

technology-enhanced learning projects for some time [7]. It’s important because it can help

design the right scaffolding of activities to support high-order learning and inform techniques

during delivery, which encourage engagement and build a sense of community [8]. We

strongly believe that this is the most important rule, as it also began with user-centred design

and cocreation of materials that informed our decision-making throughout the course devel-

opment. Throughout the evolution of our clinical bioinformatics education at The University

of Manchester, we have embedded an ethos of collaboration and cocreation with our students,

Table 1. Summary of themes for 10 rules.

Theme No. Rule Description

TEACHING 1 Know your Students This is an essential rule and applies to all teaching projects. However, it is particularly pertinent for this

course where we have had a diverse set of student needs and levels of experience to support. By knowing

students’ needs prior to delivering the course, educators can preempt topics and tailor support

accordingly.

2 Follow a pedagogy-first

approach

In technology-enhanced learning projects, the pedagogy can be overshadowed by the technology. This can

be even more of an issue when the tools themselves are core subject matter of the course. By focusing on

the teaching methods and ignoring the software and platforms at the start, educators can build the right

foundations to ensure all the learning objectives are embedded effectively in the students’ learning journey.

3 Incorporate commonly used

tools

Fundamental to the learning design was that the tools included in the course needed to be actively used by

clinical bioinformaticians in practice. By adhering to an authentic and practice-driven experience during

the course, the students are equipped to develop their skills post-course with the experience, insight, and

confidence to be effective from day one.

4 Create coding snippets to

scaffold the learning

The Jupyter Notebooks developed for the course contained short blocks of coding accompanied by

instructional content that helped build the learning incrementally. By incorporating self-directed and

interactive materials in a simulated safe environment, the students can practice, experiment, and hone

their programming skills [5]. This safe-to-fail learning space is particularly critical for clinical

bioinformaticians whose role is to apply their programming skills to genomic data to help inform patient

diagnosis and care.

5 Design with flexibility in mind Teaching in the moment to ensure that learning goals are met and students are supported was a really

important rule learnt from running this course. It was made possible from the robust design methods and

trusted pedagogic frameworks the course was built on. By pivoting to support students during delivery, we

could meet their needs during the remote emergency teaching of the pandemic. It is also a lesson that we

will apply to our teaching in general.

APPLIED

PRACTICE

6 Bring it back to practice Projects for the final coding assessment included work on real-world tools, such as VariantValidator [6].

By directly improving tools used by clinical bioinformaticians, the students could see the impact of their

work, thereby increasing their motivation during and after the course.

7 Build in real-world problems

and methods

The students provided their own programming challenges, which they worked on in the team activities. By

sourcing real problems to tackle, the students were being prepared for professional practice. By

incorporating these within a simulated environment, they were learning to apply their skills using the tools

and methods used in practice.

8 Simulate a community of

practice (CoP)

Clinical bioinformatics, like other professions, could be made more efficient through a strong collaborative

network to streamline and share the development of resources used in practice. By equipping students

with the necessary skills to develop their networks and to learn to work collaboratively from the beginning,

this can occur after the course.

THE TEAM 9 Try a team-teaching approach Having a course team from mixed disciplines and backgrounds sparked various innovative approaches in

this course. This is a rule that has transferred across various different courses and has worked well for the

team.

10 Facilitate the journey . . . well! Good facilitation is essential in all online delivery, so this rule is a fundamental one for online learning.

This course recruited facilitators from the student community, provided pedagogic guidance, and ensured

the facilitators were valued members of the team, which translated to the community feel of the course and

encouraged engagement.

https://doi.org/10.1371/journal.pcbi.1009184.t001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 2 / 11

https://doi.org/10.1371/journal.pcbi.1009184.t001
https://doi.org/10.1371/journal.pcbi.1009184


driven by the ever-changing needs of a rapidly evolving national and international genomic

medicine service [9]. When designing a course unit, we believe that it is best practice to gather

learner requirements to define their actual needs before entering the design phase. This will

help to hone the course content and focus the learning journey into a “critical path” of learn-

ing. We found that this resulted in asking lots of seemingly mundane questions like, “Is it

essential, do they really need to know this?”, “What would a Clinical Bioinformatician do in

practice?”, and “Does this really support those new to programming?”, which enabled us to

maintain the unit’s focus on applied programming rather than theoretical programming.

To validate our approach, we ran a poll just before the course started to ask our students to

consider how they felt about programming and to reflect on what they wanted to learn. The

results reinforced our findings during the design phase, confirming that our students were

generally novices but with some who had come from a more coding background that felt more

advanced in their skills. Table 2 below shows the mix of results from a poll at the start of each

of the courses asking the students their level of knowledge in programming.

Rule 2: Follow a pedagogy-first approach

The clinical bioinformatician’s environment is ever-changing, with new technologies develop-

ing at speed, the pipelines that they develop need to be regularly and rapidly updated, vali-

dated, and verified to be used clinically. The move towards reuse and sharing of code and

working in an agile manner across different hospitals will enable clinical bioinformaticians to

keep pace with these requirements. As such, the development of softer skills, including team

working, and customer-driven software development were as fundamental as the core pro-

gramming skills. We chose a pedagogy-first approach to the learning design, which meant

prioritising the teaching methods over technology. By doing this, we could focus on “howAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif howinthesentenceBydoingthis;wecouldfocusonhowtheprogramming:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:” the

programming activities and interaction with tools and other students could be scaffolded into

the learning journey in order to meet the learning objectives [10]. It is very tempting to start

with the tools, websites, and software the students will need, when designing a course develop-

ing programming skills. However, by focusing on the student learning needs and the course

objectives, we could clearly define 3 pedagogic themes to design the course.

Social learning. In a fully online course, learning can take place by interactions between

learner and content, learner and educator, and also between learners. Using online discussion

fora blended with social media and carefully scaffolded real-world problems and questions, the

online learning environment can be used to create and support interactions and develop learn-

ing between students. We embedded so-called social constructivist learning within our course

design to encourage the students to learn collaboratively and build on and share their existing

knowledge. Primarily, we did this to embed a supportive and collaborative learning environ-

ment. The continual flow of discussion in social learning, which involves the articulation and

exchange of ideas, drew us to Laurillard’s Conversational Framework [11] as a pedagogic

Table 2. Results of poll investigating experience of programming.

Course: PG Cert Run 1 PG Cert Run 2 STP Run 1 Totals

Number of students: 30 36 12

I’ve never done it 13 13 2 28

I have dabbled with the basics in the past 6 8 1 15

I’ve done some in the past at a basic level 2 10 7 19

I regularly code but would see myself as intermediate 1 1 2 4

It’s essential in my job and would consider myself advanced 8 4 0 12

https://doi.org/10.1371/journal.pcbi.1009184.t002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 3 / 11

https://doi.org/10.1371/journal.pcbi.1009184.t002
https://doi.org/10.1371/journal.pcbi.1009184


model. Laurillard’s framework centres the student at the heart of their journey and looks at

learning as an iterative process that ebbs and flows as it grows. To put it plainly, the students

would gradually build on their own knowledge through interaction with others and from

internal reflection. This helped the team to design activities that encouraged peer-supported

learning that not only helped the students but also helped us to be agile during delivery and

focus our support on those students who needed it the most.

Problem solving and self-directed learning. The types of problems we embedded were

designed to reflect the real-world challenges a clinical bioinformatician would encounter. It

was essential to develop the problem-solving skills in a practical programming course, not

only during the course but to instil self-regulated learning skills in order to apply the program-

ming tools and techniques after the course had ended [12].

Situated learning. We wanted to simulate real-world practices to situate the students in

how they will apply their programming skills. This included the potential challenges they may

face in a volatile clinical environment and, importantly, to develop the skills and knowledge to

overcome these challenges in a real-world setting. The provision of a realistic programming

environment was more important than the rigour of the actual coding skills in this course,

skills that would be developed during application in practice.

Rule 3: Incorporate commonly used tools

Common and industry-standard tools that clinical bioinformaticians use within practice will

include Slack, including dedicated channels to specific aspects of coding and GitHub, which is

used as a repository to develop and share code using version control. We integrated these key

tools into the course design to simulate a real-world programming environment as described

below.

Social media. Students can often experience feelings of isolation commonly associated

with distance learning [13]; therefore, it is essential within a social constructivist approach to

integrate good discussion-based tools into the pedagogic model. The platform we chose was

Slack. Slack is a collaboration tool for communicating in teams and consists of a workspace

with individual channels that can be shared in the teams or made private [14]. General discus-

sions, team strategy, and product owner interaction (where an educator would act as the cus-

tomer for the coding task, providing user requirements and feedback on code iterations) were

delivered through Slack. It was also used for group work and educational support, such as solv-

ing initial configuration issues with, e.g., Jupyter Notebooks and Python environments, pasto-

ral support, and providing personal feedback on activities. The students demonstrated great

team-working skills within groups of approximately 5 members providing peer-to-peer sup-

port and lessening isolation. This peer-supported learning involved over 10,000 messages and

approximately 130 resources shared across the 3 cohorts of 78 students. Slack was used to pro-

vide real-time support on the coding sprints; this was a lightweight, but easily accessible means

by which students could highlight problems encountered and get rapid feedback from their

peers, facilitators, or course tutors.

GitHub. The course content was delivered outside of Blackboard (learning management

system) to the students using GitHub [15]. GitHub is an industry-standard code hosting, ver-

sion control, and collaboration platform and is suited to this unit because it lets users work

together on projects from anywhere in the world. Initial introductory materials were delivered

through Blackboard. Students were taught how to configure their own machines for program-

ming using Anaconda to install Python3, and Windows users installed and initialised a

LINUX environment, e.g., git bash, so that all students could be taught using LINUX. Students

also installed git so that the course material could be downloaded from GitHub. Course

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 4 / 11

https://doi.org/10.1371/journal.pcbi.1009184


material was taught using Jupyter Notebooks downloaded from GitHub [16]. The reason for

this was to give the students an opportunity to get to grips with a commonly used version con-

trolling tool they would encounter in practice. The notebooks were held in a GitHub private

repository, which the students accessed as collaborators so they could then download them

locally to work on their own parts of the project, as a bioinformatician would do. We also

included a wiki in Git to collate any useful tools and Git Issues in the workflow of the tasks to

collate any issues with the coding. We encouraged the use of community platforms and

resources commonly used such as Stack Overflow [17] in the group work. The use of these

tools and agile methods meant that they were AU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif reallyinthesentenceTheuseofthesetoolsandagilemethodsmeantthat:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:experiencing the working practices of a clinical

bioinformatician. Importantly, however, they were doing this in a way that would help to build

their confidence, encourage them to learn from each other, build their professional network,

and work with the toolkit they would use after the course had ended.

Rule 4: Create coding snippets to scaffold the learning

In order to deliver the learning materials in an engaging and immersive way, we used Jupyter

Notebooks. These are browser-based interactive notebooks that have editable code next to the

instructional teaching content. These have been mainly used in research to support the repro-

ducibility of code [18]; however, the ability to juxtapose practical and instructional content

really lends itself to teaching. The format of the Notebooks allows for rich content to be created

in order to interact with the code and data contained in such a notebook to form an educa-

tional narrative; we have integrated these throughout our health informatics teaching [16].

This is because the blend of activities can be mixed in a variety of ways to meet the learning

objectives, for example, they can include relevant problems for students to solve interspersed

with informative content and working examples all of which help to build learning incremen-

tally. We created 12 Jupyter Notebooks that contained exercises with executable code examples

in short snippets alongside practice-based tasks. These helped students practice coding in a

fail-safe environment while learning at a pace that suited them.

Rule 5: Design with flexibility in mind

Early investment in planning the learning journey from a learner-centric perspective will be

time well spent. To plan this unit, we used the ABC Learning design toolkit, which involves the

whole teaching team in an interactive 90-minute planning session that incorporates the 6

learning activities within Laurillard’s framework. It results in a basic storyboard, providing

detail of the learning objectives, the indicative content, how it will be delivered (video, quiz,

discussion), the time that each learning activity will take, and who will own each piece of con-

tent creation [11].

We found storyboarding the learning journey essential in order to create a flow or narrative

in this unit. Using this approach, individual activities could be created that fitted well into the

context of the entire unit. It also provided a great way of project managing the development of

the unit including progress checking, identification of risks and issues, and providing owner-

ship to content authors. The use of Kanban-style project management tools such as Trello

boards to create the storyboard and assign activities works well if you are working in a large

development team, or there are always excel sheets as an adequate alternative.

Independent of the tool used, we would recommend you have some way of tagging the

learning activities so you see their spread and mix and ensure your chosen methods are perme-

ating through your materials. For example, if you are trying to build a social or situated learn-

ing experience, then you don’t have a sequence of passive activities such as reading or

watching a video. The storyboard can be continually reviewed to ensure that passive activities

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 5 / 11

https://doi.org/10.1371/journal.pcbi.1009184


are interspersed with more investigative, collaborative, or production-oriented activities. This

storyboard of activities also helped us to flex the learning journey to meet the different stu-

dents’ needs during delivery of the course. For example, during the STP course unit, we

changed the order and amount of time on tutorials that weren’t needed (such as on shell script-

ing) and spent more time on requested activities (such as GitHub tutorials) and changed the

timetable to spread the learning across a longer time period. This agile teaching approach was

achievable because of the robust instructional design methods during the storyboarding phase.

Rule 6: Bring it back to practice

Students are more likely to be invested in the code they create if they can see that it will make a

real difference to the delivery of genomic medicine. Therefore, the coding requirements were

driven by and designed to meet the brief of real-world genomics problems sourced from direct

interaction with clinical genetic scientists and were focussed on creating code to develop Var-

iantValidator. VariantValidator is a popular Open Source tool that helps scientists to accu-

rately describe genetic sequence variants using approved clinical nomenclature [6]. Aspects of

the code created by the students have been tidied up, documented, and integrated into the

VariantValidator. In addition, some students have been involved in ongoing work on the com-

munity-focussed VariantValidator project where their code will make a real difference in

genomic medicine. Students have the opportunity to learn how to maintain and evolve code in

a live development environment with expert guidance provided by the VariantValidator prod-

uct owners and administrators. Using this model, the students could see that their work, once

it reaches a certain standard, added to the clinical bioinformaticians toolkit via the VariantVa-

lidator utilities. This motivated the students hugely and is something that is now being devel-

oped for future cohorts to encourage engagement and to ensure the relevance and currency of

the course. It also encourages collaborative development and validation of a central resource

that can streamline healthcare practice, whereby healthcare scientists develop a single tool that

meets all their needs rather than locally focussed tools that meet the needs of a single hospital.

Such efficiencies will be essential in light of stretched healthcare budgets following the

COVID-19 pandemic.

Rule 7: Build in real-world problems and methods

We simulated real-world experience with the tools, platforms, and methods to provide a situ-

ated learning environment to encourage the use of current best practices for programming in

clinical bioinformatics. Clinical bioinformaticians, like many other software developers, will

not work in isolation but will work in teams, implementing agile software development, gener-

ating pipelines and software interfaces in collaboration with other members of the genetic

laboratories.

We drew on agile software development methodologies by delivering the team coding proj-

ects in sprints, which dealt with real-world genomics issues while developing their program-

ming skills. Sprints are short activities in a specified timeframe, which involve team members

working collaboratively on a defined goal provided by a customer or User Story [19]. They

have distinct phases starting with planning, working (or coding), reviewing, and reflecting

which results in a final iteration of the original goal. The course had 3 sprints that built on each

phase; for example, in sprint one, the students learnt how to collect data from remote applica-

tion programming interfaces (APIs), filtering the data and presenting only data relevant to the

end user in a flat text file. In sprint two, they learned how to build their own simple API so that

users could request data, such as had been generated in the previous sprint, and have the data

returned in standard computational formats such as JSON and XML, which can be read

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 6 / 11

https://doi.org/10.1371/journal.pcbi.1009184


directly into Python and used in clinical analysis pipelines. In sprint three, the students were

asked to reflect on user stories from practice they had submitted earlier in the course and

reflections from the work involved in the previous sprints to inspire the focus of their own

coding projects, which would be submitted as summative assessment.

The scenario for sprints one and two were delivered in a Jupyter notebook. The unit lead,

acting as the product owner, also wrote a preliminary set of requirements in Git Issues. The

real-world problem–based learning was sourced from user stories, captured from real-life

requests from clinical laboratories to develop the VariantValidator software. The requests were

developed into a set of requirements, which acted as the driver for the programming activities,

delivered by the product owner. To emulateAU : PleaseconfirmthattheeditstothesentenceToemulateareal � worldscenario; theproductowneriteratively:::didnotaltertheintendedthoughtofthesentence:a real-world scenario, the product owner itera-

tively changed these requirements throughout the life cycle of the programming project; stu-

dents therefore had to respond to these changes in an iterative manner and update their code.

By using these agile methods to drive and structure the learning, we could provide an immer-

sive environment underpinned with real-world programming problems. The phases of the

sprint also fitted neatly with the 3 self-regulated learning phases (forethought, performance

control, and self-reflection) to help develop the self-efficacy of the students [13].

Rule 8: Simulate a community of practice (CoP)

We tried to instil the principles of a community of practice (CoP) into the unit. A CoP is a pro-

fessional network that has established best practice, a collective ethos or culture and a need to

share knowledge and obtain support [20]. Encouraging a CoP in clinical bioinformatics educa-

tion through the use of problem-based learning has been something that we have been pursu-

ing as an institution for some time [9]. We wanted our students to benefit from establishing a

network, not only during the course but afterwards, when they could draw on their collective

knowledge and expertise.

We found that the group-based peer learning really did support the students because it gave

them an informal environment where they were comfortable expressing any issues and knew

they would receive support from their peers. The challenge was to provide students with suffi-

cient support to help deal with any issues they had and draw on the group work for support

while also having the autonomy to develop their individual problem-solving skills. This bal-

ancing act required significant resource both at the design stage, requiring additional materials

for different learner requirements, and during the delivery stage. During delivery, 2 facilitators

supporting the lecturers was sufficient to support around 30 students.

Group-based learning was optimised by embedding the educators directly into the CoP

within Slack, which meant that they could deal with technical issues arising in an asynchro-

nous fashion while fitting this around their own work commitments. Once issues had been

resolved, students were encouraged to feed back to the CoP. The educators also joined in with

the discussions ensuring an approachable demeanour. The students enjoyed these interactions

and were happy to engage with the educators, which facilitated effective social learning. The

unit lead and tutor also benefited from an opportunity to learn lessons from the facilitators

(such as technical knowledge), which could be incorporated into the design of the next run;

hence, the facilitators formed an active part of the community rather than steering discussions.

In terms of design, we ensured that more individual role-based activities were included

within the group work so students still had responsibilities they needed to fulfil as part of the

team. The students worked together in teams acting in various roles such as:

• project lead;

• programmers; and

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 7 / 11

https://doi.org/10.1371/journal.pcbi.1009184


• testers.

Each student performed one of these roles for each sprint with some trying all three. The

project overview was given to the students, and they began to work collaboratively to produce

a product based on a real-world scenario. As expected, the students began to construct a pro-

gramme based on this initial outline. The interactive social media environment allowed the

unit lead to act as the “product owner” and change the brief dynamically, introducing the con-

cepts of user-led agile development. We believe that this informal interaction with the students

was a key reason for the success of the unit.

Rule 9: Try a team-teaching approach

TeamAU : PleaseconfirmthattheeditstothesentenceTeamteachinghasbeenknowntoenergisestaffandencourage:::didnotaltertheintendedthoughtofthesentence:teaching has been known to energise staff and encourage improvements through shar-

ing ideas and drawing on different strengths as well as helping distribute work load across the

team [21]. The development team came from an interdisciplinary hub in the School of Health

Sciences in the Faculty of Biology, Medicine, and Health at The University of Manchester,

which was composed of people from a variety of backgrounds and specialisms [22]. The unit

lead is from a research background in genomics and bioinformatics, the unit tutor is from

technology-enhanced teaching and learning background, whereas the facilitators have been

students from a range of data science disciplines. This mix of skills, backgrounds, and expertise

contributed to the creativity in design and development of the materials, which included both

the design methods and the materials themselves. For example, instead of dry text–based

learning content to introduce the first coding activity, the team recorded a Zoom interview

with a clinical bioinformatician instead. Another example of having a multidisciplinary per-

spective can be seen in the assessment strategy of the course, which encouraged both assess-

ment “ofAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif of andforinthesentenceAnotherexampleofhavingamultidisciplinaryperspectivecanbeseen:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:” and “for” learning. Formative assessment was integral within the group work, both

through the discussions the learners were having with their peers during the sprints and within

the reflections post-sprint. The summative assessment then built on this activity in 3 ways:

• assessed discussion (20%) during the 10 weeks of the course;

• coding project (30%) submitted at the end of the course building on the final sprint; and

• reflective presentation (50%) submitted at the end of the course building on the sprint

reflections.

You can see that through the weightings that the coding was not the most important skill

set they needed to leave with. This decision was a product of our team-teaching approach,

which helped to create innovative materials to capture the interest of a diverse student

audience.

An additional benefit of instilling CoP-driven teaching has been that the students have

taken ownership of the evolution of the unit. By working in teams, students were able to iden-

tify areas of the teaching where the course material could be improved or additional material

could be provided to support their learning. To facilitate their ongoing learning, the students

wanted to be involved in the development of new material so we have established a cocreation

group to generate the material for the next run of the unit. This enables us to provide an envi-

ronment where students can develop teaching skills, which contribute to their ongoing devel-

opment since training is also a key aspect of a clinical bioinformatician’s role. We have also

invited the developer of another key clinical genomics tool, Leiden Open Variation Database

(LOVD) [23], to provide additional user stories so sprints can be updated to reflect the ever-

changing clinical genomics landscape. This provides teachers and students with the chance to

interact with the developers of tools used in clinical labs and the exchange of ideas informs

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 8 / 11

https://doi.org/10.1371/journal.pcbi.1009184


software development to meet the community need as well as inspiring updated teaching

material.

Rule 10: Facilitate the journey . . . well!

The role of peer-facilitators, who have recently been through some form of bioinformatics

education, has been shown to be effective in the delivery of bioinformatics education to illus-

trate the application of the discipline in practice, while also developing the mentoring and

teaching skills of the facilitators [8]. The courses benefited significantly from having knowl-

edgeable, well-organised, and helpful graduate student facilitators [5]. The facilitators were

available at a set time each week so students could ask questions and explore solutions with

them. They also flagged any struggling students to the educators so additional support could

be devoted to those who needed it. We trained our facilitators by asking them to test the mate-

rials, running a training session to set expectations, and giving them a facilitation guide that

included hints and tips and models for facilitation including Salmon’s E-moderating Frame-

work [8]. This model involves 5 stages starting with ensuring access and comfort with the envi-

ronment, building socialisation and information sharing with knowledge building, and ending

with development at the end of the process.

Another lesson learned from delivering the course has been the importance of giving clear

instructional content to support the learning journey. The course materials needed to provide

clear instructions, relevant signposting of resources, and guidance support, importantly before

coding begins to ensure that the students are comfortable with the materials. Delivery was

then facilitated by less formal interaction with the students using Slack, which encouraged

engagement and peer-to-peer conversation and support.

Discussion

The aim of the Introduction to Programming course was to simulate a real-world experience

by building a situated learning environment, within which students could learn current best

practices for programming in clinical bioinformatics. This was provided in a safe learning

environment providing the learners the space to fail and learn from their mistakes both indi-

vidually and as a team. Being immersed in this environment facilitated the codevelopment of

code, team-based discussion, and problem solving. The results of this original aim can be seen

from the 18 responses to the end of course surveys where the majority of students felt they had

the basics and were now looking forward to applying their skills further. In terms of Jupyter

Notebooks, the students recommended their use and liked how they built their understanding

and brought the programming concepts to life. The sprints and team-based working was a

highlight for nearly all the students, and the use of Slack was a resounding success, which is

reflected in the number of messages and resources shared.

From the results of the assessed discussion activities, it was evident that the students were

supporting each others’ learning, which helped instil principles of self-regulated learning to

advance their programming and develop problem-solving skills critical to effective future prac-

tice. This learning ethos ensured that the students were well positioned to progress as pro-

grammers through interacting with peers and sourcing code from community platforms such

as Stack Overflow [17]. Experienced facilitators were available asynchronously on Slack

throughout the course as well as synchronously at predefined intervals. This enabled agile and

adaptive support for the entire cohort, giving the educators the time to focus on supporting

those who were struggling.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 9 / 11

https://doi.org/10.1371/journal.pcbi.1009184


Conclusions

In order to continually improve the course, the cocreation project with students and multidis-

ciplinary experts from industry and higher education has recently begun. It will focus on col-

lating more practice-based user stories to encourage problem-solving skills and also have an

immediate use and impact on practice. Jupyter Notebooks are increasingly being used in

teaching, and the next step is to create a notebook wizard that will support other educators to

create Jupyter Notebooks for their teaching. This will help to ensure consistency, quality, and

reusability of the notebooks and also support other academic staff in building their awareness

and understanding of their application for computational skills-based learning.

References

1. Attwood TK, Blackford S, Brazas MD, Davies A, Schneider MV. A global perspective on evolving bioin-

formatics and data science training needs. Brief Bioinform [Internet]. 2019 [cited 2019 Aug 6]; 20

(2):398–404. Available from: www.biosciencecareers.org. https://doi.org/10.1093/bib/bbx100 PMID:

28968751

2. PG Cert Clinical Bioinformatics [Internet]. Available from: https://www.manchester.ac.uk/study/online-

blended-learning/courses/clinical-bioinformatics/.

3. STP Clinical Bioinformatics [Internet]. Available from: https://mahse.co.uk/our-programmes/

postgraduate/.

4. Carvalho-Silva D, Garcia L, Morgan SL, Brooksbank C, Dunham I. Ten simple rules for delivering live

distance training in bioinformatics across the globe using webinars [Internet]. Vol. 14. PLoS Comput

Biol. 2018. Available from: https://doi.org/10.1371/journal.pcbi.1006419 PMID: 30439935

5. Vygotsky LS. Tool and Symbol in Child Development. In: Mind in Society [Internet]. Harvard University

Press; 1980. p. 19–30. Available from: http://www.jstor.org/stable/10.2307/j.ctvjf9vz4.6.

6. Freeman PJ, Hart RK, Gretton LJ, Brookes AJ, Dalgleish R. VariantValidator: Accurate validation, map-

ping, and formatting of sequence variation descriptions. Hum Mutat [Internet]. 2018 Jan 1 [cited 2021

Mar 27]; 39(1):61–8. Available from: https://pubmed.ncbi.nlm.nih.gov/28967166/. https://doi.org/10.

1002/humu.23348 PMID: 28967166

7. Lambropoulos N, Zaphiris P. User-centered design of online learning communities [Internet]. User-Cen-

tered Design of Online Learning Communities. 2006 [cited 2021 Mar 26]. Available from: http://www.

idea-group.com.

8. Salmon G. E-moderating: the key to the future of online teaching and learning [Internet]. E-Moderating.

2013 [cited 2021 Mar 27]. Available from: https://www.routledge.com/E-Moderating-The-Key-to-Online-

Teaching-and-Learning/Salmon/p/book/9780415881746.

9. Davies A.C., Harris D., Banks-Gatenby A., Brass A. Problem-based learning in clinical bioinformatics

education: Does it help to create communities of practice? PLoS Comput Biol [Internet]. 2019. Available

from: https://doi.org/10.1371/journal.pcbi.1006746 PMID: 31246944

10. Mishra P, Koehler MJ. Technological pedagogical content knowledge: A framework for teacher knowl-

edge. Vol 108, Teachers College Record. 2006.

11. Laurillard D. Teaching as a design science: Building pedagogical patterns for learning and technology

[Internet]. Teaching as a Design Science: Building Pedagogical Patterns for Learning and Technology.

2012 [cited 2021 Mar 27]. 1–258 p. Available from: https://www.routledge.com/Teaching-as-a-Design-

Science-Building-Pedagogical-Patterns-for-Learning/Laurillard/p/book/9780415803878.

12. Sternberg RJ. The psychology of problem solving. The Psychology of Problem Solving. 2003.

13. Ally M. FOUNDATIONS OF EDUCATIONAL THEORY FOR ONLINE LEARNING.

14. Slack—what is a channel [Internet]. Available from: https://slack.com/intl/en-gb/help/articles/

360017938993-What-is-a-channel.

15. GitHub [Internet]. Available from: https://github.com/i3hsInnovation.

16. DaviesA HF, Causey-Freeman P, EleftheriouI, Moulton G. Using interactive digital notebooks for biosci-

ence and informatics education. PLoS Comput Biol [Internet]. 2020; 16(11). Available from. https://doi.

org/10.1371/journal.pcbi.1008326.g002.

17. Stack Overflow. Available from: https://stackoverflow.com/.

18. Rule A, Birmingham A, Zuniga C, Altintas I, Huang S-C, Knight R, et al. Ten simple rules for writing and

sharing computational analyses in Jupyter Notebooks. Lewitter F, editor. PLoS Comput Biol [Internet].

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 10 / 11

http://www.biosciencecareers.org
https://doi.org/10.1093/bib/bbx100
http://www.ncbi.nlm.nih.gov/pubmed/28968751
https://www.manchester.ac.uk/study/online-blended-learning/courses/clinical-bioinformatics/
https://www.manchester.ac.uk/study/online-blended-learning/courses/clinical-bioinformatics/
https://mahse.co.uk/our-programmes/postgraduate/
https://mahse.co.uk/our-programmes/postgraduate/
https://doi.org/10.1371/journal.pcbi.1006419
http://www.ncbi.nlm.nih.gov/pubmed/30439935
http://www.jstor.org/stable/10.2307/j.ctvjf9vz4.6
https://pubmed.ncbi.nlm.nih.gov/28967166/
https://doi.org/10.1002/humu.23348
https://doi.org/10.1002/humu.23348
http://www.ncbi.nlm.nih.gov/pubmed/28967166
http://www.idea-group.com
http://www.idea-group.com
https://www.routledge.com/E-Moderating-The-Key-to-Online-Teaching-and-Learning/Salmon/p/book/9780415881746
https://www.routledge.com/E-Moderating-The-Key-to-Online-Teaching-and-Learning/Salmon/p/book/9780415881746
https://doi.org/10.1371/journal.pcbi.1006746
http://www.ncbi.nlm.nih.gov/pubmed/31246944
https://www.routledge.com/Teaching-as-a-Design-Science-Building-Pedagogical-Patterns-for-Learning/Laurillard/p/book/9780415803878
https://www.routledge.com/Teaching-as-a-Design-Science-Building-Pedagogical-Patterns-for-Learning/Laurillard/p/book/9780415803878
https://slack.com/intl/en-gb/help/articles/360017938993-What-is-a-channel
https://slack.com/intl/en-gb/help/articles/360017938993-What-is-a-channel
https://github.com/i3hsInnovation
https://doi.org/10.1371/journal.pcbi.1008326.g002
https://doi.org/10.1371/journal.pcbi.1008326.g002
https://stackoverflow.com/
https://doi.org/10.1371/journal.pcbi.1009184


2019 Jul 25 [cited 2019 Aug 12]; 15(7):e1007007. Available from: http://dx.plos.org/10.1371/journal.

pcbi.1007007. https://doi.org/10.1371/journal.pcbi.1007007 PMID: 31344036

19. Agile Alliance—user stories [Internet]. Available from: https://www.agilealliance.org/glossary/user-

stories/.

20. Wenger E. Communities of Practice: Learning as a Social System. 2008.

21. Catherine Minett-Smith Carole L. Davis. Widening the discourse on team-teaching in higher education.

Teach High Educ Crit Perspect [Internet]. 2019 Feb 14; 25(5). Available from: https://www.tandfonline.

com/action/journalInformation?journalCode=cthe20.

22. i3hs Hub [Internet]. Available from: https://sites.manchester.ac.uk/i3hshub/.

23. Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. LOVD v.2.0: the

next generation in gene variant databases. Hum Mutat [Internet]. 2011 May; 32(5):557–63. Available

from: http://doi.wiley.com/10.1002/humu.21438. PMID: 21520333

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009184 August 5, 2021 11 / 11

http://dx.plos.org/10.1371/journal.pcbi.1007007
http://dx.plos.org/10.1371/journal.pcbi.1007007
https://doi.org/10.1371/journal.pcbi.1007007
http://www.ncbi.nlm.nih.gov/pubmed/31344036
https://www.agilealliance.org/glossary/user-stories/
https://www.agilealliance.org/glossary/user-stories/
https://www.tandfonline.com/action/journalInformation?journalCode=cthe20
https://www.tandfonline.com/action/journalInformation?journalCode=cthe20
https://sites.manchester.ac.uk/i3hshub/
http://doi.wiley.com/10.1002/humu.21438
http://www.ncbi.nlm.nih.gov/pubmed/21520333
https://doi.org/10.1371/journal.pcbi.1009184

