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Abstract 
Despite their importance in determining the dosing regimen of drugs in the clinic, only a few studies have investigated meth-
ods for predicting blood-to-plasma concentration ratios (Rb). This study established an Rb prediction model incorporating 
typical human pharmacokinetics (PK) parameters. Experimental Rb values were compiled for 289 compounds, offering 
reliable predictions by expanding the applicability domain. Notably, it is the largest list of Rb values reported so far. Sub-
sequently, human PK parameters calculated from plasma drug concentrations, including the volume of distribution (Vd), 
clearance, mean residence time, and plasma protein binding rate, as well as 2702 kinds of molecular descriptors, were used 
to construct quantitative structure–PK relationship models for Rb. Among the evaluated PK parameters, logVd correlated 
best with Rb (correlation coefficient of 0.47). Thus, in addition to molecular descriptors selected by XGBoost, logVd was 
employed to construct the prediction models. Among the analyzed algorithms, artificial neural networks gave the best results. 
Following optimization using six molecular descriptors and logVd, the model exhibited a correlation coefficient of 0.64 and 
a root-mean-square error of 0.205, which were superior to those previously reported for other Rb prediction methods. Since 
Vd values and chemical structures are known for most medications, the Rb prediction model described herein is expected 
to be valuable in clinical settings.
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Introduction

Blood-to-plasma ratio (Rb) is defined as Cb (blood con-
centration of compound) / Cp (plasma concentration of 
compound). It is an important clinical parameter for cal-
culating pharmacokinetic (PK) parameters based on blood 
concentrations from those based on plasma concentrations. 
For example, in the case of doripenem, which shows Rb 
value of 0.5 due to almost no distribution in blood cells, 
doripenem exposure calculated from plasma is twice the 
exposure calculated from blood [1]. By contrast, in the 
case of butorphanol, which shows Rb value of approxi-
mately 2 to be concentrated in blood cells, butorphanol 
exposure calculated from plasma is half the exposure cal-
culated from blood [2]. Therefore, exposure-related PK 
parameters such as clearance (CL) can deviate signifi-
cantly from their blood-based and plasma-based values, 
depending on the Rb. To estimate these PK parameters 
accurately and determine the suitable dosing regimen in 
drug therapy, the use of these PK parameters calculated 
from drug concentrations in the blood is important. How-
ever, the PK parameters are typically calculated from 
plasma drug concentrations rather than blood. For pre-
cise PK calculations, these parameters must be converted 
to blood-derived values by Rb. Regrettably, the number 
of drugs for which experimental Rb values have been 
reported is limited; therefore, clinicians must often make 
a rough approximation, e.g., by assuming that Rb = 1 [3, 
4]. However, this assumption’s rationale is not clear, and 
the analyses using this value can be inaccurate.

Quantitative structure–pharmacokinetic relationships 
(QSPkR) are mathematical approaches for predicting 
PK parameters based on molecular structures. A num-
ber of examples of QSPkR methods have been reported 
for predicting human PK parameters (e.g., CL, Vd, mean 
residence times [MRT]) and in vitro parameters (e.g., 
solubility, metabolic stability, plasma protein binding 
[PPB]) [5–12]. Determination of Rb is challenging as it 
involves consideration of the relationships between mul-
tiple protein factors, such as the ones between plasma 
proteins and blood cell binding [13]. QSPkR is a useful 
approach for modeling these complex relationships and 
predicting Rb. However, to the best of our knowledge, to 
date, only one study involved the prediction of human Rb 
based on QSPkR. Paixão et al. used a dataset of 93 drugs 
for constructing Rb prediction models based on artificial 
neural networks (ANN) [14]. They established a regres-
sion model with 74 compounds and subsequently evalu-
ated the prediction model using 19 compounds. However, 
the number of employed compounds was lower than in 
other QSPkR models [6, 8, 11, 12, 15]. Thus, the avail-
able chemical space might be limited. In this study, we 

used 289 compounds for model construction and evalua-
tion. Notably, this is the largest dataset for Rb prediction 
reported to date. In addition to PPB used by Paixão et al., 
there are other important clinical PK parameters, including 
Vd, CL, and MRT. These clinical PK parameters are avail-
able for almost all medications used in the clinic. Because 
these clinical PK parameters calculated from plasma drug 
concentrations are Rb-dependent variables, they could be 
used to predict Rb. The aim of the current study was to 
build an accurate Rb prediction model to enable precise 
dosage determination during drug therapy. To achieve 
this, we attempted to improve the regression model for 
Rb using 289 compounds and human PK parameters along 
with molecular descriptors.

Methods

Data collection and handling

To create the database, we collected human Rb and PPB data 
from an in-house database as well as from various articles. 
Additionally, human intravenous CL and Vd data were col-
lected from previous publications and are summarized in 
Tables S1 and S2. To select PK parameters for Rb prediction 
models, a complete dataset of 270 compounds (Rb, PPB, 
Vd, CL, and MRT) was prepared (Table S1). In addition, we 
obtained data of 20 compounds, (Supplementary Table S2) 
for building Rb models (Table S2). In total, 289 compounds 
were included, while carboplatin was excluded from model 
building (refer to the “calculation of chemical descriptors” 
section). According to a previous study, in this work, we 
used compounds with Rb of < 2.0 [16]. Logarithmically 
transformed (log) Rb values were used for the prediction.

Calculation of chemical descriptors

The structural data for each drug were obtained from 
PubChem (PubChem, https​://pubch​em.ncbi.nlm.nih.gov/) 
and DRUGBANK (DRUGBANK, https​://www.drugb​ank.
ca/) (Tables S1 and S2). The structural data for water mol-
ecules and counter ions were eliminated by processing of 
disposal salts. Subsequently, the 3D structure of each drug 
was optimized using “Rebuild 3D,” and the force field calcu-
lations (amber-10: EHT) were conducted in Molecular Oper-
ating Environment (MOE) version 2018.0101 (MOLSIS 
Inc., Tokyo, Japan). Structural descriptors were calculated 
employing MOE and Dragon 7.0 (Kode Srl., Pisa, Italy). 
Because some descriptors of carboplatin, which contains 
platinum, could not be calculated, the drug was excluded 
from building the Rb prediction models. Overlapped and 
highly correlated (R > 0.99) descriptors as well as those with 

https://pubchem.ncbi.nlm.nih.gov/
https://www.drugbank.ca/
https://www.drugbank.ca/
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constant or missing values were removed. In total, 1777 
descriptors were selected for further analysis.

Measurement of PPB

Pooled human plasma was obtained from heparinized blood 
from nine to ten healthy volunteers not medicated for at least 
seven days. The human blood collection and PPB experi-
mental protocols were approved by the Ethical Review 
Committee of Japan Tobacco Inc, Central Pharmaceutical 
Research Institute. Informed consent was obtained from 
all subjects, and the PPB experiments were conducted in 
accordance with the Ethical Guidelines for Medical and 
Health Research Involving Human Subjects. Binding of 
compounds to plasma protein was evaluated by equilibrium 
dialysis utilizing a 96-well equilibrium dialysis unit and 
HTD96b dialysis membrane strips with a molecular cutoff 
of 12–14 kDa (HTDialysis, Gales Ferry, CT, USA). Plasma 
containing the compounds (final concentration of 5 µM) 
and buffer (Dulbecco’s phosphate-buffered saline; Thermo 
Fisher Scientific, Waltham, MA) were added into the donor 
and receiver cells, respectively. Following dialysis for 5 h at 
37 °C, the concentrations of the compounds in the plasma 
and buffer were determined by liquid chromatography–tan-
dem mass spectrometry (LC–MS/MS) (Acquity™ Ultra Per-
formance LC I-Class and Xevo TQ-S; Waters, Milford, MA). 
The percentage of free fraction (fu) was calculated according 
to the following equation [17]:

Measurement of Rb

Heparinized blood was collected from three to seven 
healthy volunteers not medicated for at least seven days. 
Human blood collection and Rb experimental protocols 
were approved by the Ethical Review Committee of Japan 
Tobacco Inc, Central Pharmaceutical Research Institute. 
Informed consent was obtained from all subjects and the 
Rb experiments were conducted in accordance with the Ethi-
cal Guidelines for Medical and Health Research Involving 
Human Subjects. The blood was spiked with the compounds 
(final concentration of 5 µM) and incubated at 37 °C for 
30 min. Following incubation, the samples were centrifuged 
at 5000 rpm for 5 min to obtain plasma. Subsequently, the 
concentrations of the compounds in the plasma were deter-
mined by LC–MS/MS using the same method as described 
for the measurement of PPB. Rb was calculated according to 
Eq. (2). The measured hematocrit values ranged from 0.45 
to 0.46.

(1)

Free fraction (fu, %) =
Concentration of buffer

Concentration of plasma
× 100

Calculation of MRT

The MRT values of the compounds were calculated by a 
noncompartment model using the following equation [18]:

Selection of PK parameters for Rb prediction models

To select appropriate PK parameters for the Rb prediction 
models, correlation analysis was performed using correla-
tion coefficients between log human Rb and the PK param-
eters for selection (original or log) employing the JMP® Pro 
software 14.3.0 (SAS Institute Inc., Cary, NC, USA). PK 
parameters were chosen based on the R values.

Selection of molecular descriptors

We reduced the size of descriptors because 1777 molec-
ular descriptors are very large compared to the train-
ing data and reduce the amount of calculation. To select 
an algorithm for calculating the importance of descrip-
tors, Rb prediction models were constructed using logVd 
and 1777 different molecular descriptors. Pipeline Pilot 
2019 RRID:SCR_014917 (DASSULT SYSTEMS, https​://
www.3dsbi​ovia.com/produ​cts/colla​borat​ive-scien​ce/biovi​
a-pipel​ine-pilot​/) was employed to build Rb models using 
support vector regression (SVR), random forest, XGBoost, 
and genetic algorithm–multiple linear regression (GA-MLR) 
with hyper-parameters (Table S3 a–d). Following fivefold 
cross-validation, the algorithms were selected based on the 
results of internal validation using R values and root-mean-
square errors (RMSE [log]) (4) as evaluation scores.

For the molecular descriptors selection, Gain, an index of 
importance for XGBoost, was calculated. After calculating 
Gain, logVd and 140 molecular descriptors were selected, 
and the number of molecular descriptors was then reduced 
to 100 based on this Gain.

Separation of compounds into training and test sets 
and their verification by chemical space analysis

After sorting based on Rb, the compounds in the dataset were 
separated randomly into a training set and a test set at a ratio 

(2)Rb =
Initial blood concentration

Drug concentration in plasma

(3)MRT (hr) =
Vd(L∕kg)

CL(L∕hr∕kg)

(4)RMSE(Log) =

�∑
(log predicted − log observed)2

n

https://www.3dsbiovia.com/products/collaborative-science/biovia-pipeline-pilot/
https://www.3dsbiovia.com/products/collaborative-science/biovia-pipeline-pilot/
https://www.3dsbiovia.com/products/collaborative-science/biovia-pipeline-pilot/
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of 2:1. To investigate applicability domain, 11 molecular 
parameters were used as reported previously [19] with JMP 
Pro PCA (Principal component analysis) [19]. The parameters 
included molecular weight, SlogP (log octanol/water partition 
coefficient), topological polar surface area (TPSA), h_logD 
(octanol/water distribution coefficient [pH = 7]), h_pKa (acid-
ity [pH = 7]), h_pKb (basicity [pH = 7]), a_acc (number of 
H-bond acceptor atoms), a_don (number of H-bond donor 
atoms), a_aro (number of aromatic atoms), b_ar (number of 
aromatic bonds), and b_rotN (number of rotatable bonds). The 
principal components were calculated from 1 to 3.

Construction of Rb models

Pipeline Pilot 2019 was employed to construct the Rb mod-
els using SVR, random forest, XGBoost, and GA-MLR 
with hyper-parameters (Table S3 a–d). JMP Pro was used to 
construct the Rb models using ANN with hyper-parameters 
(Table S3 e). Ten models with different random seeds were 
constructed, and the mean of predicted value was calcu-
lated. Evaluation scores were calculated based on the mean 
of predicted value. In each model, logVd and 100 molecular 
descriptors, which were selected based on Gain calculated 
by XGBoost, were used. For all algorithms, fivefold cross-
validation was implemented.

Investigation of the effect of incorporation of Vd 
on the performance of the models

To establish the impact of Vd on the performance of the 
models, models based on SVR, random forest, XGBoost, 
GA-MLR, and ANN were constructed with and without Vd. 
Moreover, the effect of reducing the number of molecular 
descriptors was examined using ANN. Ten models with differ-
ent random seeds were constructed and the mean of predicted 
value was calculated. Evaluation scores were calculated based 
on the mean of predicted value.

Assessment of prediction accuracy

The correlation between the predicted and observed values 
was determined based on the correlation coefficient (R). The 
predictability of the models with respect to individual drugs 
was evaluated based on the fold error calculated using the fol-
lowing equations:

(5)Fold error =
predicted value

observed value
(predicted > observed)

(6)Fold error =
observed value

predicted value
(observed > predicted)

The overall predictability of each model was assessed 
using the average fold error (AFE), RMSE, and the mean 
absolute error (MAE), which were calculated according to 
the following equations:

where n refers to the number of evaluated compounds.
Moreover, percentage of values within a 1.25-fold 

change was also determined for comparative assessment 
of predictability.

Results

PK parameters selected for constructing Rb models

The constructed dataset included human PPB, CL, Vd, 
MRT, and Rb. Both logarithmic and original values of 
all parameters were considered. Notably, the dataset of 
270 compounds with no missing values of the selected PK 
parameters and logVd gave the best result (R = 0.47) in 
the correlation analysis with a statistically significant dif-
ference (Table 1, Fig. S1). This indicated that logVd was 
the most important among the four evaluated parameters.

(7)AFE = 10

∑
logfold error

n

(8)RMSE =

�∑
(predicted − observed)2

n

(9)MAE =

∑
�predicted − observed�

n

Table 1   Correlations between Rb and 4 pharmacokinetics (PK) 
parameters

(Logarithmically [log] transformed or not [-]) (n  =  270)
Clearance (CL), volume of distribution (Vd), mean resistance time 
(MRT), free fraction plasma protein binding (fp)
p-values were calculated based on analysis of variance

PK parameter Transformation R p-value

Vd log 0.47  < 0.0001
fp log 0.42  < 0.0001
fp – 0.35  < 0.0001
CL log 0.30  < 0.0001
CL – 0.25  < 0.0001
Vd – 0.25  < 0.0001
MRT log 0.16 0.008
MRT – 0.03 0.5939
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Selection of molecular descriptors

A dataset containing logRb, logVd, and 1777 differ-
ent molecular descriptors was constructed. To select an 
algorithm for the calculation of importance of molecular 
descriptors, models using SVR, random forest, XGBoost, 
and GA-MLR were built employing the dataset, and five-
fold cross-validation was applied. The internal validation 
results are summarized in Table 2. Since XGBoost exhib-
ited the best score (R = 0.615 and RMSE (log) = 0.102) 
among 4 algorithms, it was chosen for the calculation of the 
importance of 1777 molecular descriptors. LogVd and 140 
molecular descriptors were selected based on gain calculated 
by XGBoost (Table S4).

Separation of compounds into training and test sets 
and their verification by chemical space analysis

Principal component analysis (PCA) was performed using 
a dataset of 289 compounds with 11 representative molecu-
lar descriptors to confirm the correctness of the compound 
separation. It was previously reported that PCA could show 
an applicability domain [20]. Component one, two, and three 
explained 34.4%, 26.1%, and 12.5% of the variance, respec-
tively. Figure 1 suggests that the compounds were effectively 
separated into the training and test sets.

Construction of the Rb prediction models using Vd 
and 100 selected molecular descriptors

The Rb prediction models were constructed using logVd and 
selected top 100 molecular descriptors (Table S4) by SVR, 
random forest, XGBoost, GA-MLR, and ANN. Table 3 
shows the evaluation scores of the external validation set 
for each algorithm with original Rb. RMSE was calculated 
according to Eq. (8). The results demonstrated that ANN 
was the best algorithm for the Rb prediction model among 5 
algorithms, and the scores were as follows: RMSE = 0.213, 
R = 0.605, AFE = 1.186, %inside 1.25-fold = 71.9%, and 
MAE = 0.158.

Construction of the Rb prediction models using 100 
selected molecular descriptors

To examine the effect of incorporation of Vd, we con-
structed the Rb models without this parameter using SVR, 
random forest, XGBoost, GA-MLR, and ANN. For ANN, 
the evaluation scores of the external validation set were as 
follows: RMSE = 0.226, R = 0.537, AFE = 1.198, %inside 
1.25-fold = 67.7%, and MAE = 0.165. These outcomes sug-
gested that the Rb prediction models using Vd were better 

Table 2   Comparison of algorisms for selection of molecular descrip-
tors in the internal validation set

a R and RMSE were calculated using logarithmically transformed 
human Rb
b RMSE were calculated using Eq. (4)

Random Forest XGBoost SVR GA-MLR

Ra 0.592 0.615 0.531 0.579
RMSE (log)b 0.105 0.102 0.110 0.106

Fig. 1   Three-component principal component analysis (PCA) score 
plots based on 11 representative molecular descriptors (n = 289). a 
Score plot of PCA1 (34.4%) and PCA2 (26.1%). The horizontal axis 
indicates the first principal component, while the vertical axis refers 
to the second principal component. b Score plot of PCA1 (34.4%) 
and PCA3 (12.5%). The horizontal axis indicates the first principal 
component, while the vertical axis refers to the third principal com-
ponent. c Score plot of PCA2 (26.1%) and PCA3 (12.5%). The hori-
zontal axis indicates the second principal component, while the verti-
cal axis refers to the third principal component. Each dot represents a 
compound; black circle is the training set (n = 193), whereas the red 
circle is the test set (n = 96)
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than those without the parameter. Other models showed 
comparable results (Table 4).

Optimization of the number of molecular 
descriptors

The number of molecular descriptors was optimized by 
gradually reducing it from 50 to 3 with or without Vd using 

ANN. Table 5 shows the evaluation scores of the external 
validation results in the optimization process. The results 
indicated that the Rb prediction models with Vd were bet-
ter than those without Vd. The Rb prediction model with 
Vd and six molecular descriptors exhibited RMSE = 0.205, 
R = 0.641, AFE = 1.170, %inside 1.25-fold = 74.0%, and 
MAE = 0.144 (Fig. 2). Notably, these scores were better than 
those for the model with Vd and 100 molecular descriptors.

Discussion

In the clinic, Rb is an important variable for the calculation 
of PK parameters based on blood concentrations from those 
based on plasma concentrations. When Rb of a compound is 
not available, it is generally assumed to be 1. Other assump-
tions consider ionization of compounds, i.e., Rb is assumed 
to be 1 for neutral and basic compounds, while for acidic 
compounds Rb = 0.55 [21, 22]. Nonetheless, this assump-
tion is occasionally inaccurate; therefore, the development 
of Rb prediction methods optimized for each compound 
is essential. One study described an Rb prediction model 
constructed using 74 compounds for train, 19 compounds 
for internal validation, 7 compounds for external validation, 
human PPB data, and ten molecular descriptors based on 
ANN [14]. However, the number of compounds is small and 
does not fill a large chemical space. Also, due to the small 
number of external validation, it has not been sufficiently 
validated. For this reason, we acquired experimental data 
and increased training data. Hence, in the current study, we 
built Rb prediction models using a larger number of com-
pounds and investigated the correlation between various 
PK parameters and Rb. This model may be a more reliable 
prediction model than the previous one because it covers a 
larger chemical space, which is considered a limitation of 
the current condition. According to previous reports, com-
pounds with Rb < 2 were included in the analysis [14, 16].

Due to their availability, we selected in vivo human PK 
parameters (i.e., CL, Vd, and MRT) for the Rb prediction 
models. Moreover, as Paixão selected PPB for their Rb 

Table 3   Evaluation of effect of incorporation of volume of distribu-
tion (Vd) (with Vd) in the external validation set

Original Rb values were used
The number of molecular descriptors: 100
The ANN evaluation scores were calculated from the average of each 
predicted value calculated by 10 different random seed conditions

ANN Random 
forest

XGBoost SVR GA-MLR

RMSE 0.213 0.221 0.218 0.216 0.222
R 0.605 0.562 0.578 0.5989 0.559
AFE 1.186 1.191 1.190 1.197 1.189
% inside 

1.25-fold
71.9 70.8 68.8 67.7 72.9

MAE 0.158 0.159 0.159 0.160 0.156

Table 4   Evaluation of the effect of incorporation of volume of distri-
bution (Vd) (without Vd) in the external validation set

Original Rb values were used
The number of molecular descriptors: 100
The ANN evaluation scores were calculated from the average of each 
predicted value calculated by 10 different random seed conditions

ANN Random forest XGBoost SVR GA-MLR

RMSE 0.226 0.230 0.238 0.223 0.241
R 0.537 0.511 0.460 0.552 0.433
AFE 1.198 1.198 1.212 1.205 1.225
% inside 1.25-

fold
67.7 67.7 64.6 67.7 59.4

MAE 0.165 0.164 0.176 0.166 0.181

Table 5   External validation 
results in optimization process 
of the number of molecular 
descriptors

MD: molecular descriptor
The evaluation scores were calculated from the average of each predicted value calculated by 10 different 
random seed conditions

Number of MD 50 25 12 6 3

Human Vd  +  –  +  –  +  –  +  –  +  –

RMSE 0.216 0.235 0.213 0.227 0.213 0.237 0.205 0.231 0.224 0.243
R 0.589 0.480 0.607 0.532 0.605 0.465 0.641 0.506 0.547 0.415
AFE 1.189 1.209 1.186 1.205 1.177 1.209 1.170 1.208 1.174 1.208
% inside 1.25-fold 64.6 65.6 67.7 69.8 74.0 62.5 74.0 64.6 72.9 68.8
MAE 0.161 0.172 0.158 0.168 0.150 0.172 0.144 0.169 0.147 0.171
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prediction model, the parameter was also included in the 
analysis conducted herein. Correlation analysis was per-
formed between Rb and four parameters (i.e., PPB, CL, 
Vd, and MRT). Among these parameters, logVd showed 
the highest correlation (R = 0.47) (Table 1, Fig. S1). Thus, 
we selected logVd for the construction of the Rb prediction 
models. Some reports indicated that Rb might be related 
to Vd. Hinderling found that unbound in vivo steady-state 
Vd correlated with in vitro red blood cells in terms of the 
plasma water partition coefficients [13]. It is known that 
acidic phospholipids are components of the plasma mem-
brane and bind to basic compounds. It is noteworthy that 
the amount of acidic phospholipids in the muscle is similar 
to that in the blood cells [23]. Since the muscle is one of 
the tissues with the largest volume in humans, the relation-
ship between Rb and Vd was suggested in previous studies 
[23, 24]. Rodgers reported that the electrostatic interactions 
between drugs and blood cell acidic phospholipids must be 
considered to improve the prediction accuracy of drug dis-
tribution to organs [25]. It was suggested that Rb was related 
to Vd of basic drugs. In contrast, acidic compounds tend to 
bind to albumin, which is the most abundant plasma compo-
nent. Thus, it is considered that the PPB affects Rb and Vd. 
These findings also indicate that Vd might be related to Rb 
both in the case of basic and acidic compounds. Notably, this 
study is the first to use Vd for Rb prediction.

We used MOE and Dragon software to calculate the 
molecular descriptors. Consequently, 2702 molecular 
descriptors were calculated for each compound (Dragon: 
2185 descriptors [descriptors with constant values were 
excluded], MOE: 517 descriptors). Because the number 
of descriptors was larger than the number of compounds, 
we screened out a selection of the descriptors. In the first 
instance, we excluded descriptors with constant or missing 
values as well as those highly correlated (R > 0.99) to other 
descriptors. In total, 1777 descriptors were selected. We 

subsequently constructed Rb prediction models using logVd 
and 1777 descriptors. Algorithms were selected for the cal-
culation of the importance of molecular descriptors. Based 
on the internal validation results, we selected XGBoost, 
which exhibited the highest R (0.615) and the lowest RMSE 
(log) (0.102) (Table 2). XGBoost is considered as a valuable 
algorithm [26], which can be employed for the construction 
of prediction models and visualization of the importance of 
variables. In this work, logVd and 140 molecular descrip-
tors with high importance (determined based on Gain) were 
selected by XGBoost. Intriguingly, logVd was selected as 
the most important parameter for the Rb prediction. We then 
selected the top 100 important molecular descriptors to con-
struct the Rb models (Table S4).

The compounds were separated into the training and test 
sets for the construction and subsequent verification of the 
prediction models. To ensure unbiased segregation, the PCA 
analysis was conducted based on 11 representative molecu-
lar descriptors, which are generally considered important for 
synthetic expansion [19, 20]. As shown in Fig. 1, the separa-
tion was well balanced and the cumulative contribution ratio 
of PCA from 1 to 3 was 72.6%. These results showed similar 
trends when PCA was performed with 100 descriptors in the 
model (Fig. 3S).

To select suitable algorithms for the Rb prediction mod-
els, the models were constructed using SVR, random for-
est, XGBoost, GA-MLR, and ANN with logVd and 100 
selected molecular descriptors. ANN showed the best score 
(R = 0.605 and RMSE = 0.213) among 4 algorithms in the 
external validation set (Table 3). Interestingly, ANN was 
also selected for Rb prediction in a previous report [14]. To 
evaluate the effect of Vd, we constructed prediction models 
using 100 descriptors without logVd (Table 4). All evalua-
tion scores became worse, implying that Vd was important 
parameter to construct accurate Rb prediction models.

Furthermore, to construct Rb prediction models using 
fewer descriptors, we reduced the number of molecular 
descriptors from 100 to 3. Pleasingly, as demonstrated in 
Table 5, the Rb prediction model with logVd and six molec-
ular descriptors exhibited similar or better scores (R = 0.641 
and RMSE = 0.205) to that of a model using logVd and 100 
descriptors in the external validation set (Fig. 2). Uchimura 
reported an Rb prediction method using rat Rb and human 
PPB with 58 compounds, which showed an R value of 0.603 
[16]. The model developed in this study using the test set 
(96 compounds) did not contain any Rb-related data and 
showed almost the same R value (0.641) as Uchimura’s 
model. Paixão determined that in their Rb model, the per-
centage of predicted values within a 1.25-fold limit was 84% 
(out of 19 compounds) [14]. However, Paixão’s group used 
early stopping based on the RMSE of the test set, indicat-
ing that their test set might be an internal validation set. 
Paixão also performed external validation; however, the 

Fig. 2   Scatter plot of the training and test sets. The horizontal axis 
indicates the predicted Rb, while the vertical axis refers to the 
observed Rb. Each dot represents a compound; black circle is the 
training set (n = 193), whereas the red circle is the test set (n = 96). 
The solid line represents unity
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validation set consisted of just seven compounds [14]. In 
contrast, our test set was an external validation set, which 
contained a larger number of compounds. Hence, accurate 
comparison of our results with the outcomes of other studies 
was challenging. In this work, we constructed an Rb model 
with Vd and six molecular descriptors by ANN based on a 
flow chart of the model construction (Fig. 3). Importantly, 
this Rb model was better than that obtained by assuming 
Rb = 1 (RMSE = 0.288), and the number of descriptors in 
our model was lower than in Paixão’s Rb model (PPB and 
ten molecular descriptors).

As shown in Table 6, six molecular descriptors were 
selected in the final Rb prediction model. Among these six 
molecular descriptors, MATS1i and ASA- were related to 
compound ionization or partial charge. Paixão et al. also 
used ionization-related parameters, including pKabase and 
pKaacid [14]. Hence, molecular descriptors related to com-
pound ionization or partial charge were selected in both 
models. Since mainly non-ionized compounds can penetrate 

blood cells, it is considered that Rb is affected by compound 
ionization and partial charge. In addition to compound 
ionization parameters, our model contained lipophilicity 
parameters (e.g., SlogP_VSA9). The Rb model developed 
by Paixão et al. did not consider LogP/D-related param-
eters, and PPB was used instead. Because PPB is related 
to LogD/P [27, 28], PPB might include LogP/D effects. 
Fagerholm investigated the correlation between LogD and 
Rb using 48 compounds and established the lack of direct 
correlation between them [29]. Accordingly, Uchimura 
reported similar results [16]. In the present study, no direct 
correlation was found between SlogP_VSA9 and Rb (Fig. 
S2). However, SlogP_VSA9 was selected by XGBoost 
based on the importance (Gain) for Rb prediction. Since 
XGBoost is a non-linear algorithm, the existence of an indi-
rect correlation between LogP/D and Rb was suggested. Rb 
is related not only to the penetration into blood cells but 
also to PPB. Moreover, both processes are related to LogP/D 
[30]. Although no direct correlation between Rb and LogP/D 

Fig. 3   Flowchart of the modeling process for Rb prediction

Table 6   Details of 6 molecular 
descriptors in Rb prediction 
models

Descriptor Software to calculate molecular 
descriptor

Descriptions

ASA- MOE Descriptor related electrostatic properties
pmi MOE Principal moment of inertia
h_logS MOE Log solubility in water
SlogP_VSA9 MOE Descriptor related LogP and molecular size
MATS1i Dragon Descriptor related electrostatic properties
h_pstates MOE The entropic count or fractional number of 

protonation states
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was indicated, the existence of a more complex correlation 
between the parameters is possible.

In clinical practice involving drug treatment, the human 
Vd values of compounds are generally known. Nevertheless, 
as previously mentioned, since the experimental values of 
Rb are often unknown, to predict drug blood levels, Rb is 
often assumed to be 1 or 0.55 [3, 4, 31, 32]. Such assump-
tions are typically made in the prediction of the effect of 
blood concentration on drug–drug interactions, population 
PK, and special populations. As some compounds exhibit a 
narrow safety margin, accurate prediction of blood concen-
trations is important to prevent the occurrence of adverse 
effects. Instead, of using constants, appropriate Rb values 
should be considered for each drug. The Rb prediction 
method described herein can be employed for the predic-
tion of Rb using six descriptors and human Vd. Thus, our 
model enables accurate prediction of blood concentrations 
when experimental Rb values are not available.

Conclusions

The present study found that Vd is an important parameter 
for constructing Rb prediction models. An Rb model was 
constructed using a combination of descriptors (Vd and six 
molecular descriptors) based on ANN. In a clinical setting, 
the Vd values of drugs are typically available, while the 
Rb values are occasionally missing. In such situations, the 
model developed herein could be employed to estimate Rb 
and obtain PK parameters based on blood concentrations.
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