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Yippee like 4 (Ypel4) is essential 
for normal mouse red blood cell 
membrane integrity
Alexander Mattebo1, Taha Sen1, Maria Jassinskaja2, Kristýna Pimková2, 
Isabel Prieto González‑Albo1, Abdul Ghani Alattar1, Ramprasad Ramakrishnan3, 
Stefan Lang2, Marcus Järås3, Jenny Hansson2, Shamit Soneji2, Sofie Singbrant1, 
Emile van den Akker4 & Johan Flygare1*

The YPEL family genes are highly conserved across a diverse range of eukaryotic organisms and thus 
potentially involved in essential cellular processes. Ypel4, one of five YPEL family gene orthologs in 
mouse and human, is highly and specifically expressed in late terminal erythroid differentiation (TED). 
In this study, we investigated the role of Ypel4 in murine erythropoiesis, providing for the first time 
an in-depth description of a Ypel4-null phenotype in vivo. We demonstrated that the Ypel4-null mice 
displayed a secondary polycythemia with macro- and reticulocytosis. While lack of Ypel4 did not affect 
steady-state TED in the bone marrow or spleen, the anemia-recovering capacity of Ypel4-null cells 
was diminished. Furthermore, Ypel4-null red blood cells (RBC) were cleared from the circulation at an 
increased rate, demonstrating an intrinsic defect of RBCs. Scanning electron micrographs revealed 
an ovalocytic morphology of Ypel4-null RBCs and functional testing confirmed reduced deformability. 
Even though Band 3 protein levels were shown to be reduced in Ypel4-null RBC membranes, we could 
not find support for a physical interaction between YPEL4 and the Band 3 protein. In conclusion, 
our findings provide crucial insights into the role of Ypel4 in preserving normal red cell membrane 
integrity.

The YPEL (Yippee like) family genes were discovered in 2001 when orthologs to the Drosophila Yippee gene were 
identified in a diverse range of eukaryotic organisms1,2. Interaction experiments, cloning and sequence analysis 
of Yippee revealed a putative zinc binding RING finger protein with self-interacting properties1. The earliest 
designated human gene ortholog YPEL1, “Yippee like 1”, was in comparative analysis found to have four paralogs 
in the human genome, subsequently named YPEL2-5. Mouse gene orthologs (Ypel1 through Ypel5) were also 
identified with 99.2–100% similarity. Further analysis identified 100 YPEL family genes from 68 species, includ-
ing mammal, bird, fish, insect and fungus. High homology was detected in all species and a consensus sequence 
was designated as the Yippee domain3. Several studies have implicated localization of the YPEL family proteins 
to nuclear and perinuclear structures such as the centrosome and mitotic spindle, but also to microtubules3–5. 
Functionally, a common molecular function has not been demonstrated, but studies using reverse genetics 
approaches have shown effects on proliferation, apoptosis, senescence, cell adhesion and migration2,5–9. Most 
published studies to date have been performed in vitro with cell lines, thereby potentially missing relevant physi-
ological features crucial to the understanding of a common molecular function.

The Ypel4/YPEL4 gene has been reported to be highly upregulated during terminal erythroid differentia-
tion (TED) in both murine and human erythropoiesis10–12, reaching exceptionally high expression levels when 
compared to other tissues13. Erythropoiesis is a tightly regulated process in which red blood cells (RBC) are 
produced from hematopoietic stem cells (HSC), through a multistep cellular differentiation program involving 
several intermediate progenitor cells14,15. Briefly, rapidly dividing erythroid-restricted progenitors16–18 mature, 
become erythropoietin (EPO)-dependent and upregulate the transferrin receptor CD71. This maturation step 
initiates TED by synchronization of cell cycle to differentiation, in which each division generates two daughter 
cells with distinct morphologies, transcriptomes and proteomes11,12,19,20. The locking of cell cycle to terminal 
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differentiation allows for timely expression of erythroid genes in a chronological manner and explains the step-
wise acquisition of RBC characteristics such as reduction of cell size, hemoglobinization, synthesis and assembly 
of red cell membrane components as well as end stage enucleation21.

Two decades into YPEL family gene-related research, more studies are still needed to highlight the roles of 
these genes in different biological processes. Ypel4 has been shown to be a promising gene to study in murine 
erythropoiesis. Due to this fact and the complex nature of RBC physiology, we hypothesized that Ypel4 loss-
of-function in vivo would generate a phenotype that could elucidate the role of Ypel4 in RBC-related cellular 
processes. To evaluate this assumption, we utilized the advantages of reverse genetics techniques and acquired 
a conventional knockout mouse model22. We showed that Ypel4-null mice displayed a secondary polycythemia 
due to an increased clearance of circulating RBCs. Furthermore, Ypel4-null RBCs had an ovalocytic morphology 
and reduced deformability. Band 3 protein levels were slightly reduced in RBC membranes, providing support 
for a mild red cell membrane disorder in the Ypel4-null mice. In conclusion, we for the first time identify Ypel4 
as a regulator of RBC morphology and red cell membrane protein composition.

Results
Disruption of the Ypel4 gene results in a macrocytic secondary polycythemia.  To study how 
Ypel4 affects erythropoiesis, we obtained a conventional knockout mouse model in which a targeted trap allele 
disrupts transcription of the protein-coding exons (Fig. 1A). The genotype was verified by PCR using primer 
combinations for allele-specific amplification (Supplementary Figure S1A). The Ypel4-null allele (–) was vali-
dated by RNA sequencing (Supplementary Figure S1B).

Ypel4-null (−/−) mice were born viable in Mendelian ratio, demonstrating that Ypel4 is not essential for 
embryonic development (Fig. 1B, p = 0.74).

Peripheral blood (PB) from wild-type (+/+) and Ypel4-null mice was analyzed and blood values quantified 
in a hematology analyzer. Ypel4-null mice displayed a significant increase in hematocrit (HCT) (Fig. 1C) but not 
in hemoglobin concentration (HGB) or red blood cell count (RBC) (Fig. 1D,E). This was accompanied with a 
significant increase in mean corpuscular volume (MCV) (Fig. 1F), while mean corpuscular hemoglobin (MHC) 
(Fig. 1G) and mean corpuscular hemoglobin concentration (MCHC) (Fig. 1H) remained unaltered. Neither 
white blood cell count (WBC) (Supplementary Figure S1C) nor platelet count (Supplementary Figure S1D) was 
significantly changed.

To evaluate the characteristics of the observed macrocytosis, the RBC distribution width (RDW-SD) and 
reticulocyte count were measured using a hematology analyzer and flow cytometer, respectively. A trend towards 
relative anisocytosis, i.e. unequally sized RBCs, was observed in Ypel4-null mice (Fig. 1I), together with a slight 
but significant reticulocytosis (Fig. 1J).

To determine if the detected polycythemia, i.e. increase in HCT, and reticulocytosis had a primary or second-
ary cause, serum EPO concentration was measured using ELISA. Serum EPO concentration was significantly 
increased in Ypel4-null mice (Fig. 1K).

Taken together, our data demonstrates that the Ypel4-null mice disrupts transcription of the Ypel4 gene, and 
that this disruption leads to a macrocytic secondary polycythemia.

Ypel4 is upregulated during terminal erythropoiesis but deficiency does not affect normal 
erythroid precursor functionality in bone marrow.  To determine the cause of the peripheral blood 
phenotype, steady-state erythropoiesis in the bone marrow was examined using fluorescent activated cell sort-
ing (FACS) and antibodies against the erythroid-specific marker Ter119. Inclusion of anti-CD44 antibodies 
allows for further subfractionation of the Ter119+ cells into proerythroblasts (Pro-E), basophilic erythroblasts 
(Baso-E), polychromatic erythroblasts (Poly-E), orthochromatic erythroblasts (Ortho-E), reticulocytes (Retics) 
and RBCs23. Within those populations, cell size, enucleation efficiency and cell cycle differences were analyzed 
(Fig. 2A).

Transcriptional analysis of the different Ter119+ subpopulations using FACS and qPCR revealed that Ypel4 
expression increased markedly by differentiation to peak in the Ortho-E population before enucleation. Ypel4 
mRNA was not detected in Ypel4-null populations (Fig. 2B).

In spite of being highly expressed during terminal erythropoiesis, total Ter119+ erythroid fraction in Ypel4-
null bone marrow was not significantly different when quantified by flow cytometry (Fig. 2C). Neither could any 
significant differences in subpopulation frequencies within this fraction be detected (Fig. 2D). This was further 
confirmed with morphologic analysis of sorted erythroblast subpopulations stained with May-Grünwald-Giemsa 
(MGG) (Supplementary Figure S2A).

To analyze if Ypel4-deficiency affected normal erythroid precursor functionality, flow cytometry-based analy-
ses to assess cell size, enucleation efficiency and cell cycle differences was carried out. Differences in cell size 
was analyzed by comparing the mean fluorescent intensity (MFI) of the forward scatter area (FSC-A) within the 
Ypel4-expressing Ter119+ subpopulations and RBCs. In spite of the observed macrocytosis in PB, no significant 
differences were detected between the compared groups (Fig. 2E). Neither could any differences be detected in 
the earlier erythroblast populations (Supplementary Figure S2B). Enucleation efficiency was analyzed by meas-
uring positivity of a cell-permeant DNA dye (Hoechst 33342) in the reticulocyte and RBC populations. None of 
the compared groups displayed significant differences in enucleation rates (Fig. 2F). Cell cycle differences were 
analyzed in the Ypel4-expressing nucleated erythroblast populations using FACS and measurement of total DNA 
content using PI. No significant cell cycle differences could be detected between the groups (Fig. 2G,H). Neither 
could any difference be detected in earlier erythroblast populations (Supplementary Figure S2C).

In order to further analyze the effects on cellular processes, RNA-sequencing was performed on sorted Poly-
E (Fig. 2I) and Ortho-E (Fig. 2J) populations from Ypel4+/+ and Ypel4−/− mice. The quality of the data was 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15898  | https://doi.org/10.1038/s41598-021-95291-1

www.nature.com/scientificreports/

confirmed by a principal component analysis. Of note, corresponding wild-type and Ypel4-null samples did not 
cluster separate (Supplementary Figure S2D). In line with these findings, except for the expected changes in 
expression of Ypel4 and the gene trapping splice acceptor En2, only three genes were significantly differentially 
expressed (P ≤ 0.05) in either population (Supplementary Table  S1). Two of these genes were considered to be 
straight-forward false positive discoveries (Supplementary Figure S2E–G).

To analyze extra-medullary hematopoiesis, spleens were examined by weight which showed no significant 
difference in Ypel4-null mice (Supplementary Figure S2H). To investigate extra-medullary erythropoiesis in 

Figure 1.   Disruption of the Ypel4 gene results in a macrocytic secondary polycythemia. (A) Schematic of 
the Ypel4 wild-type (+) and knockout (−) allele in the mouse model (image adapted from https://​www.​mouse​
pheno​type.​org49). (B) Breeding statistics of breeding pairs carrying one wild-type and one knock-out allele 
(+/−) each (n = 19–45). (C) Peripheral blood analysis of hematocrit (HCT) (n = 13–19); (D) Hemoglobin 
concentration (HGB) (n = 13–19); (E) Red blood cell count (RBC) (n = 13–19); (F) Mean corpuscular volume 
(MCV) (n = 13–19); (G) Mean corpuscular hemoglobin (MCH) (n = 13–19); (H) Mean corpuscular hemoglobin 
concentration (MCHC) (n = 13–19) and (I) Red cell distribution width (RDW_SD) (n = 7) by utilization of a 
hematology analyzer. (J) Percentage of reticulocytes in total red blood cells as quantified by flow cytometry 
(n = 13). (K) Erythropoietin concentration in serum as detected by enzyme-linked immunosorbent assay 
(ELISA) (n = 9). Data displayed as average ± SEM, *P ≤ 0.05, ****P ≤ 0.0001.

https://www.mousephenotype.org
https://www.mousephenotype.org
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Figure 2.   Ypel4 is upregulated during terminal erythropoiesis but deficiency does not affect normal erythroid 
precursor functionality in bone marrow. (A) FACS gating strategy for bone marrow (BM) terminal erythroid cell 
populations in wild-type (+/+) and Ypel4-null (−/−) mice together with their forward scatter area (FSC-A) mean 
fluorescence intensity (MFI), Hoechst 33342 dye positivity and Propidium Iodide (PI) positivity after fixation. (B) 
Ypel4 quantitative Polymerase Chain Reaction (qPCR) expression relative to Gapdh in sorted subpopulations (n = 3). 
(C) Total live erythroid cell (n = 4) and (D) subpopulation frequencies in BM (n = 4). (E) FSC-A MFI measurements 
as approximations of cell size in Ypel4-expressing subpopulations (n = 4). (F) Total enucleation efficiency as measured 
by lack of DNA staining using the cell-permeant Hoechst 33342 dye (n = 4). Cell cycle analysis by measurement of 
total DNA content (PI positivity) in the Ypel4-expressing (G) Poly-E (n = 3) and (H) Ortho-E (n = 3) populations 
after fixation. RNA-sequencing was conducted on sorted (I) Poly-E (n = 4) or (J) Ortho-E (n = 4) populations and 
differential gene expression presented using log2(fold change) and − log10(padj). Data displayed as average ± SEM. 
Pro-E proerythroblast, Baso-E basophilic erythroblast, Poly-E polychromatic erythroblast, Ortho-E orthochromatic 
erythroblast, Retics reticulocyte, RBCs red blood cells, padj adjusted p value.
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particular, flow cytometry and antibodies against Ter119 and CD71 were performed on spleens (Supplementary 
Figure S2I). Neither frequencies (Supplementary Figure S2J) nor total cell numbers (Supplementary Figure S2K) 
of early (CD71+Ter119+) or late (CD71−Ter119+) erythroid cells were significantly changed in Ypel4-null mice.

Taken together, in spite of high expression of Ypel4 during late TED, disruption of Ypel4 gene transcription 
does not significantly alter the late TED gene expression profile, erythroid precursor development, cell cycle or 
enucleation efficiency during steady-state erythropoiesis.

Ypel4‑null hematopoietic cells display reduced anemia‑recovering capacity due to an increased 
clearance of circulating erythrocytes.  Due to the increased serum erythropoietin levels but lack of dis-
tinct phenotype in steady-state TED, we hypothesized that the kinetics of Ypel4-deficiency might be accentuated 
in a situation of induced anemia. Stress-erythropoiesis was therefore induced using a lethal dose of whole-body 
irradiation followed by transplantation of 5 × 105 Ypel4+/+ or Ypel4−/− unfractionated BM cells (Ly5.2) to wild-
type recipients (Ly5.1 + Ly5.2). Recovery was followed by analysis of PB, BM and spleen at day 8, 11, 14 and 17 
after transplantation (Fig. 3A). Since spleen is the primary organ for stress-erythropoiesis in mice, we expected 
an early and robust response from spleen followed by a slower repopulation of the BM erythroid fraction24.

Using flow cytometry and cell counting, the Ter119+ erythroid fraction in spleen and BM was analyzed and 
quantified. As expected, a rapid expansion of the erythropoietic activity in spleen was observed between day 8 
and day 11 in both groups of mice. Interestingly, mice transplanted with Ypel4−/− BM however displayed a pro-
longed expansion phase, generating more erythroid progenitors in the spleen compared to the control (Fig. 3B). 
As expected, the BM displayed a slower recovery rate than that seen in the spleen, with no significant difference 
between Ypel4+/+ and −/−-transplanted mice (Supplementary Figure S3A).

Figure 3.   Ypel4-null hematopoietic cells display reduced anemia-recovering capacity due to an increased 
clearance of circulating erythrocytes. (A) Stress erythropoiesis was induced using lethal irradiation followed by 
transplantation of unfractionated wild-type (+/+) or Ypel4-null (−/−) bone marrow (BM) cells to +/+ recipients, 
followed by analysis of anemia recovery in spleen and peripheral blood (PB) at day 8, 11, 14 and 17. (B) 
Expansion of the Ter119+ erythroid fraction in spleen as quantified by cell counting and flow cytometry (n = 3). 
(C) Percentage of reticulocytes of total red blood cells as quantified by flow cytometry (n = 3). PB analysis of 
(D) hematocrit (HCT) (n = 3), (E) hemoglobin concentration (HGB) (n = 3) and (F) red blood cell (RBC) count 
(n = 3) by utilization of a hematology analyzer. (G) RBC longevity was analyzed by i.v. injection of Sulfo-NHS-
biotin followed by flow cytometric quantification of biotinylated RBCs in PB at day 1, 8, 15, 22 and 33. (H) 
Percentage of biotinylated RBCs in PB over time with estimated clearance rates of wild-type (+/+) and Ypel4-
null (−/−) RBCs (n = 5). Data displayed as average ± SEM, *P ≤ 0.05, **P ≤ 0.01, i.v. intravenous.
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To analyze the output of reticulocytes, peripheral blood was stained with Retic-Count reagent and RNA/DNA-
positive red blood cells detected by flow cytometry. In line with the increased stress-erythropoiesis observed in 
the spleen, the Ypel4−/−-transplanted mice kept producing more reticulocytes for a significantly longer time 
compared to Ypel4+/+-transplanted mice (Fig. 3C).

In order to trace the development and recovery of the anemia after irradiation, blood parameters were 
quantified using a hematology analyzer. In spite of the increased output of erythroid progenitors in spleen and 
reticulocytes in PB, mice transplanted with Ypel4−/− BM failed to recover their HCT (Fig. 3D), HGB (Fig. 3E) 
and RBC (Fig. 3F) over time compared to Ypel4+/+-transplanted mice, indicating an increased clearance of 
Ypel4−/− erythrocytes. The WBC count recovered at a similar rate (Supplementary Figure S3B), while the platelet 
count recovery rate was significantly decreased in the Ypel4−/− compared to the Ypel4+/+-transplanted mice 
(Supplementary Figure S3C).

To directly measure RBC longevity and rate of clearance, wild-type and Ypel4-null mice were injected with 
Sulfo-NHS-biotin that binds to and biotinylates RBCs. Mice were bled at day 1, 8, 15, 22 and 33 and the percent-
age of biotinylated RBCs was measured by flow cytometry (Fig. 3G). As expected, the wild-type mice had an 
estimated linear clearance rate of RBCs (Fig. 3H, black line), while RBCs in Ypel4-null mice were cleared at a 
significantly higher rate (Fig. 3H).

Taken together, Ypel4-null hematopoietic cells are equally able to expand the erythroid progenitor pool and 
form reticulocytes during stress-erythropoiesis as their wild-type counterparts. However, when they reach the 
circulation, Ypel4-null RBCs are cleared from the blood at a much higher rate compared to wild-type RBCs, 
indicating a lesion linked to the functionality of RBCs rather than erythroid precursors.

Erythrocytes from mice deficient in Ypel4 are ovalocytic, less deformable and have reduced 
Band 3 protein levels.  Increased clearance of RBCs can be caused by different mechanisms25. Since YPEL 
family proteins have been observed to induce changes in cell morphology and the cytoskeleton2,9, we hypoth-
esized that the increased clearance could be caused by a defect in the red cell membrane skeleton. To study the 
morphology, scanning electron microscopy was utilized to obtain high resolution micrographs of single RBC 
surface topographies. Examination of the micrographs revealed the presence of abnormally shaped erythrocytes 
in the Ypel4-null samples, identified as ovalocytes (Fig. 4A). Indeed, when calculating the elongation index for 
isolated RBCs in the samples, the majority of Ypel4-null RBCs displayed increased elongation compared to wild-
type RBCs. There were no indications of RBC subpopulations (Fig. 4B).

The presence of abnormally elongated RBCs in the blood is indicative of both increased clearance of RBCs 
and reduced membrane deformability26,27. An Automated Rheoscope and Cell Analyzer (ARCA) was therefore 
utilized to evaluate the ability of individual RBCs to deform during shear stress. Deformability was evaluated at 
two different shear forces: 3 Pa and 10 Pa. At 3 Pa, differences between groups are often most prominent while at 
10 Pa cells become more deformed. In accordance with the morphological observations, Ypel4-null RBCs were 
significantly less deformable than wild-type RBCs at 3 Pa and there were no detected subpopulations in the dif-
ferent groups (Fig. 4C). Similarly, a significant difference was detected even at 10 Pa when cells were much more 
uniformly deformed (Fig. 4D). The area of individual RBCs was also measured, demonstrating that Ypel4-null 
RBCs had a significantly larger area compared to wild-type RBCs (Supplementary Figure S4A), confirming the 
MCV results from the hematology analyzer.

The red cell membrane skeleton is built from cytoskeletal proteins anchored to Band 3 multiprotein com-
plexes in the RBC membrane28. Flow cytometric analysis of Eosin-5′-maleimide (EMA) predominant binding 
to the Band 3 protein on intact RBCs is a routinely used first-line diagnostic screening test for hereditary red cell 
membrane disorders29. In disorders such as Hereditary Spherocytosis a clear reduction in EMA MFI is normally 
detected, while variants of Hereditary Elliptocytosis generally display a lower degree of reduction. The volume of 
RBCs affects the MFI, so the ratio between EMA MFI and MCV is a critical comparison29,30. An EMA binding 

Figure 4.   Erythrocytes from mice deficient in Ypel4 are ovalocytic, less deformable and have reduced Band 3 
protein levels. (A) Representative scanning electron micrographs of peripheral blood (PB) from wild-type (+/+) 
and Ypel4-null (−/−) mice. Micrographs taken at 3000 × and 13,000 × original magnification. (B) Isolated red 
blood cell (RBC) long and short axes were measured using ImageJ software and RBC elongation calculated using 
the elongation index (EI) formula EI = (A − B)/(A + B) (n = 2). (C,D) Deformability of RBCs was measured using 
an Automated Rheoscope and Cell Analyzer (ARCA) applying 3 Pa (C; n = 4) or 10 Pa (D; n = 4) shear stress. 
The graphs show the frequency of cells (y-axis) with a specific deformability index, this index is measured as 
the ratio between length over width (x-axis). (E) PB analysis of Eosin-5′-Maleimide mean fluorescence intensity 
(MFI) in RBCs measured by flow cytometry. MFI values are normalized to mean corpuscular volume (MCV), 
as determined by a hematology analyzer, in each sample for accurate density assessment of Band 3 protein 
levels in the RBC membranes (n = 4). (F) RBCs were hemoglobin-depleted using hypotonic lysis. Membrane 
protein concentrations were measured and equal amounts of protein solubilized and separated by sodium 
dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE). Gels were fixed in ethanol and stained 
with Coomassie Blue G-250 dye to visualize proteins. Representative images of one +/+ and one −/− sample 
is shown, first with all visible bands and then with only Bands 3, 4.1 and 4.2 visible after further separation to 
emphasize the visible differences in band intensities. (G) Band 3 intensities were analyzed and normalized by 
total protein normalization using ImageJ software. Data displayed normalized to average wild-type ratio and a 
paired Student’s t test was used to compare the means. Connecting lines depict age and gender matched +/+ and 
−/− samples (n = 4). All other data displayed as average ± SEM, *P ≤ 0.05, ** P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001, 
a.u. arbitrary unit, kDa kilodalton.
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test was therefore conducted together with hematology analyzer measurements of MCV. A slight but significant 
reduction in the EMA MFI to MCV ratio in Ypel4-null RBCs was detected (Fig. 4E).

The gold-standard technique to quantify relative membrane protein content is separation of solubilized 
and hemoglobin-depleted RBCs, so called RBC ghosts, by sodium dodecyl sulphate (SDS)-polyacrylamide gel 
electrophoresis (PAGE). The membrane proteins are visualized in the gel by Coomassie Brilliant Blue dye. Equal 
amounts of packed Ypel4-null and wild-type cells were loaded, and normalized intensities compared between 
matched samples (Fig. 4F, all samples shown in Supplementary Figure S4B). As indicated, Band 3 protein abun-
dance in Ypel4-null RBC membranes was indeed slightly but significantly reduced compared to wild-type RBCs, 
confirming the results from the EMA binding test (Fig. 4G).

To elucidate if YPEL4 binds to the Band 3 protein directly, co-immunoprecipitation (Co-IP) was utilized 
to pull out YPEL4 protein complexes from primary erythroid cell lysates followed by quantitative liquid chro-
matography–mass spectrometry (LC–MS) analysis. Hematopoietic stem and progenitor (c-Kit+) cells from 
Ypel4−/− BM were transduced with either SFFV-FLAG-YPEL4 or SFFV-YPEL4-HA lentiviral overexpression 
vectors (Supplementary Figure S4C) and transplanted to lethally irradiated wild-type recipients. At day 16 after 
transplantation, recipients were sacrificed and total primary and erythroid cells in spleen recovered. Co-IPs 
cross-performed on cell lysates were analyzed by nano liquid chromatography–mass spectrometry (LC–MS) 
using a tandem mass tag (TMT) quantitative approach (Supplementary Figure S4D). Many proteins, including 
YPEL4, were detected as consistently enriched in the tagged compared to the control samples. The Band 3 pro-
tein however, even though detectable, was not amongst those (Supplementary Figure S4E, all detected proteins 
in Supplementary Table S2). These results provide support for the lack of physical interaction between YPEL4 
and the Band 3 protein.

Taken together, erythrocytes from mice deficient in Ypel4 are ovalocytic and less deformable than wild-type 
erythrocytes. This functional deficiency is associated with slightly reduced levels of Band 3 protein in the Ypel4-
null RBC membranes, providing combined evidence for the presence of a mild red cell membrane disorder in 
the Ypel4-null mice. Lastly, strong indications are provided for an indirect effect of Ypel4-deficiency on Band 3 
protein levels in RBC membranes.

Discussion
The roles of the highly conserved YPEL family genes in mammals have for a long time been elusive. Most previous 
studies have been performed in vitro in cell lines. Here we describe in detail the role of Ypel4 during erythroid 
development using a knockout mouse model, providing for the first time insights into the physiological processes 
governed by Ypel4 in vivo.

We demonstrated that Ypel4-deficiency leads to a secondary polycythemia in mice, with a slight increase in 
MCV that is accompanied by reticulocytosis. Since murine reticulocytes have around 45% more volume than 
erythrocytes31, the observed reticulocytosis likely contributes to the increase seen in MCV. However, the increase 
in reticulocyte numbers alone is not sufficient to explain the observed macrocytosis, since it would have required 
that the Ypel4−/− mice had more than 10% reticulocytes, compared to the 3.90 ± 0.18% observed. This conclusion 
is also supported by data from the ARCA experiment, showing a general shift in size of the whole RBC popula-
tion. The secondary polycythemia displayed in the mice relates to a clinical condition, where an increase in RBC 
mass is seen together with increased serum EPO concentration. This condition is considered either physiologi-
cally appropriate, if there is decreased tissue oxygenation, or physiologically inappropriate, if there is abnormal 
overproduction of EPO32. In bone marrow transplantation and RBC longevity assays, we demonstrated an 
intrinsic RBC lesion and increased clearance of Ypel4-null erythrocytes. Mice transplanted with Ypel4-null cells 
also failed to recover platelet counts at the same rate as controls, an expected side-effect to the lingering anemia 
since megakaryocytopenia occurs naturally during situations of hypoxia and active erythropoiesis33. Our find-
ings together provide evidence for a physiologically appropriate secondary polycythemia in the Ypel4-null mice.

YPEL4 and all other YPEL family proteins have previously been hypothesized to affect cell cycle regulation 
and progression due to their localization to mitosis-related structures3–5. In this study, even though we show 
that Ypel4-deficiency leads to macrocytosis, which can be due to cell cycle defects34, we do not detect a cell cycle 
defect in Ypel4-null erythroblasts. Our results, together with those from previous studies showing conflicting 
results regarding the effect of YPEL family proteins on cell cycle5,35, shows that this gene family might emerge as 
one with a much wider range of mechanisms than originally predicted.

YPEL4 has also been shown to affect Elk-1 activity4. We, however, could not detect differences in Elk-1 target 
gene transcription in Ypel4-expressing bone marrow erythroblast populations. This negative finding is important 
for future studies aiming to investigate exactly how YPEL4 affect Elk-1 activity. Of note, Elk-1 has been reported 
to acquire alternative functions during evolution36. It has also been uniquely reported to interact with neuronal 
microtubules37, relating to previous findings of YPEL family proteins to co-localize with microtubule-related 
structures3–5.

Despite the apparent lack of phenotype during TED, we could instead demonstrate that Ypel4-null RBCs were 
more elongated compared to normal RBCs with a resulting ovalocytic morphology. A discovery of changes in 
RBC morphology is a routine finding in the clinic when investigating a suspected red cell membrane disorder in 
a patient26. When further investigating the function of these altered RBCs, we found that they were cleared from 
the circulation at an increased rate and that they had reduced deformability. The Band 3 protein is fundamental 
in providing mechanical stability and deformability to the RBC, due to it being a major component in the mac-
romolecular complexes serving as attachment points between the membrane and underlying cytoskeleton38. In 
various red cell membrane disorders, the Band 3 EMA MFI is affected negatively39. The results from the EMA 
binding test indicated a slight relative reduction of Band 3 protein levels in Ypel4-null RBC membranes. This 
reduction was confirmed by separation of solubilized RBC ghosts by SDS-PAGE. It remains an open question 
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if the observed 2.2–4.4% reduction in Band 3 protein levels is sufficient to cause the pathologic alterations seen 
in Ypel4-null RBCs. Of note, it has been shown that the Band 3 EMA MFI is negatively correlated with osmotic 
fragility, implying that disease severity correlates with the degree of signal reduction40. It is therefore possible 
that a slight relative reduction in Band 3 protein levels could cause a mild red cell membrane disorder, especially 
considering the concurrent existence of abnormal RBC morphology in the Ypel4-null mice. A full investigation 
of the RBC membrane protein composition, including known Band 3 interacting proteins, was not conducted 
and is a delimitation of this study that should be taken into consideration.

We could not identify evidence of a physical interaction between YPEL4 and the Band 3 protein when per-
forming two different Co-IPs, suggesting an indirect effect of YPEL4 on Band 3 protein levels. The remaining 
candidate binding partners could provide clues for future studies. Even though not verified as physical binding 
partners, the consistent enrichment of both alpha- and beta-tubulin in all Co-IP samples could be of special inter-
est in the light of previous reports of YPEL family proteins to co-localize with microtubule-related structures3–5. 
Our findings further relate to previous studies showing that Ypel1 induces changes in cell morphology, the 
cytoskeleton and cell adhesion machinery2, and Ypel3 to be important for proper migration and morphology 
of perineural glia cells during neural development9. It is possible that redundancy between these highly similar 
YPEL proteins could attenuate the observed phenotype, although no changes in expression of other YPEL family 
genes could be detected in Ypel4-null erythroblasts.

In conclusion, we show that Ypel4 is a highly specialized gene important for the integrity of the red cell mem-
brane. We propose that through a putative indirect effect of Ypel4-deficiency, Band 3 protein levels are reduced 
in RBC membranes, likely contributing to the reduced membrane deformability, altered RBC morphology and 
increased clearance of RBCs in peripheral blood. These findings explain the observed secondary polycythemia 
in the Ypel4-null mice and provide evidence that the increase in hematocrit is a compensatory mechanism to 
secure proper tissue oxygenation. Further in-depth studies on the RBC membrane protein composition of the 
Ypel4-null mice might provide critical insights into the molecular function of Ypel4 and the Yippee domain.

Methods
Mice.  Mice were bred and maintained at the BMC animal facilities, Lund University, Sweden. The C57BL/6N-
Atm1Brd Ypel4tm1a(EUCOMM)Wtsi/WtsiIeg (Ly5.2) knockout mouse model was obtained from the European Mouse 
Mutant Archive.

Anemia was induced by subjecting age and gender matched adult recipient mice (C57BL/6xB6SJL; 
Ly5.1 + Ly5.2) to a single or split dose of lethal irradiation of 1 × 900 or 2 × 500 cGy, followed by bone marrow 
(BM) transplantation to rescue and trigger stress erythropoiesis. For analysis of recovery after anemia, 5 × 105 
unfractionated wild-type (+/+) or knockout (−/−) BM cells were transplanted intravenously (i.v.) by tail vein 
injection. The recipients were bled and sacrificed at either 8, 11, 14 or 17 days after transplantation for analysis 
of peripheral blood (PB), spleen and BM. For analysis of YPEL4 binding partners, 105 transduced cKit + BM cells 
(−/−) were transplanted i.v. by tail vein injection. The recipients were sacrificed at day 16 after transplantation 
for recovery of primary erythroid cells in spleen.

For all types of blood analysis, PB was collected from the tail vein and analyzed according to described 
procedure.

For determination of blood parameters, PB was collected to EDTA coated Microvette tubes (Sarstedt, Nüm-
brecht, Germany) and analyzed on a KX-21N hematology analyzer (Sysmex, Kobe, Japan).

For determination of RBC longevity, an EZ-Link Sulfo-NHS-Biotin (Thermo Fisher Scientific, Waltham, 
MA, USA) solution was prepared in PBS, sterile-filtered and 3 mg administered i.v. by tail vein injection to each 
recipient at day 0. At day 1, 8, 15, 22 and 33 after injection, recipients were bled for analysis.

All procedures involving mice were approved by the Animal Ethics Committee of Malmö/Lund, Sweden and 
all experiments were performed in accordance with relevant guidelines and regulations. The reporting in the 
manuscript follows the recommendations in the ARRIVE guidelines.

Enzyme‑linked immunosorbent assay (ELISA).  The Mouse Erythropoietin Quantikine® ELISA Kit 
(R&D Systems, Minneapolis, MN, USA) was used to detect serum erythropoietin (EPO) levels. Blood was col-
lected to Eppendorf tubes without anticoagulant, and left at room temperature for one hour prior to being cen-
trifuged at 2000g. Serum supernatant was collected and prepared according to manufacturer’s protocol. Samples 
were analyzed on SPECTROstar nano (BMG Labtech, Ortenberg, Germany). A standard curve was generated 
by four parameter logistic (4-PL) curve-fit to determine protein concentration of samples. Optical density was 
determined at 450 nm with a correction at 570 nm.

Cell preparations and flow cytometry.  BM and spleens were homogenized and filtered to single cell 
suspensions prior to cell culture, flow cytometry analysis or cell sorting (FACS).

For flow cytometry and FACS, the following conjugated antibodies against murine epitopes were used: CD44 
(Clone IM7, APC) (BioLegend, San Diego, CA, USA), CD71 (Clone C2, PE) (BD Biosciences, San Jose, CA, 
USA), Ter119 (PE-Cy7) (eBioscience; Thermo Fisher Scientific), CD3 (Clone 145-2C11, PE-Cy5) (BioLegend), 
B220 (Clone RA3-6B2, PE-Cy5) (BioLegend) and Gr-1 (Clone RB6-8C5, PE-Cy5) (BioLegend). Fc receptor 
block (BD Biosciences) was used for sorting samples, dead cells were excluded using propidium iodide (PI) and 
enucleation was determined using Hoechst 33342 (Thermo Fisher Scientific).

Reticulocyte levels were determined by resuspending PB in BD Retic-Count (BD Biosciences) according to 
manufacturer’s protocol.

Biotinylated RBCs were detected with Streptavidin-conjugated PE-Cy7 (BioLegend).
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Eosin-5′-Malemide (EMA) binding test was performed by resuspension of PB in EMA dye (Sigma-Aldrich, 
Saint Louis, MO, USA) according to manufacturer’s protocol.

Since erythroid precursors are very sensitive to fixation, cells from each of the nucleated erythroblast popula-
tions were sorted using FACS prior to fixation and staining for cell cycle analysis. Cell pellets were fixed with ice 
cold 70% ethanol in PBS while vortexing and incubated at − 20 °C overnight. The fixed cells were washed with 
PBS and stained with PI staining buffer [0.1% TritonX100 (Sigma-Aldrich), 0.1% Sodium citrate, 40 µg/ml PI, 
500 µg/ml RNase A (Sigma-Aldrich)] for 30 min at 37 °C. PI intensity was analyzed individually in the sorted 
populations by flow cytometry analysis.

Flow cytometry analyses were performed on BD FACS Calibur or LSR II (BD Biosciences). FACS was per-
formed on BD FACS Aria IIu or III (BD Biosciences). Results were analyzed with FlowJo 10 software (Tree Star, 
Ashland, OR, USA).

RNA isolation and gene expression analysis.  Total RNA was extracted from cells using RNeasy Kit 
(QIAGEN, Hilden, Germany) according to manufacturer’s protocol. Genomic DNA was removed using DNase 
I on-column digestion (QIAGEN).

For quantitative PCR (qPCR), complementary DNA from the isolated RNA was synthesized using the Super-
script III Reverse Transcriptase (Invitrogen; Thermo Fisher Scientific) with random hexamers (Invitrogen; 
Thermo Fisher Scientific). Quantitation was performed on a 7900HT RT-PCR instrument (Applied Biosystems; 
Thermo Fisher Scientific) using the Mm.PT.58.9019795 (Ypel4) and Mm.PT.39a.1 (Gapdh) probes (Integrated 
DNA Technologies, Coralville, IA, USA).

For global gene expression, RNA concentration and integrity were measured using Agilent RNA Pico Kit on 
a Bioanalyzer Instrument (Agilent Genomics, Santa Clara, CA, USA). RNA sequencing libraries were prepared 
using TruSeq RNA Library Preparation Kit v2 (Illumina, San Diego, CA, USA) according to manufacturer’s 
standard protocol and the sequencing was performed using NextSeq 500/550 Mid Output v2 Kit, 150 cycle (Illu-
mina). Fastq files were processed using the nf-core Nextflow pipeline for RNAseq nf-core/rnaseq v1.4.241,42. Reads 
were mapped against GRCm38 reference genome. Differentially expressed genes were found using DESeq243. 
Visual exploration and analysis of normalized sequencing data was performed using the Integrative Genomics 
Viewer software44.

Scanning electron microscopy (SEM).  PB specimens were fixed with 2.5% glutaraldehyde in 150 mM 
sodium cacodylate pH 7.2 and adhered to a poly-l-lysine coated surface. They were washed with cacodylate 
buffer and dehydrated with an ascending ethanol series from 50% (v/v) to absolute ethanol. The specimens were 
then subjected to critical-point drying with carbon dioxide and absolute ethanol was used as an intermediate 
solvent. The tissue samples were mounted on aluminum holders, sputtered with 20 nm palladium/gold, and 
examined in a DELPHI correlative light and scanning electron microscope. Isolated RBC long and short axes 
were measured using ImageJ software45 and RBC elongation calculated using the elongation index (EI) formula 
EI = (A − B)/(A + B).

Automated Rheoscope and Cell Analyzer (ARCA).  RBC deformability was measured with an ARCA 
and analyzed using automated cell framing software as described previously46. In short, morphological response 
to shear stress was measured at 3 Pa and 10 Pa. A minimum of 3000–4000 cells were measured and grouped in 
30 bins according to increasing elongation or cell projection area (as a measure of membrane surface area). The 
elongation was calculated as the major cell radius divided by minor cell radius.

Preparation of hemoglobin‑depleted RBC ghosts.  Equal volumes of packed cells were resuspended 
in ice cold PBS with added Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific), centri-
fuged cold at 2000g for 20 min and resuspended in 5 mM Na-Phosphate solution with added cOmplete Protease 
Inhibitor Cocktail (Sigma-Aldrich) to induce hypotonic lysis and generate RBC ghosts. The centrifugation and 
resuspension steps were repeated six times with the final centrifugation step prolonged with 10 min. The result-
ing hemoglobin-depleted RBC ghosts were resuspended in appropriate amount of Na-Phosphate solution with 
added protease inhibitors and membrane protein concentration determined using the Pierce 660 nm protein 
assay (Thermo Fisher Scientific) on a Nanodrop 1000 Spectrophotometer (Thermo Fisher Scientific).

Sodium dodecyl sulphate (SDS)‑polyacrylamide gel electrophoresis (PAGE) and stain‑
ing.  Equal amounts of protein were solubilized and boiled in 2 × Laemmli sample buffer (Bio-Rad Labo-
ratories, Hercules, CA, USA) with 5% 2-Mercaptoethanol, then separated by sodium dodecyl sulphate (SDS)-
polyacrylamide gel electrophoresis (PAGE). Gels were fixed in 30% ethanol, 2% v/v of 85% phosphoric acid 
overnight, washed 2 × 10 min in 2% (v/v) of 85% phosphoric acid and equilibrated for 30 min in 2% (v/v) of 
85% phosphoric acid, 18% ethanol and 15% (w/v) ammonium sulphate. Equilibrated gels were stained with 
0.2% Coomassie Blue G-250 dye (Sigma-Aldrich) for at least 30 min until proteins were visualized, analyzed in a 
ChemiDoc XRS+ with ImageLab software (Bio-Rad Laboratories) and band intensities quantified using ImageJ 
software45.

Statistical analysis.  All statistical significance, except where else stated, has been analyzed using either 
paired or non-paired Student’s t tests, Chi-square goodness of fit tests, nested t tests, one-way ANOVAs or 2-way 
ANOVAs followed by Tukey’s multiple comparisons test depending on experiments and groups compared. P val-
ues were adjusted for multiple comparisons where applicable. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001.
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Additional methods.  For details about genotyping, staining procedures, molecular cloning and lentivirus 
production, cell culture, co-immunoprecipitation and proteomics, please refer to Supplementary Methods.

Data availability
The RNA-seq data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus47 
and are accessible through GEO Series accession number GSE171959. The mass spectrometry proteomics data 
have been deposited to the ProteomeXchange Consortium via the PRIDE48 partner repository with the dataset 
identifier PXD025242.
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