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Abstract
Soil health management and increase crop productivity are challenging issues for researchers and scientists. Many research 
publications have given multiple technological solutions for improving soil health and crop productivity but main problem is 
sustainability of those technologies under field condition and different agro-climatic zone. Due to the random industrializa-
tion, deforestation, mining and other environmental factor reduce soil fertility and human health. Many alternative options 
e.g., crop rotation, green manuring, integrated farming, biofertilizer (plant-growth-promoting microorganism, microbial 
consortium of rhizosphere soils), and vermicomposting are available for adapting and improving the soil heath and crop 
productivity by farmers. Recent trends of new research dimension for sustainable agriculture, endophytic microbes and its 
consortium is one of the better alternative for increasing crop productivity, soil health and fertility management. However, 
current trends are focuses on the endophytic microbes, which are present mostly in all plant species. Endophytic microbes 
are isolated from plant parts—root, shoot, leaf, flower and seeds which have very potential ability of plant growth promotion 
and bio-controlling agent for enhancing plant growth and development. Mostly plant endophytes showed multi-dimensional 
(synergistic, mutualistic, symbiotic etc.) interactions within the host plants. It promotes the plant growth, protects from 
pathogen, and induces resistance against biotic and abiotic environmental stresses, and improves the soil fertility. Till date, 
most of the scientific research has been done on assuming that interaction of plant endophytes with the host is similar like 
the plant-growth-promoting microorganism (PGPM). It would be very interesting to explore the functional properties of 
plant endophytes to modulate the essential gene expression during biotic and abiotic stresses. Endophytes have the ability 
to induce the soil fertility by improving soil essential nutrient, enzymatic activity and influence the other physiochemical 
property. In this study, we have discussed details about functional properties of plant endophytes and their mechanism for 
enhancing plant productivity and soil health and fertility management under climate-resilient agricultural practices. Our 
main objective is to promote and explore the beneficial plant endophytes for enhancing sustainable agricultural productivity.

Keywords  Plant endophytes · Soil fertility · Plant growth promotion · Phytopathogen · Sustainable agriculture · Crop yield · 
Stress tolerance · Soil health · Plant–microbe interaction

Introduction

Plants are mega species harboring wide diversity of microbes 
in their different parts such as seed, root, stems, leaf, pol-
lens and flowers, which altogether is known as the plant 
microbiome (Zhang et al. 2017; Mukherjee et al. 2020). 
Plant-associated microbes play critical roles in crop yield 
and plant health through different direct and indirect mecha-
nisms (Mukherjee et al. 2020; Trivedi et al. 2020b). Endo-
phytes are a unique group of plant microbiome that reside 
asymptomatically inside plant parts and tissues having a 
symbiotic relationship (Wilson 1995). The group constitutes 
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bacteria, fungi, and archaea that inhabit the plant tissue as 
a whole or a part of their lifecycle (Hassan 2017; Harrison 
and Griffin 2020). The majority of plant endophytes belong 
to genera of Bacillus, Pseudomonas, Streptomyces, Burk-
holderia, Klebsiella, Enterobacter, Penicillium, Aspergillus, 
Alternaria, and Fusarium (Hassan 2017; Khan et al. 2017a, 
b; Singh et al. 2017a; Mukherjee et al. 2020, 2021). The 
features of interest of all these endophytic microbial genera 
are provided in Table 1. However, from newer studies, it 
has been demonstrated that there is more diversity of plant 
endophytes which are subject to change according to the host 
and environmental factors (Kawasaki et al. 2016; Liu et al. 
2020). With that being said, some microbial groups are pre-
sent universally regardless of the environment and are part of 
the plant’s core microbiome (Hamonts et al. 2018). This core 

group of microbes has co-evolved with the host plant spe-
cies and is inherited through generations (Song et al. 2020). 

Plants in natural communities preserve their symbiotic 
associations with endophytes that help in growth promotion 
and protection against different stresses (Rodriguez et al. 
2009; Johnston-Monje et al. 2016; Trivedi et al. 2020b). 
The actinorhizal and rhizobial endophytes enhance nutrient 
availability especially nitrogen through the process of bio-
logical nitrogen fixation (BNF) (Pawlowski and Demchenko 
2012) in specialized root structures called nodules (Coba 
de la Peña et al. 2017). The mycorrhizal endophytic fungal 
families also help in nutrient acquisition to plant especially 
phosphorous. Many of the endophytes produce siderophores 
which increase iron availability to plants (Mukherjee et al. 
2020). The enzymatic activities of endophytes mobilize the 

Table 1   List of major endophytic microbial genera isolated from plants and their features of interest

Endophyte Host plants Isolation point(s) Features of interest Reference(s)

Alternaria spp. Salvia miltiorrhiza, Solanum 
nigrum, and Brassica napus

Root, shoot, and leaf Increased biomass, chloro-
phyll content, and secondary 
metabolite production

Abiotic stress tolerance

Khan et al. (2015b)
Shi et al. (2017)
Zhou et al. (2018)

Aspergillus spp. Zea mays, Euphorbia indica, 
Soybean, and Sunflower

Root and leaf Production of secondary 
metabolites for plant growth

Stress tolerance

Hamayun et al. (2018, 2019)
Mehmood et al. (2019)

Bacillus spp. Zea mays, Saccharum offici-
narum, Aloe vera, Cucurbits, 
and Oryza sativa, Cicer 
arietinum

Seed, root, stem, and leaf Inhibition of phytopathogens
Plant growth promotion

Akinsanya et al. (2015)
Gond et al. (2015a)
Khalaf and Raizada (2018)
Kumar et al. (2020) Mukher-

jee et al. (2020)
Wang et al. (2020b)

Enterobacter spp. Cicer arietinum, Zea mays, and 
Sorghum sudanense

Seed Improved productivity
Phyto-stabilization of heavy 

metals
Plant growth promotion

Li et al. (2016)
Ullah et al. (2020)
Mowafy et al. (2021)
Mukherjee et al. (2020)

Fusarium spp. Brassica napus, Oxalis cornicu-
late, and Glycine max

Root Abiotic stress tolerance
Mineral solubilization
Biomass production
Secondary metabolite produc-

tion

Radhakrishnan et al. (2015)
Shi et al. (2017)
Bilal et al. (2018)

Klebsiella spp. Zea mays, Saccharum offici-
narum, and Triticum aestivum

Root Enhance growth and yield
N fixation
Stress tolerance

Lin et al. (2015)
Zhang et al. (2017)
Mowafy et al. (2021)

Penicillium spp. Triticum aestivum and Capsi-
cum annum

Root Resistance against abiotic 
stresses

Production of IAA
Nutrient mineralization

Ikram et al. (2018)
Oses-pedraza et al. (2020)

Pseudomonas spp. Pisum sativum, Oryza sativa, 
Achyranthes aspera, Zea mays 
Brassica napus, and Cicer 
arietinum

Leaf, root, and seed Mineral solubilization
N fixation
Defense against phytopathogens
Stress tolerance

Otieno et al. (2015)
Devi et al. (2017)
Lally et al. (2017)
Pham et al. (2017)
Sandhya et al. (2017)
Mukherjee et al. (2020)

Streptomyces spp. Solanum lycopersicum, Glycine 
max, and Sorghum

Root and stem Plant growth promotion
Biocontrol
Production of active secondary 

metabolites

Goudjal et al. (2016)
Patel et al. (2018)
Liu et al. (2019)
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soil nutrients making them readily available to plants (Behie 
and Bidochaka 2013; White et al. 2019). In a fashion similar 
to human gut microbes, the endophytes improve plant health 
by protecting against phytopathogens. They have the ability 
to induce systemic resistance and upregulate defense gene 
expression in the host plant and suppress the growth and fit-
ness of phytopathogens (Hardoim et al. 2015; Irizarry and 
White 2017; White et al. 2018). Endophytes start modula-
tion of defense gene in host plant right from the seedling 
stage to maturation (Ongena and Jacques 2008; Gond et al. 
2015a, b). Systemic resistance is induced against a broad 
spectrum of phytopathogen through jasmonic acid, salicylic 
acid, and ethylene pathways and the production of patho-
genesis-related proteins (Bastias et al. 2017). The growth 
suppression of phytopathogen by endophytes is through the 
production of antimicrobial compounds such as pyrrolni-
trin, pyoleutirin, 2, 4-diacetylphloroglucinol, phenazine-
1-carboxylic acid, and hydrogen cyanide (Mousa et al. 2016; 
Bastias et al. 2017). The different underlying mechanisms of 

plant endophytes in the improvement of plant and soil health 
are represented in Fig. 1.

Soil is a mystic resource on this planet harboring both 
biological and chemical entities. Agricultural soil in par-
ticular linked to human health, production economics, water 
and soil quality, and food safety and security either directly 
and/or indirectly (Karlen et al. 2019). Healthy soils are the 
backbone of agricultural productivity as it provides support 
to healthy plant growth and development. The quantity and 
quality of about 95% of our food depend on soil functional 
properties (Kemper and Lal 2017; Brevik et al. 2018, 2020) 
which indirectly dictates human and animal nourishment as 
nutrient deficiency of food grains cause many human dis-
eases. It has been known through various studies that the 
application of organic fertilizers improves soil quality and 
health by stimulating microbial population and diversity in 
the soil (Jannoura et al. 2014; Verma et al. 2014; Mukherjee 
et al. 2019). However, both organic and inorganic fertiliz-
ers are applied in common agricultural practices for better 

Fig. 1   Diagrammatic repre-
sentation of plant endophytes’ 
mechanisms involved in 
improvement of plant and soil 
health
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crop production (Naab et al. 2017; Mukherjee et al. 2021), 
in which the proportion of the latter is quite higher. Inor-
ganic fertilizers can be replaced with the use of endophytes 
as a sustainable approach in modern agricultural practices 
(Kumar et al. 2020). Endophytes possess the ability to solu-
bilize micro and macronutrients in soil without hampering 
the natural properties and microbial community of the soil. 
They also play an important role in soil mineral cycling and 
the removal of pollutants from soil (He et al. 2020; Liu et al. 
2020), due to which they are deemed to be a better alterna-
tive. Hence, our main aim of this review is to present the 
functional properties of endophytes keeping in view the 
current demand of their application as bioinoculants for 
improvement of soil health, plant productivity, and protec-
tion against phytopathogens under a sustainable approach.

Screening and molecular characterization 
of endophytic microbes from plant material

Before going for screening and molecular characteriza-
tion, one should have to attain a pure culture of endophytic 
microbe. Endophytes can be isolated by different plating 

methods in respective culture media from different plant 
parts (root, shoot, leaf, flower, fruits, and seeds) after steri-
lization of that particular part with 1% sodium hypochlorite 
solution for 1 min and 70% ethanol followed by washing two 
to three times with sterilized distilled water (Mukherjee et al. 
2020). Pure culture of the respective isolated endophyte can 
be then done by single spore culture for fungi and single 
colony culture for bacteria. DNA should be extracted from 
this pure culture of isolated bacteria and fungi as the next 
step for molecular characterization using polymerase chain 
reaction (PCR) amplification of conserved regions namely: 
16S rRNA or 18S rRNA for bacterial endophytes and ITS 
for fungal endophytes followed by sequencing. The sequence 
obtained must be aligned using the Basic Local Alignment 
Search Tool (BLAST) in National Center for Biotechnology 
Information (NCBI) for obtaining a similarity index to match 
the microbial organism from the database. For screening of 
biochemical and plant growth promotion properties, pure 
culture of microbes should be grown in respective liquid 
media. A diagrammatic representation of isolation, identi-
fication, and characterization of endophytes from different 
plant parts is given in Fig. 2. These screening results should 
be used for the development of potential single inoculants 

Fig. 2   Flowchart of isolation, identification, and characterization of plant endophytes from different parts
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and consortiums. The endophytic microbial consortium is, 
however, more effective plant-growth-promoting and bio-
control agent for enabling better plant growth under abiotic 
and biotic stresses (Singh et al. 2018).

Endophytes for agricultural soil health

Almost all the plants have their world of endophytic 
microbes which are non-aggressive and ubiquitous (Schulz 
and Boyle 2006). Once colonized, endophytes stimulate the 
growth and physiology of host plants and properties of soil 
through various direct and indirect mechanisms (Singh et al. 
2018; Mukherjee et al. 2020; Chouhan et al. 2021). Nitrogen 
fixation, phosphate solubilization, siderophore production, 
exopolysaccharide (EPS) secretion, exoenzymes’ produc-
tion, and biocontrol activities are some of the functional 
properties of endophytes (Jasim et al. 2014; Mukherjee et al. 
2019, 2020) that aid restoration of soil health and fertil-
ity. The exoenzymes produced by endophytes specifically 
have the capacity of solubilizing essential plant nutrients 
from their insoluble for to soluble ones (Puri et al. 2020). 
These exoenzymes also constitute organic acids which lead 
to lowering of soil pH (Verma et al. 2017). The changes 
in pH additionally inhibit the activities of phytopathogenic 
microbes and also alter the growth of some invasive plants 
thereby increasing nutrient availability (Shahrtash and 
Brown 2021). Many endophytes synthesize soil invertase, 
urease, and soil alkaline phosphatases which directly modu-
late soil organic carbon (SOC), soil nitrogen, and microbial 
biomass (Hou et al. 2020). Endophytes also degrade plant 
debris present in soil having macromolecules like lignin, 
pectin, oligosaccharides, cellulose, hemicellulose, lipids, 
and proteins with the help of exoenzymes (Wang and Dai 
2011; Uzma et al. 2016) into their simpler forms. This adds 
to the nutrient status of soil, enhancing soil quality, nutrient 
cycling, and soil micro-environment. Puente et al. (2009) 
reported in a study on endophytic bacteria associated with 
Pachycereus pringlei produces organic acids which help in 
weathering and transformation of minerals under in vitro 
conditions.

Plant–microbe interaction is a complex system that 
involves a vast array of microbes, the plant, and the soil. 
The interaction not only affects the physiology of plant but 
also regulate soil flora and fauna, soil microbial respira-
tion rate, soil health, and nutrient cycling (Chaparro et al. 
2012). Plants communicate with the soil microbial com-
munity through chemical signals constituting proteins, fatty 
acids, flavonoids, sugars, aliphatic acids, and amino acids 
which create a unique environment for the survival of soil 
microbes. These secreted chemical signals establish interac-
tion with endophytes and neighboring plants leading to the 
formation of soil aggregates which improves soil porosity 

by designing the soil structure (Miller and Jastrow 2000). 
A wide range of endophytic bacteria and fungi viz. Bacil-
lus, Arthrobacter, Enterobacter, Clostridium, Pseudomonas, 
Microbacterium, Mucor, Microsphaeropsis, Phoma, Alter-
naria, Steganosporium, and Aspergillus have been reported 
resistant to metals (Guo et al. 2010; Li et al. 2012). These 
endophytes can thus be helpful in removing heavy metal 
toxicity from the soil. Moreover, different studies have sug-
gested that endophytes play a crucial role in the phytoreme-
diation of organic contaminants such as hydrocarbons as 
well. Most of the soil contaminants are toxic for plants and 
cannot be degraded by them alone. This problem can be alle-
viated through plant–endophytes interaction (Li et al. 2012). 
Endophytes reduce phytotoxicity due to soil contaminants 
by increasing their immobilization, chelation, and degrada-
tion. For this, they secrete organic acids of low molecular 
weight, siderophores, and enzymes. Siderophores can bind 
efficiently with iron (Fe), zinc (Zn), cadmium (Cd), gallium 
(Ga), aluminum (Al), and lead (Pb) to form a stable complex 
which increases their soluble concentration (Rajkumar et al. 
2010).

Many of the endophytic bacteria and fungi are antagonis-
tic and are drawing special attention as an alternative for the 
management of soil-borne diseases with minimal environ-
mental impact and soil pollution. These antagonistic endo-
phytes control the population of soil-borne phytopathogens 
through different mechanisms namely: parasitism, competi-
tion, production of lytic enzymes, and antibiosis (De Silva 
et al. 2019). EPS produced by endophytes plays important 
role in plant–endophyte interactions and also exhibit many 
biological functions. EPS of endophytic origin have antioxi-
dative, antiallergic, and prebiotic properties (Liu et al. 2017) 
along with metal complexation ability (Liu et al. 2021). 
Thus, EPS can be helpful in regulating the population of soil 
phytopathogens and reducing the bioaccessibility of heavy 
metals. From the above-presented statements, it can be very 
well concluded that augmentation of soil with specific endo-
phyte or endophytic consortium can be significantly support-
ive in restoring soil health. A list of identified endophytes 
that have studied in the management of soil health, their 
host plant(s), and features of interest is provided in Table 2.

Endophytes for sustainable plant protection 
and its stress management

Many appreciative efforts have been made to study the role 
of endophytes in a plant’s defense system against different 
stresses. Application of different endophytes can assist in the 
adjustment of plant’s tolerance to various abiotic and biotic 
stresses (Wani et al. 2015). Biofertilization, biocontrol, and 
phytostimulation are the three mechanisms through which 
endophytes help plants in combating unfavorable conditions. 
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It is a well established fact that plants regulate their defense 
system through phytohormonal signaling and its crosstalk. 
The phytohormones induce innate immunity in a plant for 
protection against different phytopathogens. As per Waqas 
et al. (2015), endophytic fungus Penicillium citrinum pro-
vided protection to Sclerotium rolfsii (phytopathogen) by 
increasing the level of jasmonic acid (JA) and salicylic acid 
(SA)-mediated hormone signaling. In addition, they also 
reported that another endophytic species of the same fungus, 
P. formosus, increased plant growth by lowering the level 

of phytohormones associated with stress signaling namely 
abscisic acid (ABA) and JA during heat stress. They also 
regulated other phytohormones levels and produced differ-
ent secondary metabolites for alleviating the same stress. 
Similarly in another study, endophytic Aspergillus niger 
increased the level of gibberellins and auxin to promote 
plant growth under stress (Lubna et al. 2018). During stress 
conditions, the level of ethylene increases in plants causing 
inhibition in root length, root hair, and lateral root develop-
ment. During such instances, endophytes produce an enzyme 

Table 2   Endophytes in improvement of soil health

Endophytes Host plant Features of interest in soil health 
management

Reference(s)

Neotyphodium coenophialum Festuca arundinacea Enhancement of soil carbon and 
nitrogen

Franzluebbers et al. (1999)

Neotyphodium occultans Lolium multiflorum Modulation of soil catabolic activity
Enhancement of soil microbial (fun-

gal) population and their activities

Casas et al. (2011)

Bacillus spp. Solanum nigrum Hyperaccumulation of metal (Cu, 
Cd, and Cr) in soil

Guo et al. (2010)

Burkholderia cepacia Zea mays Phytoremediation of organic con-
taminants (toluene and phenols)

Wang et al. (2010)

Phomopsis liquidambari Bischofia polycarpam Promotion of litter mass degradation
Alleviation of soil nitrogen concen-

tration

Chen et al. (2013)

Phialocephala fortinii Asparagus officinalis Degradation of organic compounds
Improvement of nutrient cycling in 

the soil

Narisawa (2017)
Chamaecyparis obtusa and Rubus 

spp.
Surono and Narisawa (2017)

Enterobacter spp., Microbacterium 
arborescens, and Pantoea stewartii

Leptochloa fusca and Brachiaria 
mutica

Enhancement in the uptake, translo-
cation, accumulation, and phyto-
stabilization of heavy metal (Cr) in 
contaminated soil

Ahsan et al. (2018)

Phomopsis liquidambari Oryza sativa Increment in decomposition of straw 
and total soil nitrogen

Sun et al. (2019)

Epichloë gansuensis Achnatherum inebrians Improvement of soil fertility and soil 
nutrients availability by induc-
ing soil enzyme activity such as 
invertase, alkaline phosphatase 
and urease

Hou et al. (2020)

Serratia spp., and Arthrobacter spp. Brassica juncea Improvement in organic matter 
content of soil

Phytoremediation of vanadium 
contaminated soil

Improvement of plant growth and 
soil health

Wang et al. (2020a)

Phomopsis liquidambaris Acharis hypogaea Alleviation of soil health through 
improved root exudation

Improvement of soil carbon metabo-
lism

Increment of rhizospheric bacterial 
community

Xie et al. (2020)

Acrocalymma
vagum and Paraboeremia 

putaminum

Glycyrrhiza uralensis Ensure plant growth under drought 
stress conditions by structuring 
soil microbiome and maintaining 
soil water content, soil organic 
matter, and nutrient availability

He et al. (2021)
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known as 1-aminocyclopropane-1-carboxylate (ACC) deam-
inase which functions in lowering ethylene levels and pro-
moting plant growth (Santoyo et al. 2016). Sun et al. (2009), 
compared ACC deaminase production capacity in mutated 
and wild type endophytic Burkholderia phytofirmans and 
their impact in canola. They observed that the mutated strain 
was unable to promote the growth of canola seedlings while 
the wild type strain showed remarkable growth promotion. 
The result ascertains that endophytes affect the growth and 
development of plants through ACC deaminase enzyme 
production.

Following a long course of coexistence, endophytes have 
developed the ability to mimic host plant metabolism and 
produce effective bioactive compounds similar to their host 
in vitro as a result of close contact and horizontal gene trans-
fer (Wang et al. 2010). Endophytes produce a vast array of 
secondary metabolites constituting antibiotics, hydrolytic 
enzymes, toxins, and volatile organic compounds (VOCs) 
that play a significant role in alleviating a plant’s defense 
system for mitigation of stresses (Afzal et al. 2019). Hence, 
endophytes are also considered as an emerging source of 
novel bioactive compounds (Singh et al. 2017a). Endo-
phytic Streptomyces spp. provides resistance in chickpea 
by enhancing the level of defense-related compounds such 
as phenols and flavonoids (Singh and Gaur 2017). Kang 
et al. (2018) observed an increased level of nematicidal 
compounds such as 4-vinyl phenol, L-methionine, palmitic 
acid, and piperine in plants colonized by Bacillus simplex, 
inhibited soybean cyst nematode. Co-inoculation of endo-
phytic fungi Beauveria bassiana and mycorrhizae increases 
terpenoids levels in tomato plant leaves, reducing the foliar 
feeding by herbivores (Shrivastava et al. 2015). Endophytes 
also activate the defense pathway by modulating systemic 
acquired resistance in the plant. Endophyte actinobacteria 
isolated from the wheat plant induced the genes of SAR 
such as PR-1 and PR-5 genes and PDF-1.2 and Hel genes 
to regulate JA and ethylene pathway and confers resistance 
against several fungal phytopathogens in A. thaliana (Conn 
et al. 2008). A similar study was also reported by Gond et al. 
(2015a), that endophytic bacteria, Bacillus amyloliquefa-
ciens activate JA-dependent defense pathway by increasing 
the expression of PR-1 and PR-10 genes against the attack of 
fungal pathogens and enhanced the growth and development 
of maize plant. Endophytes also protect plants from oxida-
tion through excessive pesticidal application by producing 
antioxidants (Jan et al. 2020).

Quorum sensing (QS) is responsible for communica-
tion between host and pathogenic microbes as well as 
other bacterial symbionts via signaling molecules like 
N-acyl-homoserine lactone (AHL). Quorum sensing is a 
density-dependent gene expression in bacteria. As the den-
sity increases, the signaling also increases and all cells act 
somewhat like multicellular organisms (Rosenblueth and 

Martínez-Romero 2006). The regulation of gene expression 
in phytopathogenic bacteria needs to produce antibiotics, 
virulence factors, and exoenzymes to degrade cell walls and 
to infect plants (Von Bodman et al. 2003). Plant under stress 
conditions produce signal molecules or mimic the bacterial 
QS to manipulate the QS-regulated behavior of phytopath-
ogenic bacteria (Bauer and Mathesius 2004). Endophytic 
bacteria isolated from Cannabis sativa were investigated 
to disrupt cell-to-cell quorum sensing signals in Chromo-
bacterium violaceum and were proved to act as biocontrol 
agents for bacterial phytopathogens (Kusari et al. 2014). In 
the same way, endophytic isolates of phylum Actinobacteria 
isolated from Phaseolus vulgaris provide resistance from 
phytopathogenic Gram-positive bacteria disruption of QS 
(Lopes et al. 2015). A detailed list of endophytes that have 
been studied in plant protection and stress management and 
their respective features of interest is provided in Table 3.

Endophytes for sustainable management 
of environmental pollution

Detoxification of heavy metals (HMs)

Rapid industrialization and urbanization without proper 
planning is adversely affecting the environment through con-
tamination or pollution. One such pollution is the increas-
ing deposition of HMs and pesticides in soil which is has a 
direct impact on crop production and human health. HMs 
and their isotopes are categorized under elemental pollutants 
while residual pesticides are categorized under organic pol-
lutants. As per WHO (1996), the maximum permissible limit 
of HMs is (0.8, 50, 36, 100, 85, and 35 mg kg−1) in soils and 
(0.02, 0.6, 1, 1.3, 2, and 10 mg kg−1) in plant with respect of 
Cd, Zn, Cu, Cr, Pb, and Ni. However, the amount of these 
HMs is ever-increasing in the soil and the plants leading to 
several fatal human diseases. Endophytes perform the reme-
diation process more effectively than rhizospheric microbes 
because of their close contact with host plants, since plants 
growing in HM contaminated soil naturally employ endo-
phytes with HM-degrading genes. Siciliano et al. (2001) 
support this fact as they reported that endophytes perform 
degradation of nitroaromatic compounds more effectively 
than the rhizospheric microbial community. This was due 
to the presence of nitro-aromatics degradation genes being 
prevalent in endophytes than other soil microbes. Microbes 
and/or genetically engineered microbes have the capacity 
of reducing soil contamination (Pilon Smits et al. 1999). 
Research studies have reported that endophytes such as 
A. calcoaceticus, B. cereus, P. putida, Trichoderma spp., 
Cladosporium spp., P. polymyxa, P. fluorescens, Paecilo-
myces spp., B. subtilis, Rhizobium spp., E. pisciphila, R. 
rubrum, P. agglomerans, Aspergillus spp., Mucor spp., 
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Microsphaeropsis spp., Alternaria spp., Phoma spp., Pey-
ronellaea spp., Steganosporium spp., and Azotobacter spp. 
have the ability to produce different extracellular oxidase 
enzymes such as manganese peroxidase, laccase, and lithium 
peroxidase that helps to degrade various phenolics substance 
and it directly linked to the remediation process (Ongena and 
Jacques 2008; Nandy et al. 2020). The removal of HMs is 
mostly done through absorption, transformation, phytoex-
traction, hyperaccumulation, and translocation. The organic 
pollutants are mostly removed by the process of minerali-
zation, degradation, and detoxification (Meagher 2000). A 
list of endophytes studied for HMs detoxification and their 
respective host(s) is provided in Table 4. 

Detoxification of pesticides

Injudicious use of fertilizers and pesticides has caused 
many physical and physiological discomforts in plants as 
well as in animals. Discolouration, necrosis, and deforma-
tion are the major physical impact of excessive pesticides 
on plants (Geetha 2019) which have significant effects on 
physiological and biochemical processes (Chaudhary et al. 
2020; Giménez-Moolhuyzen et al. 2020). The pesticides 
accumulate in soil mostly through the process of leaching 
which leads to deterioration of soil fertility and soil micro-
bial community. Endophytic microbes play an important role 
to minimize and degrade inside the plant body. A study on 
bark, xylem tissue, and leaves of tea plants showed that there 
are no significant changes in community structure and num-
ber of endophytic colonies in the phyllosphere after pesticide 
treatment (Win et al. 2021). Seed treatment with pesticides 
resulted in alteration of rhizosphere fungal and bacterial 
community in maize plant but leaf fungal endophytic colo-
nies remain unaffected (Nettles et al. 2016). Another study 
on the community-level effect of different concentrations of 
pesticide N-(3,5-dichlorophenyl) succinimide on Nicotiana 
tabacum phyllosphere showed that there was no significant 
impact on alpha and beta diversity of beneficial endophytic 
bacterial community, viz., Alphaproteobacteria, Gammapro-
teobacteria, Sphingomonas, and Pseudomonas (Chen et al. 
2021). All these reports suggest that leaf endophytes are 
more resistant to pesticides and are well-suited candidates 
for degradation agrochemicals.

There are a number of studies on endophytes revealing 
that these microbes establish a symbiotic relationship with 
their host and secrete enzymes to metabolize and detoxify 
various pesticides. For example, an endophytic Pseu-
domonas spp. possesses gene encoding organophosphate 
hydrolase enzyme which is responsible for degradation of 
97% of organophosphate pesticide such as chlorpyrifos 
(Barman et al. 2014a, b). A group of endophytes having 
a symbiotic relationship with P. fugax (one of the major 
winter weeds in the oilseed rape field in China) helped Ta
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to promote resistance from quizalofop-p-ethyl, an acetyl 
CoA carboxylase-inhibiting herbicide (Liu et al. 2020). In 
another study, it was shown that endophytic bacteria Pan-
toea ananatis Sd-1 degrade carbaryl by secreting hydro-
lytic enzyme carbohydrate esterase (Yao et al. 2020). This 
enzyme esterase is a major enzyme in hydrolysis of other 
pesticidal compounds as well namely: organochlorines, 
pyrethroids, and carbamates (Sharma et al. 2018). Since 
endophytes exhibit significant growth and multiplication 
rate within plant tissue, they can be used as a potential 
tool for the bioremediation of environmental contaminants 
such as xenobiotics and pesticides (Gupta et al. 2020; Win 
et al. 2021). Moreover, plant–endophyte interaction not 
only enhances phytoextraction or phytoremediation of 
environmental pollutants but they perform an excellent 
job for plant growth promotion even under biotic and abi-
otic stress conditions (Waller et al. 2005; Becerra-Castro 
et al. 2013). A detailed list of endophytes studied in the 

bioremediation of pesticides and their respective host(s) 
and properties is provided in Table 5.

Endophytes for human health

Endophytes are a very precious source of secondary metabo-
lites of which many are antioxidant, antimicrobial, and anti-
cancerous. They are just like a treasure house of bioactive 
molecules that needs to be explored. Many of these bioac-
tive molecules can be used for the management of human 
diseases either directly or after transformation (Devi and 
Prabakaran 2014; Gouda et al. 2016). The trait of produc-
ing bioactive molecules have been incorporated in them 
through the transfer of genetic information from higher 
plants during evolution as explained earlier. The classical 
example of this fact is taxol-producing endophyte Metarhi-
zium anisopliae isolated from the bark of Taxus spp., which 

Table 4   Endophytes in bioremediation of heavy metals (HMs)

Host plant Microbes HMs bioremediated Reference(s)

Salix variegate Franch Chromosporium spp., Fusarium spp., and Gonatobotrysi spp. Cd An et al. (2015)
Solanum lycopersicum L. P. janthinellum LK5 Al Khan et al. (2015a)
Populus spp. Serenpidita vermifera P04 Cd, Zn, Pb, and Cu Lacercat-Didier et al. (2016)
Dysphania ambrosioides L. Plectosphaerella spp., Cladosporium spp., and Verticillium 

spp.
Pb and Zn Li et al. (2016)

Penicillium spp. FT2G59 and P. columnaris FT2G7
Imperata cylindrica L. and 

Bothriochloa ischaemum 
L.

Leotiomycetes and Pezizomycetes Pb and Cd Tong et al. (2017)

Solanum nigrum L. Colletotrichum spp., Alternaria spp., and Fusarium spp. Cd Khan et al. 2017a, b
F. tricinctum, and A. alternata Cd

Brassica napus L. Fusarium spp., Penicillium spp., and Alternaria spp. Cd and Pb Shi et al. (2017)
Zea mays Westerdykella spp. Hg Pietro-Souza et al. (2020)

Table 5   Endophytes in bioremediation of pesticides

Endophytes Host plant Pesticide bioremediated Properties Reference(s)

Sphingomonas spp. Cytisus striatus Hexachlorocyclohexane Phytoremediation of HCH
Enhancement of plant growth

Becerra-Castro et al. (2013)

Pseudomonas spp. Balloon flower Chlorpyrifos Synthesis of organophosphate 
hydrolase enzyme

Barman et al. (2014a, b)

Polypogon fugax Quizalofop-p-ethyl Degradation of acetyl-CoA car-
boxylase-inhibiting herbicide

Liu et al. (2020)

Rhizobium leguminosarum Pisum sativum Kitazin Production of plant growth-pro-
moting bioactive compounds 
to enhance plant growth under 
pesticide stress condition

Shahid et al. (2018)

Alphaproteobacteria, Gam-
maproteobacteria, Sphingo-
monas, and Pseudomonas spp.

Nicotiana tabacum N-(3,5-Dichlorophenyl) 
succinimide

Negative responders of broad-
spectrum pesticide treatments

Chen et al. (2020)

Pantoea ananatis Oryza sativa Carbaryl Secretion of carbohydrate ester-
ase to hydrolyze carbaryl

Yao et al. (2020)
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is a very important life-saving anticancer agent (Zhang et al. 
2009). Going by the classical example, endophytes associ-
ated with medicinal plants can be a very eminent source of 
bioactive molecules and can be utilized for producing natu-
ral drugs (Singh and Dubey 2015). Several bioactive com-
pounds constituting vinblastine, paclitaxel, camptothecin, 
hypericin, etc. are already produced at a commercial scale 
from the endophytes isolated from their respective plants and 
are of pharmaceutical importance (Nicoletti and Fiorentino 
2015). Endophytes are also gaining the limelight for human 
health because many studies suggest that novel bioactive 
molecules produced by them are important for combating 
antibiotic resistance by human pathogenic microbes (Fadiji 
and Babalola 2020).

Endophytes are also a good source of antioxidant com-
pounds that are now deemed to be a potential alternative 
for the prevention and treatment of human diseases linked 
with reactive oxygen species (ROS). Thus, diseases such 
as diabetes, hypertension, cancer, Alzheimer, ischemia, 
and Parkinson can be treated with the help of antioxidants 
derived from endophytes (Mishra et al. 2014). Many preva-
lent human deficiency diseases can be overcome by taking 
that particular nutrient through diet. Plants form a major part 
of the diet and their biofortification with nutrients can help 
in providing the deficient nutrient to the human population 
naturally as a replacement of chemical supplements. Endo-
phytes can be an integral part of this concept as well, since, 
many of the reports have proved that endophytic microbes 
associated to crop also helps in biofortification (Singh et al. 
2017b; Trivedi et al. 2020a). The underlying mechanisms 
in crop biofortification by endophytes are improvement of 
nutrient absorption, direct synthesis and release of micro-
nutrients, and induction of micronutrient synthesis in plants 
(Ku et al. 2019). The list of potential use of endophytes for 
human health also continues to grow with the advancements 
in science.

Conclusions

Excessive use of synthetic fertilizers and pesticides and 
changing environment has led to unfertile agricultural lands 
causing a major problem in feeding the growing population. 
The inevitable concern arising due to this is enhancing the 
crop productivity under shrinking land and minimization 
of chemical inputs. Hence, we have provided some critical 
insights about an emerging alternative of utilizing the plant 
endophytic microbiome for combating the concern. Endo-
phytes are significantly influential and are providing us with 
the opportunity to overcome the global problem of agricul-
tural productivity. Augmentation of indigenous and effec-
tive beneficial endophytes has the potential to bring conse-
quential positive impacts on the current agriculture scenario 

by improving soil and yield quality. Endophytes have more 
potential than other rhizosphere microbes as they can be 
inoculated in the same plant species from which they are iso-
lated and can easily colonize inside the plant body to provide 
sustainable crop productivity and food security under dif-
ferent environmental stresses. A consortium of endophytic 
microbes can be more effective as climate-resilient bioferti-
lizers and biocontrol agents. In addition, the consortium can 
be a powerful approach for boosting plant growth and pro-
ductivity along with the maintenance of the soil microbial 
community. The approach is environment friendly, ecologi-
cally sound, and socially acceptable. However, the studies 
on the effects of endophytic microbial consortium are very 
limited and should be explored further in combination with 
plant-growth-promoting microbes (PGPMs) for boosting the 
productivity in agricultural crops and improvement of soil 
health under different environmental conditions.
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