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A B S T R A C T   

COVID-19 is a respiratory disease that, as of July 15th, 2021, has infected more than 187 million people 
worldwide and is responsible for more than 4 million deaths. An accurate diagnosis of COVID-19 is essential for 
the treatment and control of the disease. The use of computed tomography (CT) has shown to be promising for 
evaluating patients suspected of COVID-19 infection. The analysis of a CT examination is complex, and requires 
attention from a specialist. This paper presents a methodology for detecting COVID-19 from CT images. We first 
propose a convolutional neural network architecture to extract features from CT images, and then optimize the 
hyperparameters of the network using a tree Parzen estimator to choose the best parameters. Following this, we 
apply a selection of features using a genetic algorithm. Finally, classification is performed using four classifiers 
with different approaches. The proposed methodology achieved an accuracy of 0.997, a kappa index of 0.995, an 
AUROC of 0.997, and an AUPRC of 0.997 on the SARS-CoV-2 CT-Scan dataset, and an accuracy of 0.987, a kappa 
index of 0.975, an AUROC of 0.989, and an AUPRC of 0.987 on the COVID-CT dataset, using our CNN after 
optimization of the hyperparameters, the selection of features and the multi-layer perceptron classifier. 
Compared with pretrained CNNs and related state-of-the-art works, the results achieved by the proposed 
methodology were superior. Our results show that the proposed method can assist specialists in screening and 
can aid in diagnosing patients with suspected COVID-19.   

1. Introduction 

COVID-19 is a disease caused by Severe Acute Respiratory Syndrome 
2 (SARSCoV-2) [1]. As of July 15th, 2021, COVID-19 has infected 
around 187 million people worldwide, and has been responsible for 
about 4 million deaths [2]. Early diagnosis of COVID-19 is important for 
the treatment and control of the disease. Real-time polymerase chain 
reaction (RT-PCR) or imaging exams such as chest X-ray and comput-
erized chest tomography (CT) examination have been shown to be 
feasible alternatives for the first diagnosis of COVID-19 [3]. Studies have 
reported that X-ray and CT scans show changes before the onset of 
COVID-19 symptoms for some patients [4–6]. In particular, chest CT 
exams have given fast and efficient results, and show typical radio-
graphic characteristics for patients infected with COVID-19 [7–10]. 

However, due to the rapid increases in the number of patients with 

COVID-19, overloading of the capacity of public health services may 
result in a shortage of doctors and radiologists to analyze CT images. In 
this context, computer-aided diagnostic (CAD) systems can offer an 
alternative to assist the specialist in medical diagnosis. These systems 
use computational techniques for image processing and analysis, thus 
providing a second opinion to the doctor, and are especially important in 
cases where diagnosis is challenging for the human eye [11–13]. 

Recently, deep learning methods have shown promise in the devel-
opment of CAD systems [14,15]. Convolutional neural networks (CNNs), 
which are deep learning techniques, can automatically interpret CT 
images and predict whether a patient is positive for COVID-19. Although 
CNN architectures perform very well in image classification, the 
development of a CAD system using a CNN requires large datasets and 
high processing power in order to give good results. 

In this work, we propose the use of a relatively simple CNN 
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architecture for image characterization that requires low processing 
power. We then use a genetic algorithm to select the set of features that 
best represents the images, and classification is performed using four 
classifiers with different approaches that are commonly used in CAD 
systems. Finally, we evaluate our method on two public image data-
bases. We believe that this work contributes to the fields of medicine and 
computing in the following respects:  

1. In the field of medicine, we propose an efficient, low-cost method 
that can be applied in real clinical environments to aid in the diag-
nosis and screening of patients with COVID-19;  

2. In the field of computing, and specifically in the context of methods 
for COVID-19:  
● We propose a relatively simple and robust CNN architecture;  
● We use efficient techniques to optimize the hyperparameters of 

the architecture; and,  
● We construct a genetic algorithm (GA) to select the best attributes 

to classify CT scans into COVID-19 and Non-COVID-19 images. 

The paper is organized as follows: in Section 2, related work is dis-
cussed; in Section 3, we present the proposed methodology; the results 
are presented and discussed in Sections 4 and 5, respectively; and in 
Section 6, we present the conclusions and suggest future work. 

2. Background and related work 

COVID-19 is a respiratory disease, the first case of which was 
detected in Wuhan (in the Hubei province of China) and described as a 
case of pneumonia [2]. Later, the virus was named Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2), and the disease caused 
by this virus was called COVID-19. On March 11th, 2020, the World 
Health Organization (WHO) declared COVID-19 a pandemic [16]. 
COVID-19 can be transmitted from person to person, and this poses the 
main challenge in terms of controlling its transmission and obtaining an 
early, quick, and accurate diagnosis [17]. Chest X-Ray and CT scans 
have been the two main types of images used for the classification and 
diagnosis of this disease [4,18]. Since the focus of this work is on the use 
of CT images for the diagnosis of COVID-19, this section reviews the 
existing literature on the diagnosis of COVID-19 using CT images. 

The use of deep learning techniques for the detection of COVID-19 
has recently become a trending topic, and has attracted a lot of atten-
tion. Chaudhary and Pachori [17] used subband images (SBIs) to train 
several pre-trained CNN models using a transfer learning approach. 
Various classifiers were used to differentiate COVID-19 from other viral 
and bacterial types of pneumonia and healthy individuals. Their meth-
odology achieved an accuracy of 650.976, a precision of 0.970, a 
sensitivity of 0.970, a specificity of 0.965, an F-score of 0.970, and an 
AUC of 0.980. Wang et al. [19] proposed the use of a redesigned 
COVID-Net architecture for the diagnosis of COVID-19. Their method-
ology obtained an accuracy, F-score, recall, precision, and AUC of 0.908, 
0.908, 0.858, 0.957, and 0.962, respectively, for the SARS-CoV-2 CT 
scan dataset, and an accuracy, F-score, recall, precision, and AUC of 
0.786, 0.788, 0.797, 0.780 and 0.853, respectively, on the COVID-CT 
dataset. 

Kaur et al. [20] proposed a system based on deep features extracted 
from the MobileNetv2 architecture and a parameter-free BAT (PF-BA-
T)-optimized fuzzy K-nearest neighbor (PF–FKNN) classifier. Their 
methodology obtained an accuracy of 0.993, a precision of 0.992, a 
recall of 0.996, an F-score of 0.994, and an AUC of 0.995. Sen et al. [21] 
proposed a CNN architecture to extract the characteristics of the images, 
and then carried out feature selection in two stages. In the first stage, 
they applied a guided feature selection methodology that employed two 
filter methods, mutual information (MI) and Relief-F, for the initial 
screening of the characteristics obtained from the CNN model. In the 
second stage, the dragonfly algorithm (DA) was used to select the most 
relevant characteristics. Their methodology achieved an accuracy of 

0.983 on the SARSCoV-2 CT scan dataset and 0.900 on the COVID-CT 
dataset. 

Carvalho et al. [22] used a LeNet-5 architecture to extract the fea-
tures from CT images, and the classification was carried out by XGBoost. 
This methodology obtained an accuracy of 0.950, a recall of 0.950, a 
precision of 0.949, an F-score of 0.950, an AUC of 0.950, and a kappa 
index of 0.900. The same authors [14] developed a pre-processing step 
for images using histogram equalization and CLAHE, and used a basic 
CNN to extract the features from the CT scans. Classification was then 
performed using several classifiers. The results showed an accuracy of 
0.978, a recall of 0.977, a precision of 0.979, an F-score of 0.978, an AUC 
of 0.977, and a kappa index of 0.957. 

Gifani et al. [23] proposed the use of 15 pre-trained CNN architec-
tures. To improve the performance of their approach, they developed a 
method that selected a set of architectures based on voting by the ma-
jority of the best combination of results. This approach obtained an 
accuracy of 0.850, a recall of 0.854, and a precision of 0.857. He et al. 
[24] proposed a method called Self-Trans that combined contrasting 
self-supervised learning with transference learning to pre-train net-
works. This scheme obtained an F-score of 0.850 and an AUC of 0.940 
for the diagnosis of COVID-19. 

Chen et al. [10] adopted a prototype network for the diagnosis of 
COVID-19 that was pre-trained using a momentum contrasting learning 
method [25]. They obtained values for the accuracy, precision, recall, 
and AUC of 0.870, 0.885, 0.874, and 0.932, respectively. Jaiswal et al. 
[26] used learning transfer with a pre-trained DeseNet201 network on 
the ImageNet [27] dataset to diagnose COVID-19, achieving an accuracy 
of 0.962, a precision of 0.962, a recall of 0.962, an F-score of 0.962, and 
a specificity of 0.962. Hou et al. [28] proposed the use of a CNN ar-
chitecture with peripheral recognition enhanced with contrasting rep-
resentation for the diagnosis of COVID-19. This scheme achieved values 
for the accuracy, sensitivity, specificity, and AUC of 0.981, 0.977, 0.984, 
and 0.992, respectively. Loey et al. [29] used classical data augmenta-
tion techniques in conjunction with a conditional generative adversarial 
network (CGAN) based on a deep transfer learning model to diagnose 
COVID-19, obtaining an accuracy of 0.829, a sensitivity of 0.776, and a 
specificity of 0.876. 

The medical imaging data sets used in the studies described above 
were SARS-CoV-2 CT-Scan [17,20,26], COVID-CT [10,14,22–24,28,29], 
SARS-CoV-2 CT-Scan and COVID-CT [19,21]. These sets of images are 
too small to train very deep CNN architectures, and lead to overfitting. 
To alleviate this problem, some authors have used pre-trained CNN ar-
chitectures on the ImageNet dataset [17,23,26] and others have used 
data augmentation [29]. Some attempts have been made to explore the 
potential of contrasting learning [10,19,24]. In addition, CNNs have 
been used to extract convolutional features [14,20–22], and have yiel-
ded very promising results. 

From the discussion above on prior research in this area, it is clear 
that many researchers have been striving to develop automatic diag-
nostic methods for COVID-19. Although these approaches have made 
significant contributions to the diagnosis of COVID-19, it can be seen 
that methodologies based on deep CNNs are slow, and that some of the 
methods have relatively low precision in terms of the diagnosis of 
COVID-19. In our work, we explore the use of a simple CNN architecture 
to extract the convolutional features. We also apply an additional step to 
optimize the CNN hyperparameters using the tree Parzen estimator 
(TPE) and the selection of characteristics using a GA. In particular, we 
have approached this as an auxiliary learning task that can effectively 
improve the performance of the COVID-19 rating of normal people. 

3. Methodology 

To enable a clearer understanding of the proposed methodology, 
Fig. 1 illustrates the five steps followed in our approach, as follows: (i) 
image acquisition; (ii) feature extraction, which is divided into two 
parts: (a) using the proposed CNN architecture; and (b) using the 
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optimization of hyperparameters; (iii) feature selection using GA; (iv) 
the classification of images, using four classifiers with different ap-
proaches; and (v) the validation of results. 

3.1. Image acquisition 

To evaluate and validate the proposed method, we used two public 
CT image datasets, SARS-CoV-2 CT-Scan [30] and COVID-CT [31]. 

● SARS-COV-2 CT-Scan [30] is a publicly available set of 2D CT im-
ages. It contains 2,482 CT images, 1,252 of which are positive CT 
scans for SARS-CoV-2 infection (COVID-19), and 1,230 are CT scans 
of patients that were not infected with SARS-CoV-2 (Non-COVID-19). 
The sizes of the images vary from 119 × 104 to 416 × 512. Fig. 2 
shows examples of images from this dataset.  

● COVID-CT [31] is a publicly available set of 2D CT images for the 
binary classification of COVID-19. The set consists of 708 CT images, 
of which 312 show COVID-19 cases and 396 Non-COVID-19 cases. 
The resolution of these images ranges from 102 × 137 to 1853 ×
1485. Fig. 2 shows examples of images from this dataset. 

Although CT images are normally in DICOM format, the images in 
the two databases used here are in PNG format. At the pre-processing 
stage, we resized the images to 224 × 224 in the axial plane, which 
was the input size for the proposed CNN architecture, and the images 
were then normalized to between 0 and 1, to provide better stability for 
the CNN model [17]. 

3.2. Feature extraction 

In this section, we introduce the procedures used to build the pro-
posed architecture and carry out hyperparameter optimization, with the 
aim of achieving better performance. 

3.2.1. Proposed architecture 
Several CNN architectures are already established in the literature 

that were designed to handle numerous different classes [32]. However, 
these architectures were designed to be robust when trained on large 
datasets, and when trained on smaller datasets, they tend towards 
overfitting. Since the image datasets contained 3,190 images, we 
decided to create a CNN architecture from scratch in order to achieve 
high accuracy, to avoid overfitting of the CNN architecture and to create 

Fig. 1. Proposed methodology.  

Fig. 2. Example images from two different datasets, for (a) COVID-19 and (b) Non-COVID-19 patients.  
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a less complex architecture that required less hardware. 
CNN is a neural network that implements several distinct layers, the 

main ones being convolutional, pooling, and fully connected layers [14, 
22]. The convolutional layer has the function of extracting attributes 
from the input data, composed of several filters followed by a non-linear 
activation function. The pooling layer is responsible for reducing the 
dimensionality of the resulting volume after the convolutional layers, 
helping to make the representation invariant to small translations at the 
entrance. Finally, the fully connected layer is responsible for propa-
gating the signal through point-to-point multiplication and an activation 
function. 

Initially, four CNN architectures were implemented. Fig. 3 shows the 
convolutional layers that were used to extract features and the fully 
connected layers with the final activation function used for classifica-
tion. The architectures shown in Fig. 3(a) and (b) have four convolu-
tional layers in the backbone, where as those in Fig. 3(c) and (d) have 
five and six convolutional layers, respectively, in the backbone. In 
addition to the standard layers of a CNN, batch normalization, regula-
rization, and dropout operations were applied to reduce overfitting. A 
rectified linear unit (ReLu) was used as an activation function and a 
maximum function for pooling operations. To calculate the probability 
of data belonging to a particular class after the fully connected layers, 
the architectures presented in Fig. 3(a), (b), and (c) use a sigmoid 
function, while in the architecture presented in Fig. 3(d), this is changed 
to a softmax function. 

To choose the best architecture from these four schemes, we 

randomly split the features into training (80%) and test (20%) sets. It is 
important to note that the same image sets defined for training and 
testing were used in all the experiments, meaning that the image set used 
for testing was not known to the model. The set of training images was 
divided into two further sets of 90%, which was used to train the ar-
chitectures, and 10% as a validation set. After training each epoch, the 
validation set was used to evaluate each architecture. The ultimate goal 
was to achieve an architecture that achieved higher accuracy while 
avoiding overfitting. The architecture most likely to yield these results 
would be the one with the smallest oscillations in the accuracy. 

After evaluating the four proposed architectures (Fig. 3), we found 
that the best results were yielded by Architecture 1. We believe this was 
due to the properties of the images, since they had a resolution of only 8 
bits per pixel and varying dimensions. When converted to network input 
standards, they provided the best properties. 

In addition, our network has low complexity, as it contains only a few 
layers and consequently requires low processing power. 

Fig. 4 presents the learning curve for the best alternative (Architec-
ture 1) over 200 training epochs. We can observe that as the number of 
training epochs increases, the accuracy tends to improve and the loss 
tends to decrease. For 200 epochs, the proposed architecture shows a 
stable learning curve, with a training accuracy of 0.985 and a loss of 
0.014, a validation accuracy of 0.988, and a validation loss of 0.008. 
Architecture 1 is composed of an input layer, four convolutional layers 
with 32 filters and a 3 × 3 kernel, four pooling layers with step 2; a batch 
normalization layer in each convolutional block, a 30% dropout layer in 

Fig. 3. The four proposed CNN architectures. Architectures (a) and (b) have four convolutional layers in the backbone, whereas architectures (c) and (d) have five 
and six convolutional layers, respectively. 
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the third convolutional block and a 20% dropout layer in the fourth 
convolutional block, and two fully connected layers, the first of which 
has 128 neurons and the second 100 neurons, where the latter is used to 
extract the features of each image. 

3.2.2. Hyperarameter optimization 
CNN architectures are sensitive to the choice of specific hyper-

parameters for a given problem [33]. In this work, a hyperparameter 
optimization step was applied to estimate the CNN parameters for the 
problem in an automated and efficient way. We used the TPE [34] as an 
evolution mechanism and to select the parameters. When optimizing a 
hyperparameter x, TPE creates two hierarchical processes, l(x) and g(x), 
for all target variables in the generative models. Process modeling oc-
curs when the objective function is defined in the range specified by y*, 
as shown in Equation (1). 

p(x|y,D) =

{
l(x) if (y < y∗),
g(x) if (y ≥ y∗). (1) 

The processes l(x) and g(x) are adjusted using Parzen’s univariate 
estimators [34]. Based on these two distributions, closed terms can be 
optimized according to the expected improvement (EI) [34]. In this 
work, an EI acquisition function was used [35]. The search space for the 
CNN hyperparameters used at the optimization stage is presented in 
Table 1. 

Within the search space shown in Table 1, the CNN was trained for 
200 epochs for each hyperparameter configuration, which was estab-
lished in Hyperopt. The hyperparameters selected for the proposed CNN 
architecture are shown in Table 2, and the learning curve for the selected 
hyperparameters is shown in Fig. 5. 

Over 200 training epochs, the architecture yielded a training accu-
racy of 0.998, a training loss of 0.008, a validation accuracy of 0.999, 
and a validation loss of 0.001. For the evaluation data without param-
eter optimization (Fig. 4), we can see an improvement in the model’s 
performance evaluation parameters. 

As shown in Table 2, the network was changed as follows: the third 
and fourth block dropout layers were set to values of 33% (previously 
30%) and 27% (previously 20%), respectively; the first fully connected 
layer contained 72 neurons (previously 128), and the second contained 
120 neurons (previously 100). As we used the last fully connected layer 
to extract the features, this architectural configuration allowed us to 
extract a set of 120 features for each CT image. 

Second Bergstra et al. [34], optimization methods based on Bayesian 
models build a probability model of the objective function to propose 
smarter choices for the next set of hyperparameters to be evaluated. 
Based on this, we use TPE, an algorithm that uses Bayesian reasoning, to 
build the substitute model and select the next hyperparameters using EI. 
TPE recommends the best candidate hyperparameters for evaluation, 
thereby improving the objective function score much faster than with a 

Fig. 4. Model evaluation for the proposed CNN architecture (architecture 1).  

Fig. 5. Learning curves for the CNN architecture with the selected hyperparameters.  

Table 1 
Search space for the proposed CNN hyperparameters.  

Parameters Value Range 

Learning rate [0.1, 0.01, 0.001] 
Decay rate [0, 1] 
First fully connected layer [50, 200] 
Second fully connected layer [50, 200] 
First Dropout [0.1, 0.5] 
Second Dropout [0.1, 0.5]  

Table 2 
Selected hyperparameters.  

Parameters Value 

Learning rate 0.01 
Decay rate 0.7 
First Fully Connected Layer 72 
Second Fully Connected Layer 120 
First Dropout 0.33 
Second Dropout 0.27  
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random or grid search, requiring fewer overall objective function eval-
uations, and giving a shorter execution time to find the best hyper-
parameters. In addition, TPE is more efficient at finding the best 
hyperparameters for a machine learning model than a random or grid-
ded search [36]. 

3.2.3. Platforms and hardware used 
The CNN architectures were implemented using Tensorflow [37] and 

Keras [38] in a Python environment. The experiments were run in the 
Google Colab [39] environment, which offers 12.72 GB of RAM and 
358.27 GB of hard disk space at each runtime of 12 h, after which the 
runtime is reset and the user must establish a new connection. The final 
model used to extract the features (Architecture 1) was achieved by 
training the network with the following parameters: 200 epochs, the 
Adam training algorithm [40], a decay rate of 0.9, a batch size of 32, and 
a learning rate of 10− 3. 

3.3. Feature selection 

CNN models tend to extract and select only the most representative 
features of the input image. However, the number of features extracted 
by the CNNs is not always essential, since the number of features is 
directly related to the architecture used, especially when few images are 
available for training. The deeper the network, the more features it will 
extract. Based on this, we consider the possibility that the features 
extracted by the CNN are not the most significant. Furthermore, working 
with a reduced set of features can offer benefits in several respects, such 
as lower processing times and a reduction in the number of correlated, 
irrelevant, or noisy variables. 

To address this issue, we use a GA [41] to select the set with the best 
features extracted with the proposed architecture. We chose to use a GA 
because the evolutionary process on which it is based can provide fea-
tures that represent the best solution for a particular dataset, and 
consequently give better results. The GA used in our method is detailed 
below. The aim is to find the best set of features to classify CT images as 
COVID-19 and Non-COVID-19.  

● Features are first extracted for each input image using the proposed 
model;  

● The initial population is then created with n individuals (in our tests, 
n = 50). Each individual is represented by values of zero or one, 
indicating the absence or presence of a given attribute in the indi-
vidual. Individual values are initialized randomly. The size of each 
individual corresponds to the total number of extracted features. 
Fig. 6 shows an example of one individual.  

● Classification is performed using a multi-layer perceptron (MLP) 
with all the default parameters [42]. To assess the aptitude of each 
individual in a given generation, we calculate the fitness based on the 
kappa index [43]; in other words, the individual with the best fitness 
will always be the one with the highest kappa index value. The 
fitness calculation is shown in Equation (2). This metric is calculated 
based on a confusion matrix made up of the number of true positives 
(TP), false positives (FP), true negatives (TN), and false negatives 
(FN). 

fitness =
Po − Pe

1 − Pe
(2)  

where, 

Po =
TP + TN

TP + TN + FP + FN
, (3)  

and 

Pe =
[(TP + TN)(TP + FP)] + [(TN + FN)(TN + FP)]

(TP + TN + FP + FN)
2 (4)    

● To select the pairs of parents who will mate to generate two new 
children, the roulette method [44] is used to select individuals with 
the highest aptitude. A one-point crossover [45] technique is used, in 
which one crossover point is chosen at random for each pair of 
parents to be mated. The first offspring generated from this cross is 
made up of the genes to the right of the first parent’s crossover point 
and to the left of the second parent’s crossover point, and vice versa 
for the second child. Equation (5) is used to calculate the crossing: 

x[i]←
{

P1[i] if i < γ
P2[i] if i ≥ γ < t (5)  

where x is the vector of child elements; i denotes the index of the cor-
responding position between parents and children; t represents the size 
of the parent; γ denotes a randomly chosen one-point crossover less than 
t; and P1 and P2 represent the element vectors for the parents. 

● A bitwise mutation [44] was used, which is the most common mu-
tation operator in binary encodings. This approach considers each 
gene separately, allowing each bit to be subjected to a small proba-
bility of being inverted. The new population is created using a 
concept known as elitism, in which some of the best individuals of 
the past generation are taken to generate the best children. The 

Fig. 6. Example of the creation of an individual.  
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proportion chosen was 20% elitism and 80% new children born. The 
mutation rate used in our method was 5%. The evolutionary cycle 
was repeated until the stopping criterion was reached. 

Fig. 7 presents a summary of the steps applied by the GA in our 
method. It can be seen that after the stopping criterion is reached, 
following the selection criteria applied in the GA, the best feature set is 
found. The number of features selected by the GA is independent, and 
can vary depending on the data analyzed (Table 6). When the set of best 
features has been selected, the final classification is then made. It is not 
necessary to retrain the network, since the task of the GA is only to select 
the most representative set of features for the data sample, and this set 
will then be passed as input to the classifiers. 

3.4. Classification 

Classification is a process of categorization based on the knowledge 
acquired in a dataset that contains observations for which the category is 
known. In this case, classification consisted of categorizing the CT im-
ages as COVID-19 and Non-COVID-19 cases using several classifiers: a 
random forest approach [46], a multi-layer perceptron (MLP) [42] and a 
support vector machine (SVM) [47] (available in the sci-kitlearn li-
brary), and an eXtreme Gradient Boosting (XGBoost) algorithm [48]. 
Table 3 presents a summary of the parameters used for each classifier; in 
each case, the default parameters were used. 

3.5. Validation of results 

We validated the results based on four commonly used statistical 
evaluation metrics in the literature: the accuracy (A), recall (R), preci-
sion (P), and F-score (F), as shown in Equations (6)–(9), respectively. 
These metrics are calculated based on a confusion matrix containing the 
number of true positives (TP), false positives, (FP), true negatives (TN) 
and false negatives (FN). 

A =
TP + TN

TP + TN + FP + FN
(6)  

R =
TP

TP + FN
(7)  

P =
TP

TP + FP
(8)  

F = 2 ×
R × P
R + P

(9) 

The kappa index (K) measures the agreement between the results 
from the proposed methodology and the ground truth labels assigned by 

pathologists [43]. The area under the receiver operating characteristic 
(AUROC) curve measures how well the classifier can distinguish be-
tween the classes based on the true positive rate versus the false positive 
rate [49]. The area under the precision-recall curve (AUPRC) measures 
the number of true positives divided by the sum of the true positives and 
false positives [50]. The closer to one the value of these validation 
metrics, the more effectively the classifier can distinguish between 
COVID-19 and Non-COVID-19 images. 

4. Experiments and results 

To demonstrate the efficiency of the proposed methodology, we 
performed experiments on the test set containing 20% of the images 
(Section 3.2.1). The features were first extracted with the proposed CNN 
architecture, and classification was then carried out using the algo-
rithms described in Section 3.4. Table 4 presents the results. 

As shown in Table 4, the results obtained by the classifiers in the two 
datasets were satisfactory for the categorization of CT scans into COVID- 
19 and Non-COVID-19 images. XGBoost performed best on both data-
sets, because as it gives good results for large feature sets. Overall, the 
results showed that the proposed CNN could extract robust features, 
allowing the classifiers to achieve promising performance in terms of the 
categorization of CT images, since all of the classifiers yielded compa-
rable results. 

CNNs are sensitive to the choice of specific hyperparameters for a 
problem. To address this issue, we applied a step in which the best 
hyperparameters for the proposed architecture were determined (as 
described in Section 3.2.2). When the proposed CNN architecture 
hyperparameters had been optimized, the features were extracted from 
the CT images. The results from the optimized network are presented in 

Fig. 7. Flowchart of the genetic algorithm used for feature selection.  

Table 3 
Summary of parameters used in each classifier.  

Classifier Parameters 

Random 
forest 

bag size percent = 100, batch size = 100, number of execution slots 
= 1, max depth = 0 (unlimited), number of randomly chosen 
attributes = 0, number of iterations to be performed = 100, 
minimum number of instances per leaf = 1.0, minimum variance for 
split = 0.001, random number seed to be used = 1 

MLP learningrate = 0.3, momentum = 0.2, number of epochs used for 
training = 500, validation set size = 0 (the network will by training 
for the specified number of epochs), seed = 0, validation threshold =
20, hidden layers = ((number of attributes + classes)/2) 

SVM C = 1.0, kernel = radial basis function (RBF), degree = 3, gamma =
scale, shrinking = true, probability = false, tol = 0.001, cache size =
200, max iter = − 1, random state = none 

XGBoost max depth = 7, learning rate = 0.1, ite = 1000, gama = 0, max delta 
step = 1, objective = “multi:softmax”  
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Table 5. 
From the results in Table 5, we observed that the optimization of 

CNNs hyperparameters provided more representative features for cate-
gorizing CT images into COVID-19 and Non-COVID-19 cases. The MLP 
classifier obtained the best results on both datasets. Furthermore, when 
we compare the results in Table 4 with those obtained after hyper-
parameter optimization, we notice that all of the classifiers achieved 
better results in the second case. If we consider the kappa index as the 
most important metric, the classifiers are shown to be able to categorize 
CT images very efficiently. These results demonstrate the effectiveness 
of optimizing the proposed CNN hyperparameters, as this gives features 
that allow for better discrimination between COVID-19 and Non-COVID- 
19 images. 

The set of features extracted from the images must be representative 
in order to enable a useful classification, and must be sufficient to avoid 
causing errors in the classification step. In view of this, another impor-
tant aspect of the proposed method is the selection of the most important 
features via a GA. Table 6 presents a summary of the experiments per-
formed with feature selection. 

We used a GA to carry out feature selection (Section 3.3) in the 
proposed architecture, both with and without hyperparameter optimi-
zation. We present the results for both architectures here to demonstrate 
that our feature selection method with a GA is efficient. As shown in 
Table 6, the GA selects different numbers of features for each experi-
ment; this is as expected, since a specific solution will be found for each 
dataset. After feature selection, we carried out data classification again, 

using only the MLP classifier, since this was the algorithm that yielded 
the best results in our experiments (Table 5). Table 7 presents the results 
obtained with the feature selection by GA. 

Table 7 shows that feature selection using GA performed best in 
terms of categorizing CT scans into COVID-19 and Non-COVID-19 im-
ages. A comparison of the kappa index obtained with the MLP classifier 
for the SARS-COV-2 CT-Scan dataset in Table 4 (without hyper-
parameter optimization) with those obtained in Table 7 shows that the 
selection of features yielded an improvement of 0.024, while on the 
COVID-CT dataset, the MLP obtained an improvement of 0.141 in the 
kappa index. When the values of the kappa index for the features ob-
tained with the proposed architecture are compared with the results of 
hyperparameter optimization (Table 5), we see that feature selection 
(Table 7) gave an improvement in the kappa index of 0.007 on the SARS- 
COV-2 CT-Scan dataset and 0.078 on the COVID-CT dataset. We can 
therefore conclude that even with a smaller feature set, it is still possible 
to improve on the results obtained in all of our experiments with the 
proposed architectures. 

Finally, to further evaluate the proposed method, we performed a 
new experiment in which we considered all images in the SARS-CoV-2 
CT-Scan dataset (2,482 images) as a training set, and applied the final 
prediction model to the COVID-CT dataset (708 images). In this exper-
iment, we applied the proposed architecture with hyperparameter 
optimization, with the best features selected by the AG that for this 
experiment were selected 64, using the MLP classifier. The results were 
encouraging: in this experiment, our method achieved an accuracy of 
0.901, a recall of 0.901, a precision of 0.899, an F-score of 0.9, a kappa of 
0.8, an AUROC of 0.901, and an AUPRC of 0.9. These values demon-
strate the efficiency of the proposed method, since the test set was un-
known to the constructed model. 

4.1. Comparison with related techniques and works 

In this section, we report the results of further experiments with the 
same datasets. We first compare the results achieved by the proposed 
model with those of other CNN models. We then carry out quantitative 

Table 4 
Results of the proposed CNN without hyperparameter optimization.  

Classifier A R P F K AUROC AUPRC 

SARS-COV-2 CT-Scan Dataset 
Random forest 0.979 0.980 0.979 0.979 0.959 0.910 0.913 
MLP 0.981 0.981 0.982 0.981 0.963 0.935 0.944 
SVM 0.979 0.979 0.980 0.979 0,959 0.908 0.911 
XGBoost 0.985 0.985 0.985 0.985 0.971 0.937 0.958 
COVID-CT Dataset 
Random forest 0.917 0.916 0.912 0.914 0.829 0.906 0.904 
MLP 0.905 0.902 0.910 0.904 0.810 0.899 0.879 
SVM 0.905 0.906 0.907 0.904 0.809 0.900 0.889 
XGBoost 0.917 0.917 0.917 0.917 0.835 0.908 0.905 

Values in bold indicate the best results found for all classifiers. 

Table 5 
Results from the proposed CNN with hyperparameter optimization.  

Classifier A R P F K AUROC AUPRC 

SARS-COV-2 CT-Scan Dataset 
Random forest 0.989 0.989 0.989 0.989 0.979 0.950 0.962 
MLP 0.993 0.994 0.994 0.993 0.988 0.974 0.970 
SVM 0.989 0.990 0.990 0.989 0.980 0.946 0.951 
XGBoost 0.990 0.990 0.991 0.990 0.981 0.966 0.962 
COVID-CT Dataset 
Random forest 0.930 0.932 0.932 0.930 0.860 0.928 0.917 
MLP 0.953 0.948 0.948 0.948 0.897 0.932 0.926 
SVM 0.930 0.932 0.932 0.927 0.855 0.927 0.915 
XGBoost 0.929 0.936 0.929 0.929 0.858 0.930 0.919 

Values in bold indicate the best results for all classifiers. 

Table 6 
Number of features selected by GA for each architecture.  

Dataset Description Extracted 
features 

Selected 
features 

Without hyperparameter optimization 100 47 

SARS-COV-2 
CT-Scan 

With hyperparameter optimization 120 53  

Without hyperparameter optimization 100 68 
COVID-CT With hyperparameter optimization 120 76  
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comparisons with existing works from the literature (Section 2), in order 
to provide a fair comparison and to allow our method to be reproduced 
in future work. 

4.1.1. Classification using pre-trained CNNs 
To test the robustness of our method, we performed tests with five 

different CNN architectures that are widely used for image problems, 
namely VGG16 and VGG19 [51], Xception [52], ResNet50 [53] and 
Inception-v4 [54]. Table 8 presents the results achieved by these models. 
We used only the MLP classifier for these experiments, as our best results 
were achieved with this algorithm. 

The results in Table 8 show that our method achieved promising 
performance. Our scheme achieved the highest accuracy on both data-
sets, meaning that it can be used to categorize CT images into COVID-19 
and Non-COVID-19 cases more effectively than alternative methods. It 
should also be noted that the number of features extracted per image 
with the proposed CNN architecture was much lower than with the pre- 
trained CNN architectures. Furthermore, our architecture contained 
only a few layers, and this proved to be more efficient for the problem at 
hand. Finally, although pre-trained network methods are widely used 
for various data classification problems, the results are not always 
satisfactory for certain problems, and in view of this, several proposals 
for improvements have been presented. Without undermining the ar-
chitectures presented in Table 8, we propose steps for optimizing ar-
chitectures, hyperparameters and selecting the best features with the 
aim of achieving more efficient results for this particular problem. 

4.1.2. Comparison with related works 
Ensuring a fair comparison of results is very complex, since many 

factors can influence the reliability of comparison, such as the databases 
and techniques used. We summarize the results obtained from the pro-
posed method with those of the approaches described in Section 2, in 
order to achieve an illustrative quantitative comparison. Table 9 pre-
sents the results obtained using alternative state-of-the-art schemes for 
the diagnosis of COVID-19 from CT images. 

It can be seen from Table 9 that the proposed methodology achieved 
very promising results. On the SARS-CoV-2 CT-Scan dataset, the values 
for the accuracy of each scheme were as follows: Chaudhary and Pachori 
[17] obtained 0.993; Sen et al. [21] obtained 0.983; Wang et al. [19] 
obtained 0.908; Jia et al. [4] obtained 0.993; and Jaiswal et al. [26] 
obtained 0.962. On the COVID-CT dataset, the accuracy values were as 
follows: Sen et al. [21] obtained 0.900; Carvalho et al. [22], Carvalho 
et al. [14] and Gifani et al. [23] obtained 0.950, 0.978 and 0.850, 
respectively; Wang et al. [19] obtained 0.786; Chen et al. [10], Hou et al. 
[28] and Loey et al. [29] obtained 0.870, 0.981 and 0.829, respectively, 
and Kaur et al. [20] obtained 0.993. On the SARS-CoV-2 CT-Scan 
dataset, our approach obtained an accuracy of 0.997, which was better 
than the other reported works. On COVID-CT, our algorithm obtained an 
accuracy of 0.987, which again was higher than the other related works. 
To further evaluate the effectiveness of the proposed method, we per-
formed an experiment using the SARS-CoV-2 CT-Scan dataset for 
training and COVID-CT for testing, which yielded an accuracy of 0.901. 
These results demonstrate the superiority of the proposed methodology. 

5. Discussion 

The proposed method used trainable features obtained with a CNN 
architecture to diagnose COVID-19 from CT images. Based on the results 
presented here, we can identify some advantages of our approach and 
other aspects that need to be investigated further. 

Table 7 
Results using feature selection with a GA and the MLP classifier.  

Architecture A R P F K AUROC AUPRC 

SARS-COV-2 CT-Scan Dataset 
Without optimization 0.993 0.993 0.994 0.993 0.987 0.993 0.993 
With optimization 0.997 0.997 0.998 0.997 0.995 0.997 0.997 
COVID-CT Dataset 
Without optimization 0.975 0.975 0.975 0.975 0.951 0.975 0.975 
With optimization 0.987 0.989 0.986 0.987 0.975 0.989 0.987 

Values in bold indicate the best results found, for all experiments. 

Table 8 
Results using features extracted with pre-trained CNNs and an MLP classifier.  

Dataset A R P F K AUROC AUPRC 

VGG16 
SARS-COV- 

2 
CT-Scan 

0.959 0.959 0.959 0.959 0.919 0,959 0,959 

COVID-CT 0.877 0.876 0.874 0.875 0.750 0.876 0.874 
VGG19 
SARS-COV- 

2 
CT-Scan 

0.965 0.965 0.966 0.966 0.932 0.966 0.965 

COVID-CT 0.863 0.862 0.863 0.862 0.725 0.862 0.861 
Xception 
SARS-COV- 

2 
CT-Scan 

0.957 0.957 0.957 0.957 0.915 0.957 0.957 

COVID-CT 0.870 0.870 0.871 0.870 0.741 0.870 0.870 
ResNet50 
SARS-COV- 

2 
CT-Scan 

0.975 0.976 0.975 0.975 0.952 0.975 0.975 

COVID-CT 0.823 0.820 0.822 0.821 0.642 0.820 0.821 
Inception-v4 
SARS-COV- 

2 
CT-Scan 

0.949 0.950 0.950 0.949 0.900 0.950 0.949 

COVID-CT 0.836 0.833 0.839 0.835 0.670 0.833 0.833 

Values in bold indicate the best results for each architecture. 

Table 9 
Comparison of results obtained with the proposed methodology and those of 
related works.  

Work Dataset A P F 

He et al. [24] COVID-CT   0.850 
Chen et al. [10]  0.870 0.885  
Carvalho et al. [22]  0.950 0.949 0.950 
Carvalho et al. [14]  0.978 0.979 0.978 
Gifani et al. [23]  0.850 0.857  
Hou et al. [28]  0.981   
Loey et al. [29]  0.829   
Chaudhary and Pachori [17] SARS-CoV-2 CT-Scan 0.976 0.970 0.970 
Jaiswal et al. [26]  0.962 0.962 0.962 
Kaur et al. [20]  0.993 0.992 0.994 
Wang et al. [19] SARS-CoV-2 CT-Scan 0.908 0.957 0.908 

COVID-CT 0.786 0.780 0.788 
Sen et al. [21] SARS-CoV-2 CT-Scan 0.983 0.982 0.980 

COVID-CT 0.900 0.935 0.885 
Our work SARS-CoV-2 CT-Scan 0.997 0.998 0.997 

COVID-CT 0.987 0.986 0.987  
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5.1. Advances  

1. Optimization of the hyperparameters of the CNN produced better 
features, which improved the final results;  

2. The GA yielded an improvement in the results, in addition to 
achieving a significant reduction in the dimensionality in the feature 
files, and consequently making the classification process more agile;  

3. Our architecture is robust, efficient, and has low complexity, 
meaning that it requires less processing power than other traditional 
models; 

4. After the model had been constructed, the time required for char-
acterization and classification of the test set was only 0.035 h with 
the MLP classifier; 

5. The proposed architecture provided robust features for the classifi-
cation of CT scans into COVID-19 and Non-COVID-19 cases, and 
could be used as a diagnostic or screening aid for COVID-19. 

5.2. Limitations  

1 Since our method involves several optimizations (such as the choice 
of architecture, optimization of hyperparameters, and use of a GA to 
select the best features), it requires a relatively long time to construct 
the final model. On average, it took about: (i) 1.5 h to select the best 
architecture; (ii) 22.2 h for the hyperparameter optimization step; 
and (iii) 4 h for the selection of the best features;  

2. The proposed methodology was developed based on a dataset of 2D 
CT images, and would require modifications for application to 3D CT 
examinations. 

6. Conclusion 

The COVID-19 pandemic has plagued the world and has caused 
significant losses and difficulties at a global level. Furthermore, a great 
deal of concern has arisen due to the emergence of new variants. Thus, in 
this paper, we have proposed a method that is capable of diagnosing 
COVID-19 from CT images, using two public image datasets. Our 
method consists of a CNN architecture with hyperparameter optimiza-
tion for feature extraction. A GA is employed to select important fea-
tures. Classification is then performed using four algorithms with 
different approaches. Our methodology gave promising results, 
achieving a final accuracy of 98% on the two image databases used. We 
have also shown that a GA can provide a relatively small feature set and 
gives good results in terms of the metrics used. Our methodology was 
able to avoid the problem of overfitting, which is common for small 
databases, and outperformed pre-trained architectures and other state- 
of-the-art approaches. Our method can therefore be used as part of a 
computer-aided diagnostic system, and can serve as a second opinion for 
a specialist in diagnosing patients with COVID-19. 

In future work, we intend to use other datasets of images to make our 
model more robust and generic; to apply other techniques, such as in-
formation gain, for feature selection; and to adapt our method for use 
directly with the volumes generated by CT exams. 
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