Table 4.
Results of the proposed CNN without hyperparameter optimization.
| Classifier | A | R | P | F | K | AUROC | AUPRC |
|---|---|---|---|---|---|---|---|
| SARS-COV-2 CT-Scan Dataset | |||||||
| Random forest | 0.979 | 0.980 | 0.979 | 0.979 | 0.959 | 0.910 | 0.913 |
| MLP | 0.981 | 0.981 | 0.982 | 0.981 | 0.963 | 0.935 | 0.944 |
| SVM | 0.979 | 0.979 | 0.980 | 0.979 | 0,959 | 0.908 | 0.911 |
| XGBoost | 0.985 | 0.985 | 0.985 | 0.985 | 0.971 | 0.937 | 0.958 |
| COVID-CT Dataset | |||||||
| Random forest | 0.917 | 0.916 | 0.912 | 0.914 | 0.829 | 0.906 | 0.904 |
| MLP | 0.905 | 0.902 | 0.910 | 0.904 | 0.810 | 0.899 | 0.879 |
| SVM | 0.905 | 0.906 | 0.907 | 0.904 | 0.809 | 0.900 | 0.889 |
| XGBoost | 0.917 | 0.917 | 0.917 | 0.917 | 0.835 | 0.908 | 0.905 |
Values in bold indicate the best results found for all classifiers.