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Abstract

Backgroud: Blood flow restriction (BFR) with low-intensity resistance training has been shown to result in hypertrophy of skeletal muscle. In this

study, we tested the hypothesis that BFR during the rest periods between acute, high-intensity resistance exercise sessions (70% of 1 repetition

maximum, 7 sets with 10 repetitions) enhances the effects of the resistance training.

Methods: A total of 7 healthy young men performed squats, and between sets BFR was carried out on one leg while the other leg served as a con-

trol. Because BFR was applied during rest periods, even severe occlusion pressure (approximately 230 mmHg), which almost completely

blocked blood flow, was well-tolerated by the participants. Five muscle-specific microRNAs were measured from the biopsy samples, which

were taken 2 h after the acute training.

Results: Doppler data showed that the pattern of blood flow recovery changed significantly between the first and last BFR. microRNA-206 levels

significantly decreased in the BFR leg compared to the control. The mRNA levels of RAC-b serine/threonine-protein kinase v22, nuclear respira-

tory factor 1, vascular endothelial growth factor, lupus Ku autoantigen protein p70 genes (p< 0.05), and paired box 7 (p < 0.01) increased in the

BFR leg. The protein levels of paired box 7, nuclear respiratory factor 1, and peroxisome proliferator-activated receptor g coactivator 1a did not

differ between the BFR leg and the control leg.

Conclusion: BFR, during the rest periods of high-load resistance training, could lead to mRNA elevation of those proteins that regulate angiogen-

esis, mitochondrial biogenesis, and muscle hypertrophy and repair. However, BFR also can cause DNA damage, judging from the increase in

mRNA levels of lupus Ku autoantigen protein p70.

Keywords: Blood flow restriction; High-intensity resistance training; microRNA; Satellite cells
1. Introduction

It has been repeatedly shown that low-intensity resistance train-

ing with blood flow restriction (BFR) results in increased skeletal

muscle hypertrophy.1�4 The molecular background of BFR train-

ing has been intensively studied, and data reveal that ribosomal
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S6 kinase 1 phosphorylation, a downstream target of mammalian

target of rapamycin (mTOR), is elevated, with a decreased

eukaryotic translation elongation factor 2 phosphorylation.2 Gun-

dermann et al.5 confirmed that BFR during low-intensity resis-

tance training leads to increases in the phosphorylation of mTOR,

S6 kinase 1, ribosomal protein S6, extracellular signal-regulated

kinases1/2, and Mnk1-interacting kinase 1. It has also been

reported that BFR training causes a decrease in creatine phosphate

and intramuscular pH.6 The efficiency of BFR can be further
n human skeletal muscle during rest periods after high-load resistance training
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increased with low-intensity neuromuscular electrical stimula-

tion.7 There are a number of studies in which the effects of

high-intensity resistance training and low-intensity resistance

training with BFR8�11 have been compared. Generally, it seems

that high-intensity resistance training is more effective for strength

generation11 and results in greater surface electromyographic

activity.8 Indeed, due to the low intensity, BFR training provides

greater benefit to endurance athletes than to sprinters.12 Therefore,

because of the different thresholds of fast- and slow-twitch fibers

and because of the pain that could take place when BFR is carried

out during exercise,13,14 this sort of training is not often used by

elite athletes.

Recently we have shown that microRNA (miR) plays an

important role in the regulation of muscle hypertrophy.15 miRs

are small regulatory transcripts capable of post-transcriptional

silencing of mRNA messages by entering a cellular bimolecu-

lar apparatus called the RNA-induced silencing complex.16

However, the possible role of miR in BFR training is not

unequivocally known. It is well-accepted that the adaptive

response to exercise training in skeletal muscle depends on

intensity and takes place in the resting period after the training

session.17 However, during BFR training, even at low loads,

intensity can cause adaptive responses to muscle mass, similar

to those caused by high-intensity resistance loading. We

assumed that if BFR were applied during rest periods between

exercise sessions, the associated pain would be significantly

decreased, and, more important, the exercise could be done at

a higher load by permitting the utilization of fast-twitch fibers.

Therefore, we tested the hypothesis that BFR, between sets,

during resistance training would beneficially impact the effects

of a single bout of exercise in human subjects. We also con-

templated that miRs are involved in the adaptive response.
2. Materials and methods

2.1. Participants

A total of 7 healthy young male individuals voluntarily par-

ticipated in the present study (24.5 § 4.7 years old, body

height 182.9 § 7.7 cm, body mass 78.8 § 6.7 kg, mean §
SD). All participants carefully read and signed the detailed

protocol of the study. Written and informed consent was

obtained from all participants. This study was carried out

according to the Helsinki Declaration and was approved by

the local Science Research Ethical Committee, Budapest,

Hungary.
2.2. Acute exercise protocol

The 1st participant started the exercise protocol at 8:20 a.m.

Participants were instructed to avoid food consumption 10 h

prior to the exercise protocol. The maximal load of squatting

was measured as 1 repetition maximum (RM). The 1RMmeas-

urements were conducted 1 week prior to the occlusion proto-

col. All participants were familiar with the squatting exercise.

Briefly, after a 10-min warm-up on a cycling ergometer, par-

ticipants performed 10 repetitions at a load one-half their body

weight and 4�6 repetitions at total body weight. In the testing
phase, load was gradually increased to reach 1RM by follow-

ing the National Strength and Conditioning Association (USA)

guidelines.18 In 4 trials, all participants reached 1RM. Between

sets there was a 2-min rest period.

All participants performed the squat exercises at 70% 1RM

in 7 sets with 10 repetitions. Between sets, during the 2-min

rest period, right leg BFR was performed using the Mizuho

BFR system (Tourniquet #8; Mizuho, Tokyo, Japan) with an

11-cm-wide cuff. The left leg served as a control. During the

2-min rest periods between sets, immediately after the last

squat, BFR was applied with repeated pumping, which

increased the pressure of the cuff to 230 mmHg19 for 1 min.

The cuff was then removed. Between each set, subjective

discomfort feelings were recorded using the conventional

20-point Borg scale.20 Fig. 1 shows the protocol for the study.

2.3. Blood flow measurement

The occlusion pressure was approximately 230 mmHg

using the standard cuff.21 Doppler 2-dimensional real-time

ultrasound examination (General Electric, Boston, MA, USA)

was used to detect blood flow in the restricted leg during the

rest periods. The results from our pilot study previously dem-

onstrated that this pressure was well-tolerated by the partici-

pants and also suggested that greater levels of restriction

during the resting periods could enhance the effects of BFR.

Blood flow velocity was measured before, during, and imme-

diately after depressurizing the cuff, using 7.5�10.0 MHz fre-

quency, with a linear transducer placed at the popliteal artery (at

60˚), by an experienced physician. The blood flow was detected

by Doppler before starting the exercise, after every 2 sets of

squats, after the last set, and 5 min after the last exercise bout

(Fig. 1). Resting diastolic diameter (mm) was averaged over

30 cardiac cycles. Blood flow (mL/min) was calculated as

(time-average mean velocity £ pr2)£ 60, where r is the radius

of the artery lumen. Resting blood flow was averaged over 20

cardiac cycles. Synchronized diameter and velocity data

enabled calculation of blood flow.

2.4. Muscle biopsy samples

To determine the expression level of the corresponding

mRNA, micro biopsy samples were taken for miR and protein

fractions using a semiautomatic needle (EASY-RAM 14G

(gauge)£ 100 mm (length); RI.MOS., Mirandola, MO, Italy).

Local anesthetic was applied (20 mg/mL lidocaine-hydrochlo-

ride; EGIS, Budapest, Hungary) to the vastus lateralis muscle

of both legs 2 h after the last exercise set.22 The biopsy

resulted in about 10 mg of muscle samples. The samples were

divided in half, frozen in liquid nitrogen, and kept at �80˚C

for subsequent RNA and protein extraction procedures.

2.5. RNA extraction and quantitative real-time polymerase

chain reaction (qRT-PCR) of the mRNA and miR transcripts

Expression levels of target genes were measured by

qRT-PCR. The cycle threshold (Ct) values of each PCR run

were recorded. The housekeeping gene was selected by using



Fig. 1. The experimental protocol. Participants performed squats at 70% of 1 repetition maximum, with 7 sets and 10 repetitions. BFR was applied to the right leg

for 1 min of the 2-min rest periods between sets: S1�S7. Blood flow characteristics were measured by Doppler at RS 1., after every 2 sets (RS 2., RS 3.,

and RS 4.), after the last set (RS 5.), and 5 min after the last set (AE, RS 6.) exercise bout. Microbiopsy samples were taken 2 h after the last exercise set. AE = after

exercise; BFR = blood flow restriction; RS = rested state; S = set.
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the RefFinder23 online tool, which uses the common methods

for GeNorm,24 Normfinder,25 BestKeeper,26 and the compara-

tive DCt method27 for identifying housekeeping genes. Com-

prehensive gene stability (gene geomean of ranking values)

was calculated. Of the 5 candidate genes, the 28S RNA

showed the best expression stability (mean = 20 Ct, SD = 0.38

Ct, coefficient of variation = 1.9).

RNA extraction (NucleoSpin RNA mini; Macherey-Nagel,

D€uren, Germany) and cDNA synthesis (SensiFASTTM cDNA

Synthesis Kit; Bioline, London, UK) were performed according

to the manufacturers’ instructions. Specific gene products were

amplified by qRT-PCR using primer pairs (Appendix). The fol-

lowing applied primers were also used: paired box 7 (Pax7),

Pax3,28 mTOR,29 silent mating type information regulation 2

homolog 1,30 nuclear respiratory factor 1 (NRF1),31 vascular

endothelial growth factor (VEGF), insulin-like growth factor 1,

peroxisome proliferator-activated receptor g coactivator 1a
(PGC-1a), forkhead box protein O1, 28S RNA,32 mitochondrial

transcription factor A,31 hypoxia-inducible factor 1a,33 lupus

Ku autoantigen protein p70 (Ku70),34 RAC-b serine/threonine-

protein kinase 1(Akt1), Akt2,35 superoxide dismutase 1, super-

oxide dismutase 2,36 and U6 small nuclear RNA (U6).37

The most stable gene expression was found to be 28S RNA.

Consequently, this gene expression was used as the reference

gene (BestKeeper).26 The mRNA samples were annualized

using the SYBR Green real-time system (Thermo Fisher Sci-

entific Inc., Waltham, MA, USA).

The qPCRs for each miRNA (10 mL total volume) were

performed in triplicate, and each 10-mL reaction mixture

included 2.4 mL of 10£ diluted reverse transcriptase product.

Reactions were run on a PRISM 7900HT Fast Real-Time PCR

System (Applied Biosystems, Waltham, MA, USA) at 95˚C

for 10 min, followed by 40 cycles at 95˚C for 15 s and 60˚C

for 1 min. Twofold dilution series were performed for all target

miRNAs to verify the linearity of the assay. To account for

possible differences in the amount of starting RNA, all sam-

ples were normalized to U6, which proved to be the most
stable (mean = 23.1 Ct, SD = 0.44 Ct, coefficient of varia-

tion = 1.88). All reactions were run singularly and quantified

using the Ct (DDCt) method.38

2.6. Immunoblot

The frozen samples were measured and homogenized in a lysis

buffer (137 mmol/L NaCl, 20 mmol/L Tris-HCl pH 8.0, 2% Noni-

det P40 substitute, 10% glycerol, 1 mmol/L phenylmethylsulfonyl

fluoride, protease inhibitor cocktail). Protein levels were deter-

mined by the Lowry method. Samples containing 40 mg of protein
were loaded on sodium dodecyl sulfate-Polyacrylamide gel elec-

trophoresis. Separated protein bands were immobilized on polyvi-

nylidene difluoride membrane (Immobilon P, 0.45 mm pore size;

Merck Millipore, Burlington, MA, USA) membranes and incu-

bated with target-specific antibodies overnight at 4˚C. Primary

antibodies and dilution factors were the following: Pax7 (1:500,

sc-81648; Santa Cruz, Dallas, TX, USA), NRF1 (1:1000,

sc-33771, Santa Cruz), PGC-1a (1:3000, KP9803; Calbiochem,

San Diego, CA, USA), and a-tubulin (1:5000, T6199; Sigma-

Aldrich, St. Louis, MO, USA).

2.7. Statistical analyses

All variables were subjected to the Shapiro�Wilk test to

assess if the variables were normally distributed. Data gathered

from qPCR measurements and in the miR gene expression

experiment data showed normal distribution. The gene expres-

sion levels were normalized to the housekeeping genes (28S

for mRNA, U6 for miR) and normalized values were com-

pared. For Western blot, a-tubulin was used for normalization.

To determine differences between the BFR and the control

limbs, either Student’s paired t test (two-tailed) or the Mann-

Whitney U test was used for qPCR and Western blot variables,

as appropriate. For time course data, repeated measures of analy-

sis of variance were evaluated using the Greenhouse�Geisser

correction and Tukey’s HSD post hoc analysis. Borg scale data

were analyzed by Friedman’s analysis of variance. To determine
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the strength of correlation between Pax7 and miR-206

expression, Pearson’s r was calculated. The graphs show

fold-difference values for gene-expression levels of the BFR and

the control limbs. Data are presented as mean§SE. The signifi-

cance level was set at p< 0.05.
3. Results

Doppler measurement of popliteal artery blood flow was

done before exercise, after every 2 sets of squats and last set,

and 5 min after the last exercise bout. Systolic and diastolic

flow velocities were registered before and after cuffing. With

230 mmHg of pressure, the blood flow was almost completely

blocked. After the 4th and 5th measurements, systolic blood

flow increased sharply when the cuff pressure was released,

compared to the 3rd basal values (4th measurement: 108.88 §
28.48 mmHg vs. 157.94 § 13.89 mmHg; 5th measurement:

108.88 § 28.48 mmHg vs.176.81 § 42.3 mmHg). Pressure

dropped back to the initial values 5 min after the cuff pressure

was released (86.56 § 35.79 mmHg). However, the diastolic

blood flow increased during the 5th and 6th measurements

(�23.28 § 11.72 mmHg vs. 25.37 § 12.13 mmHg; Fig. 2).

After the last trial, the normal 3-phase Doppler blood flow

curve changed to a biphasal curve with increased blood flow

speed, suggesting decreased peripheral resistance (Fig. 2). The

Borg scale data did not show significant differences in pain
Fig. 2. Blood flow analysis (n = 7). The blood flow pattern was measured by Doppler

tolic and diastolic blood flow was measured on the popliteal artery. (A) Systolic bloo

(B) The diastolic blood flow velocity increased in the 5th and 6th measurements. Rep

5 min after the last bout of exercise. Filled dots represent mean values and open circl

point; ** p< 0.01 for the 6th- vs. 5th measurement point.
perception during the BFR (7 sets: 4.9§ 2.5, 4.6§ 1.5, 6.9§ 1.9,

5.9§ 2.9, 5.4§ 2.0, 5.3§ 2.9, and 5.6§ 3.4; p = 0.296).

The levels of miR-1, miR-34a, miR-133a, and miR-133b did

not change with BFR. However, the concentration of miR-206

(�1.22 § 1.02 fold, p = 0.0192) significantly decreased as a

result of BFR training (p < 0.05) (Fig. 3). Key signaling pro-

teins involved in protein synthesis, vascularization, mitochon-

drial biogenesis, and the antioxidant system were selected.

Resistance exercise with BFR increased the mRNA levels of

Akt2 (0.929 § 0.923 fold, p = 0.037), NRF1 (0.457 § 0.409

fold, p = 0.025), VEGF (0.721 § 0.748 fold, p = 0.0433), and

Ku70 genes (0.929 § 0.923 fold, p = 0.037) (Fig. 3). However,

the most intriguing finding was the robust increase in the

mRNA levels of Pax7 (0.886 § 0.318 fold, p = 0.0003). Signifi-

cant correlations were found between the levels of miR-206 and

Pax7 (r2 = 0.332, r =�0.577, p = 0.0310) (Fig. 3). The protein

levels of Pax7, NRF1, and PGC-1a measured 2 h after the exer-

cise bouts did not demonstrate differences between the BFR

and control legs (Fig. 4).
4. Discussion

BFR with low-intensity resistance training is widely used to

increase muscle hypertrophy, especially in older individu-

als.39�45 However, due to the low resistance, this kind of train-

ing mostly targets slow-twitch fibers, since fast-twitch fibers
at rested state, after every 2 sets, and last set, and 5 min after the last squat. Sys-

d flow increased during the 4th and 5th measurements and decreased at the 6th.

resentative Doppler images of (C) the resting state, (D) peak blood flow, and (E)

es show individual values. * p < 0.05 for the 4th- and 5th- vs. 3rd- measurement



Fig. 3. mRNA and miR levels from BFR and control legs. (A) Biopsy samples were taken 2 h after the last exercise bout, and the mRNA of key signaling proteins

was measured. BFR induced Akt2, NRF1, Pax7, VEGF, and Ku70 levels. (B) A total of 5 myomiRs were detected but only miR-206 changed significantly. (C)

Correlation was found between miR-206 and Pax7. The DCt values were normalized to the corresponding reference gene. The mRNA and miR results are

expressed as fold changes of BFR vs. control (mean § SE; n = 7). * p < 0.05 (highlighted in gray), ** p < 0.01 (highlighted in black), significant difference

marked between the treated and control limbs. Akt1 = RAC-b serine/threonine-protein kinase 1; Akt2 = RAC-b serine/threonine-protein kinase 2; BFR = blood

flow restriction; Ct = cycle threshold; FOXO1 = forkhead box protein O1; HIF-3 = hypoxia-inducible factor 3; IGF1 = insulin-like growth factor 1; Ku70 = lupus

Ku autoantigen protein p70; miR =microRNA; mTOR =mammalian target of rapamycin; myomiR = skeletal muscle microRNA; NRF-1 = nuclear respiratory fac-

tor 1; Pax3 = paired box protein 3; Pax7 = paired box protein 7; PGC-1a = peroxisome proliferator-activated receptorgcoactivator 1a; Rpl11-pan = ribosomal pro-

tein L11 v1 and v2; Rpl = ribosomal protein L; SIRT1 = silent mating type information regulation 2 homolog 1; SOD1 = superoxide dismutase 1;

SOD2 = superoxide dismutase (Mn); TFAM =mitochondrial transcription factor A; VEGF = vascular endothelial growth factor A.
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have higher thresholds and are activated by high resistance or

high speed. Indeed, Suga et al.6 reported that low-intensity

BFR training resulted in recruitment of fast-twitch fibers, eval-

uated by inorganic phosphate splitting, but occurred in only

31% of the participants, while high-intensity resistance train-

ing caused 70% recruitment of these fibers. However, it

has been suggested that BFR increases the recruitment of

fast-twitch fibers,46 and high-intensity exercise is more appro-

priate to activate them.6 Hence, BFR training is not regularly

used by top athletes. We tested whether BFR used during rest

periods of resistance training sets (with an intensity of 70% of

1RM) could be an alternative to BFR done during exercise.

Although the acute effects of BFR during rest periods are

encouraging, the chronic effects need to be mechanistically

studied.

It has been reported that high-intensity resistance training

without BFR increases the levels of miR-206.47 Our experi-

mental conditions (high-intensity resistance exercise with

BFR during the rest periods) resulted in down regulation of
miR-206. It has been shown that repression of miR-206 can

promote hypertrophy associated with increased protein synthe-

sis in cultured myotubes, but not in skeletal muscle.48 This

effect is probably mediated by the interaction of miR-206 and

histone deacetylase 4.48 miR-206 plays a crucial role in muscle

development, since transforming growth factor b can inhibit

myogenic differentiation by suppressing levels of miR-206

and miR-29.49 The myogenesis-related transcription factors

myoblast determination protein 1, myogenin, and myocyte-

specific enhancer factor 2 bind to the upstream regions of the

miR-206 locus, thus ensuring and maintaining its skeletal

muscle tissue-specific expression.50 miR-206 levels are

sharply up-regulated during satellite cell differentiation and

down-regulated after muscle injury.51

Inhibition of miR-206 substantially enhances satellite cell

proliferation and increases Pax7 protein levels in vivo.51 The

present study found that BFR during the resting periods of

high-intensity resistance training resulted in down-regulation of

miR-206 and increased expression of Pax7, suggesting that



Fig. 4. Western blot analysis of some key proteins from BFR and control legs. Representative images of protein bands of (A) Pax7, NRF-1, PGC-1a, and a-tubulin.

The protein content of (B) Pax7, (C) NRF-1, and (D) PGC-1a was measured from the biopsy samples. Results are expressed as mean § SE (n = 7). BFR= blood flow

restriction; NRF-1 = nuclear respiratory factor 1; Pax7 = paired box protein 7; PGC-1a = peroxisome proliferator-activated receptor g coactivator 1a.

Blood flow restriction at rest 475
BFR could induce muscle damage and the related adaptive

response. Although the adaptive capacity is very limited after

acute exercise and BFR,52 it was found that the mRNA levels of

Akt2, NRF1, VEGF, and Pax7 increased significantly when per-

formed during the rest periods of resistance training. This could

indicate wide range of cellular adaptive responses. Significant

alteration was not detected in the content of measured signaling

proteins. This partly could be due to the time of sampling,

which was 2 h post-exercise. Although 2�3 h is often used for

post-exercise sampling in BFR studies, it is possible that this

period is too short to detect changes in protein content.10,45,53

It is estimated that the DNA in a typical mammalian cell suf-

fers approximately 2£ 105 lesions per day,54 and double-strand

break is one of the most toxic lesions. Ku70 is the key protein

for the repair of double-strand break. The increase in mRNA lev-

els of Ku70 could mean that the applied BFR induces DNA dam-

age and as a result cells respond by rapid induction of Ku70.

One of the novel results in this study of BFR during rest

periods of resistance training relates to the induction of Pax7.

Pax7 regulates myogenesis through the regulation of muscle

precursor cell proliferation. The present results suggest that

the applied BFR activates satellite cells, which could lead to a

rise in daughter myogenic precursor cells and enhanced regen-

eration.55 In a recent study, we found that compensatory

hypertrophy is associated with increased levels of Pax7.15

Therefore, it is suggested that BFR during rest periods of resis-

tance training enhances satellite cell proliferation, which could

lead to repair and hypertrophy of skeletal muscle. It is impor-

tant to note that Pax7 expression peaks 24�48 h after a single

bout of eccentric exercise56; but even after 1 h following a
bout of eccentric exercise, a 15% increase in mRNA levels of

Pax7 has been reported.56,57

The present study has several limitations. Biopsy samples

were taken just once to limit the discomfort of the participants,

who previously had agreed that only 1 sample would be taken

from each leg. The amount of sampled muscle tissue was inad-

equate to study all of the important proteins that accompany

hypertrophy and vascularization changes. In addition, the con-

tralateral leg (which was involved in training but did not have

blood flow restricted to it) was used as a control. It cannot be

confidently concluded that BFR did not have systemic effects

that could have reached the contralateral leg as well. More-

over, since this study only evaluated the effects of acute exer-

cise bouts with BFR during rest periods, the chronic effects of

this training are unknown.

5. Conclusion

Overall, it is suggested that BFR, used during rest periods

of resistance training, appears to enhance the gene expression

of angiogenesis, mitochondrial biogenesis, muscle repair, and

hypertrophy. BFR during rest periods decreases the levels of

miR-206, which could be involved with the adaptive response

to this exercise training. However, the present results are only

valid for healthy young men, and further investigation is

needed to validate their applicability to other populations.

Acknowledgments

This study was supported by Orsz�agos Tudom�anyos
Kutat�asi Alapprogramok (112810) and National Excellence



476 F. Torma et al.
Program (126823) grants awarded to ZR. FT was supported by
�Uj Nemzeti Kiv�al�os�ag Program-17-3, New National Excel-

lence Program of the Ministry of Human Capacities.

Authors’ contributions

ZR participated in the design of the study and contributed to

data collection and data reduction/analysis; FT, ZG, MF, GL,

and ZT participated in the design of the study; ZM, HN, NIS,

and PO participated in the design of the study and contributed

to data collection; MT contributed to data reduction/analysis;

BM contributed to data analysis and interpretation of results.

All authors contributed to the manuscript writing. All authors

have read and approved the final version of the manuscript,

and agree with the order of presentation of the authors.

Competing interests

The authors declare that they have no competing interests.

Appendix
Target

mRNA

F
w. primer R
e. primer
28S A
GCCGATCCATCATCCGCAA C
AGCCAAGCTCAGCGCAAC
Akt1 T
CTATGGCGCTGAGATTGTG C
TTAATGTGCCCGTTCCTTGT
Akt2 T
GAAAACCTTCTGTGGGACC T
GGTCCTGGTTGTAGAAGGG
FOXO1 A
AGAGCGTGCCCTACTTCAA C
ATCCCCTTCTCCAAGATCA
HIF-1a T
TCCAGTTACGTTCCTTCGATCA T
TTGAGGACTTGCGCTTTCA
IGF1 C
GAAGTCTCAGAGAAGGAAAGG A
CAGGTAACTCGTGCAGAGC
Ku70 C
TGTCCAAGTTGGTCGCTTC C
TGCCCCTTAAACTGGTCAA
mTOR T
CGCTGAAGTCACACAGACC C
TTTGGCATATGCTCGGCAC
NRF-1 C
GCTCTGAGAACTTCATGGA

GGAACAC

G
CCACATGGACCTGCTGCACTT
Pax3 C
TCACCTCAGGTAATGGGACT C
GTGGTGGTAGGTTCCAGAC
Pax7 C
CCCCGCACGGGATT T
ATCTTGTGGCGGATGTGGTT
PGC-1a G
TGAAGACCAGCCTCTTTGC C
ACGTCTCCATCTGTCAGC
Rpl11-pan A
ACTTCGCATCCGCAAACTC C
TCCGGATGCCAAAGGATCT
Rpl11-V1 A
TCATGGCGCAGGATCAAGGT C
TCCGGATGCCAAAGGATCT
Rpl11-V2 G
CTCTCCATCATGGCGGATCA T
GGAAAACACAGGGGTCTGC
SIRT1 T
GCGGGAATCCAAAGGATAA

TTCAGTGTC

C

T

TTCATCTTTGTCATACTTCA

GGCTCTATG
SOD2 G
CAGAAGCACAGCCTCCCCG C
CTTGGCCAACGCCTCCTGG
TFAM T
GCCTCATCCACCGGAGCGA C
ACAAAACTGAAGGGGGAG

CGCA
VEGF A
GGAGGAGGGCAGAATCATCA C
TCGATTGGATGGCAGTAGCT
Abbreviations: 28S = 28S ribosomal RNA; Akt1 = RAC-b serine/threonine-protein

kinase 1; Akt2 = RAC-b serine/threonine-protein kinase 2; FOXO1= forkhead

box protein O1; Fw. = forward; HIF-1a = hypoxia-inducible factor 1a;

IGF1 = insulin-like growth factor 1; Ku70 = lupus Ku autoantigen protein p70;

mTOR=mammalian target of rapamycin; NRF-1 = nuclear respiratory factor 1;

Pax3 = paired box protein 3; Pax7 = paired box protein 7; PGC-1a = peroxisome

proliferator-activated receptor g coactivator 1a; Re. = reverse; Rpl11-pan = ribo-

somal protein L11 v1 and v2; Rpl11-V1 = ribosomal protein L11 v1; Rpl11-

V2 = ribosomal protein L11 v2; SIRT1 = silent mating type information regulation

2 homolog 1; SOD2 = superoxide dismutase (Mn); TFAM=mitochondrial tran-

scription factor A; VEGF= vascular endothelial growth factor A.
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