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ABSTRACT: Herein, we report a reaction that selectively generates 3-arylpyridine and quinoline motifs by inserting aryl carbynyl
cation equivalents into pyrrole and indole cores, respectively. By employing α-chlorodiazirines as thermal precursors to the
corresponding chlorocarbenes, the traditional haloform-based protocol central to the parent Ciamician-Dennstedt rearrangement
can be modified to directly afford 3-(hetero)arylpyridines and quinolines. Chlorodiazirines are conveniently prepared in a single step
by oxidation of commercially available amidinium salts. Selectivity as a function of pyrrole substitution pattern was examined, and a
predictive model based on steric effects is put forward, with DFT calculations supporting a selectivity-determining cyclopropanation
step. Computations surprisingly indicate that the stereochemistry of cyclopropanation is of little consequence to the subsequent
electrocyclic ring opening that forges the pyridine core, due to a compensatory homoaromatic stabilization that counterbalances
orbital-controlled torquoselectivity effects. The utility of this skeletal transform is further demonstrated through the preparation of
quinolinophanes and the skeletal editing of pharmaceutically relevant pyrroles.

In recent years, molecular editing has taken root as an
approach to diversify the suite of complexity-building

reactions available to the synthetic community.1−5 This
paradigm has so far chiefly focused on C−H functionalization
(i.e., peripheral editing, Figure 1A6−8), which, while effective,
does not harness the immense potential manifest in the
underlying molecular skeleton. Indeed, by their nature, C−H
bonds are necessarily peripheral sites for reactivity, and the
development of a complementary set of skeletally focused (i.e.,
C−C, C−N, C−O editing) reactions would have a synergistic
effect on access to complex molecular scaffolds.9,10

In this vein, “single-atom” manipulations of ring systems
(i.e., targeted insertions or deletions) are of particular interest,
in part due to their retrosynthetic simplicity.11−14 Such
reactions are known for a limited subset of molecules,
including venerable carbonyl rearrangements such as the
Bayer−Villiger, Beckmann, and Wolff rearrangements.15−18

However, the practical attractiveness of these classic reactions
varies greatly from case to case by virtue of their conditions
and limitations. The Ciamician−Dennstedt rearrangement
(Figure 1B) represents a stark example of such a trans-
formation; the attractive underlying retrosynthetic logic is
hindered by practical limitations that have largely precluded its
widespread adoption.19,20 The reaction is principally limited to
the production of 3-halopyridines through haloform-derived
carbenes, and typical yields and functional group tolerances are
low, due in part to competitive Reimer−Tiemann formyla-
tion.21 The potential of the underlying transformation,
however, spurred us to identify an alternative protocol to
access polysubstituted pyridines and quinolines. These targets
are prevalent motifs among medicinal compounds, with
contributions from numerous laboratories to their synthesis
in recent years.22−36
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Figure 1. Introduction. (A) selected recent examples of peripheral
editing of pyrroles and indoles; (B) the classical Ciamician−
Dennstedt Rearrangement; (C) skeletal editing logic for heterocycle
diversification (this work).
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The key intermediate for the desired transformation is a
carbenic center bearing an appropriate leaving group (i.e., a
carbynyl cation equivalent). Though benzal halides have been
employed toward this purpose, the procedures are typically low
yielding.37 α-halo diazoalkanes have similarly been reported,
but their intrinsic instability has limited their use.38−40 Suero
has recently reported the related α-iodonium diazo compounds
as surprisingly stable, isolable carbynyl cation equivalents,
though despite increased stability relative to the parent α-halo
compounds, Suero reagents retain the requirement of a
stabilizing electron-withdrawing group.41−44 Moreover, the
associated oxidizing capacity of iodine(III) limits their
application to reducing substrates such as pyrroles and indoles.
Aware of these limitations, we turned our attention to

diazirines, which are the cyclic valence isomers of diazo
compounds.45 Though similarly capable of serving as carbene
precursors through extrusion of N2, diazirines are typically
more stable, allowing isolation of carbene precursors lacking
electron-withdrawing functionality.46−50 The most commonly
encountered diazirines are the trifluoromethyl derivatives,
which are often applied as photoaffinity probes in biological
applications.51,52 However, importantly for our purposes, the
corresponding α-chlorodiazirines (1) are much more easily
prepared than their trifluoromethyl analogues via the single-
step Graham oxidation of amidine precursors (Figure 1C).53,54

Simple treatment with bleach directly affords a diverse range of
chlorodiazirines (see the experimental Supporting Information

(SI) for details). Indeed, hundreds of amidine precursors
bearing diverse substitution patterns are commercially
available, enabling the straightforward preparation of a library
of reagents.55

With these compounds in hand, we examined their potential
for Ciamician−Dennstedt-type ring expansions, initially with
indole substrates (Figure 2). Optimization revealed that
sodium carbonate in acetonitrile afforded high yields, with
inorganic bases proving critical for the formation of the desired
quinoline products (3). We suspect this beneficial effect to be a
consequence of chloride-scavenging by sodium, given that
addition of Bu4NCl causes dramatic decreases in the isolated
yield of 3, with attendant formation of benzal chloride (see the
experimental SI Section VIA).56−59 Solvents other than
acetonitrile afforded varying quantities of carbene-trapping
side products.60 Though the reaction proceeded with similar
yields at a range of temperatures, heating at 50 °C allowed the
process to proceed at a convenient rate, generally reaching full
conversion in 12 h.
Indoles substituted at the 2-position were found to be

particularly effective substrates, though substitution at multiple
positions was well-tolerated provided that the indole was
relatively electron-rich. This allowed for the preparation of
diversely substituted quinolines (entries 3a−3x). Though a
protected tryptophan derivative could be converted to the
corresponding quinoline 3x in 41% yield, in the absence of a 2-
substituent, yields were generally lower (see the experimental

Figure 2. Scope of the indole-to-quinoline ring expansion. Conditions: 2 (1 equiv), 1 (3 equiv), Na2CO3 (3 equiv), CH3CN (0.1 M), 50 °C, 12 h.
Isolated yields, 0.1−0.3 mmol scale. a5 equiv of 1. b48 h.
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SI for additional examples). We suspect decomposition via
pyridinium ylide intermediates is a deleterious pathway, as
addition of 3 equiv of quinoline to the reaction of 2-phenyl
indole with phenylchlorodiazirine afforded 3o in 15% yield,
compared to 68% in its absence.61

The synthesis of cyclophanes exemplifies the unique
retrosynthetic logic enabled by this protocol. 2,3-Ring-fused
indoles, easily prepared from cycloalkanones via a Fischer
indole synthesis, afford ring expanded quinolinophanes 3y and
3z, providing ready access to an otherwise challenging class of
compounds.62−64

Various diazirenes were found to be effective coupling
partners, including ortho, meta, and para substituted arenes, as
well as several heteroaryl carbene precursors. Products such as

3f, 3n, and 3s, which bear heteroaryl-heteroaryl linkages, are
considered challenging to prepare using cross-coupling; by
formally moving the retrosynthetic disconnection inward by
one carbon, indoles can be employed as analogues to 3-
quinolyl nucleophiles.65 Even in cases where such heterocyclic
diazirines are not employed, this method may offer an
advantagesequential application of the classical Cicami-
cian−Dennstedt (excess CHCl3, aq. NaOH, BnEt3NCl)
followed by Suzuki coupling with 3-fluorophenylboronic acid
afforded 3k in 22% yield over 2 steps, compared with 82%
under the title conditions. A limitation was observed in moving
to electron-rich diazirines, which exclusively afforded the
corresponding aldehydes.66,67 Aliphatic diazirines were sim-
ilarly poor coupling partners, either isomerizing to vinyl

Figure 3. Scope and selectivity of the pyrrole-to-pyridine ring expansion. Conditions: 4 (1 equiv), 1 (3 equiv), Na2CO3 (3 equiv), CH3CN (0.1
M), 50 °C, 12 h. Isolated yields, 0.1−0.3 mmol scale. a48 h. Regioisomer assignments supported by 1H-NOE. Selectivity model based on the
difference between the Boltzmann averaged buried volume in a 3.75 Å sphere at C3 vs C4.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.1c06287
J. Am. Chem. Soc. 2021, 143, 11337−11344

11339

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c06287/suppl_file/ja1c06287_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06287?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06287?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06287?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c06287?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c06287?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


chlorides or undergoing competitive dimerization (see the
experimental SI section IV).68−71

Pyrroles (4) represent a more complex substrate class due to
the potential for regioisomeric products derived from insertion
into the two “olefinic” sites of the substrate (Figure 3).72 The
reaction was found to proceed efficiently with a range of
pyrroles (though again displaying the 2-substitution constraint
observed for indoles), affording good yields of the correspond-
ing pyridines with tolerance for ester (4d and 4w), thiophene
(4o), and amide (4p and 4r) functionality. Free alcohols,
halopyrroles, and trialkyl pyrroles were not tolerated (see the
experimental SI for details). In addition to symmetric pyrroles
such as 4a (which do not pose a regiochemical question),
trisubstituted pyrroles (4b−4e) were found to give exquisite
selectivity for insertion into the less-substituted side of the
pyrrole.
In asymmetric disubstituted pyrroles, mixtures of products

were observed, allowing for structure-selectivity trends to be
discerned. Though inspection of subsets of the pyrroles (e.g.,
{4f, 4m, 4n} vs {4f, 4g, 4h}) suggests a more significant role

for steric effects than electronic effects, we sought a
quantitative, predictive model applicable to the full data set
and potentially of use to those seeking to adopt this method to
other pyrroles.73 Molecular descriptors capturing steric and
electronic features of the pyrroles were extracted as Boltzmann
averages from Density Functional Theory (DFT) optimized
conformers and correlated against the experimental product
distribution. To maintain generality beyond the present data
set, descriptors derived from either a difference or quotient of
properties representing each side of the pyrrole were
calculated. Accordingly, the best model was found to be a
difference in buried volume at C3 and C4 of the pyrrole at a
radius of 3.75 Å. This univariate model not only captured the
high selectivity of trisubstituted pyrroles but also was able to
accurately predict low-selectivity substrates such as 4o.
Substrate 4p was observed as an outlier in most models

surveyed, and we hypothesized that this was due to hydrogen
bonding between the −NHBz moiety and the carbene in the
selectivity-determining step.74−76 To probe this, we prepared
the doubly protected analogue 4q, which blocked such

Figure 4. Unusual ortho and para isomers and computational investigation of their mechanism of formation. Conditions: 4 (1 equiv), 1 (3 equiv),
Na2CO3 (3 equiv), CH3CN (0.1 M), 50 °C, 12 h. Isolated yields, 0.1−0.3 mmol scale. aUnassigned minor isomer detected. bCarbene-C2 bond was
frozen at length from B3LYP-D3/6-31g(d) optimization.
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hydrogen bonding effects. This substrate was effectively
predicted by the steric model, consistent with the hydrogen-
bonding hypothesis.
Armed with this insight into selectivity, we examined the

late-stage skeletal editing of 4r (N-des-alkyl Lipitor) and 4s
(Molindone). Both compounds afforded one major isomer
5r showing hydrogen-bond-donor-controlled selectivity and 5s
with a regioselectivity that was accurately predicted by our
quantitative model. We note despite our moderate yields that
the classical Ciamician−Dennstedt induces decomposition of
molindone with no detectable pyridine formation. These
examples showcase the potential for skeletal editing approaches
to offer access to new chemical space in a medicinal chemistry
campaign.
For some substrates, unusual ortho and para insertion

products were observed (5t, 5v, 5w). These cannot be
accounted for by a 2,3-cyclopropanation mechanism alone,
forcing us to reexamine the potential reaction pathways
(Figure 4).77,78 We considered the possibility that cyclo-
propanation is followed by cyclization to afford an
azabenzvalene intermediate.79−82 However, DFT computa-
tions suggest that such a mechanism is implausible. The
transition state for azabenzvalene formation from the exo-
chlorocyclopropane 6 is predicted to be ∼16 kcal/mol higher
in energy than the corresponding electrocyclic ring opening to
afford 5t. Instead, we suggest that cyclopropanation (or
aziridination) of the 3,4 (or 1,2) linkage (respectively) is
operative in the generation of the unusual regioisomeric
products 5t′, 5v′, and 5w. A plausible pathway was located
computationally in which metastable zwitterionic 3,4-cyclo-
propane 7 forms through stepwise attack and ring closure (see
the computational SI, Figure S6 for details). Intermediate 7 is
likely stabilized by its phenyl substituent, as evidenced by the
exclusive formation of the typical meta isomer from di-tert-
butylpyrrole 4u.
Finally, because our reagent generates a monochlorocarbene,

cyclopropanation can in principle afford diastereomeric
cyclopropanes, unlike the classical use of dichlorocarbene.
Based on precedent in cyclopropyltosylate solvolyses, these
diastereomers were expected to exhibit dramatically different
rates of ring opening.83−85 Our computational investigations
suggest that the intrinsic diastereoselectivity of the initial
cyclopropanation is quite low, such that both diastereomers are
likely formed under the reaction conditions. Despite these
considerations, no cyclopropane byproducts have been
detected, and experimental yields range as high as 90%.
Moreover, the computationally predicted barrier for ring
opening by the putatively forbidden pathway is surprisingly
low.
In order to better understand this unexpected phenomenon,

we analyzed the bond lengths and Nucleus Independent
Chemical Shift (NICS) of each transition state.86,87 As
expected, the disallowed transition state (TS2-exo, red)
shows a lesser degree of C−Cl bond breaking than the
allowed transition state (TS2-endo, blue), 1.85 Å vs 1.95 Å.
However, this is accompanied by a greater degree of
cyclopropane C−C bond-breaking (2.00 Å vs 1.86 Å), and a
far more negative NICS0 value (−14.9 vs −11.4, compared to
−11.5 for the parent pyrrole) indicating a greater degree of
aromaticity in the disallowed transition state. Taken together,
these results indicate that a substantial degree of homoar-
omaticity in the pyrrolic ring of the disallowed transition state

compensates for the lack of C−C (σ) → C−Cl (σ*)
interaction in the transition state.88,89

In conclusion, we have demonstrated that chlorodiazirine
reagents enable a versatile new ring expansion reaction of
pyrrole and indole substrates through the generation of aryl
carbynyl cation equivalents. Mechanistic experiments and
computations indicate that the regioselectivity is controlled
by steric effects in a selectivity-determining cyclopropanation
step, with diminished torquoselectivity effects in the
subsequent ring opening due to homopyrrole character in
the product-forming transition state. Ring expansion of fused
indoles allows access to otherwise challenging quinolino-
phanes, and the method is applicable to the skeletal editing of
medicinally relevant compounds. This method, coupled with
the predictive model for its deployment, promises to enable
direct interrogation of aromatic heterocycle skeletal editing as
an innovative approach to synthetic and structural optimiza-
tion campaigns.
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