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Abstract

The social world buzzes with action. People constantly walk, talk, eat, work, play, snooze and so on. To interact with others
successfully, we need to both understand their current actions and predict their future actions. Here we used functional
neuroimaging to test the hypothesis that people do both at the same time: when the brain perceives an action, it simulta-
neously encodes likely future actions. Specifically, we hypothesized that the brain represents perceived actions using a map
that encodes which actions will occur next: the six-dimensional Abstraction, Creation, Tradition, Food(-relevance), Animacy
and Spiritualism Taxonomy (ACT-FAST) action space. Within this space, the closer two actions are, the more likely they are
to precede or follow each other. To test this hypothesis, participants watched a video featuring naturalistic sequences of
actions while undergoing functional magnetic resonance imaging (fMRI) scanning. We first use a decoding model to demon-
strate that the brain uses ACT-FAST to represent current actions. We then successfully predicted as-yet unseen actions, up
to three actions into the future, based on their proximity to the current action’s coordinates in ACT-FAST space. This finding
suggests that the brain represents actions using a six-dimensional action space that gives people an automatic glimpse of
future actions.

Key words: action; predictive coding; social cognition; naturalistic fMRI; decoding

The social world is abuzz with people doing things. People are
constantly talking, eating, working, playing, walking, jumping,
snoozing and so on. In order to navigate the social world, one
needs to be able to accurately recognize and understand oth-
ers’ current actions (Thornton and Tamir, 2019b). However, to
truly succeed in the social world, one also needs to predict oth-
ers’ future actions. To help a friend achieve their goals, one
must understand the sequence of actions they will take to reach

those goals; to hinder an enemy, one must likewise predict their
upcoming moves.

People can draw upon many types of knowledge to inform
such action predictions. Knowing what personality traits a per-
son possesses, whatmental state they currently occupy, or what
situation they find themselves in could all inform inferences
about their likely future actions (Abbott et al., 1985; Gilbert and
Malone, 1995; Frijda, 2004; Gibson, 2014). While these sources

Received: 26 June 2019; Revised: 15 July 2020; Accepted: 9 September 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

807

https://academic.oup.com/
mailto:Mark.A.Thornton@Dartmouth.edu
http://creativecommons.org/licenses/by/4.0/


808 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8

of information are well-studied predictors of actions, here we
examine another source of information about people’s future
actions: their current actions.

We propose that the brain automatically predicts others’
future actions while perceiving their current actions. The
human perceptual system constantly engages in this kind of
reflexive prediction. While watching a ball fly through the air,
people can simultaneously recognize its current location and
predict its future trajectory, thereby allowing them to turn their
back on it momentarily and still run to the right spot to catch
it. The theory of predictive coding suggests that when peo-
ple perceive the world, their brains do not merely process and
encode incoming information (Rao and Ballard, 1999). Instead,
they make predictions about the likely future, and continually
compare these predictions against new sensory data. These con-
tinual predictions help to fill in gaps in one’s perception and
allow us to plan our actions by anticipating future states of the
world (Knill and Pouget, 2004; Friston and Kiebel, 2009; Friston,
2010, 2012).

Researchers originally tested the predictive coding hypothe-
sis in the domains of basic sensation, such as vision and audition
(Hohwy et al., 2008; Vuust et al., 2009). More recently, researchers
have found that the same principle applies to social cogni-
tion as well (Barrett and Bar, 2009; Koster-Hale and Saxe, 2013;
Barrett and Simmons, 2015; Theriault and Young, 2017; Tamir
and Thornton, 2018; Thornton et al., 2019). This research sug-
gests that social cognition is fundamentally organized around
the goal of predicting other people’s mental states and behav-
iors. Mirror neurons offer an example of this principle. These
neurons were originally identified based on their responsive-
ness to both perceived and performed actions (Rizzolatti and
Craighero, 2004; Keysers and Gazzola, 2010; Oosterhof et al.,
2013). That is, the same neuron might spike when picking up a
glass oneself or watching someone else pick up a glass. How-
ever, recent studies suggest that mirror neurons do more than
represent current action: they also activate predictively, right
before an action occurs (Kilner et al., 2007; Saygin et al., 2011;
Maranesi et al., 2014).

By linking perceptual and motor systems, mirror neurons
offer a compelling mechanism to explain how we might under-
stand the actions others are currently performing as well as
the actions they are soon to perform. However, mirror neu-
rons are not sufficient to grant perceivers predictive insight deep
into the social future. To achieve deep foresight, perceptions
of a person’s current actions must be combined with broader
conceptual knowledge of actions. For example, one’s percep-
tual system might determine that another person is currently
running; mirror neurons might help one predict the sequence
of motor actions that will allow them to take their next steps.
However, these systems cannot predict what actions the runner
will take after they stop running. To make that prediction, one
must draw upon their knowledge about running. For instance,
one might know that running makes people sweaty, and sweaty

people like to shower, and therefore, one can predict that the
runner will shower in the near future. Thus, conceptual knowl-
edgemust complement perceptual information for perceivers to
make deeper predictions about the actions of other agents.

If deep action prediction relies on conceptual knowledge,
then what do we know about people’s conceptual knowledge of
actions? Recent work suggests that people organize their con-
ceptual knowledge of using a low-dimensional representational
space (Tamir et al., 2016; Tamir and Thornton, 2018; Thorn-
ton et al., 2019). That is, people do not need to independently
represent all of the nuances of each and every action. Instead,
the brain can distill much of its representations of actions to
coordinates on just a few psychologically meaningful dimen-
sions. Specifically, when people think about actions, they
extract information about that action on six dimensions: the
Abstraction, Creation, Tradition, Food(-relevance), Animacy and
Spiritualism Taxonomy (ACT-FAST; Table 1; Thornton and Tamir,
2019b). Each action occupies a single coordinate in this six-
dimensional action space. By knowing where an action falls
on each of these dimensions, a person can efficiently repre-
sent another person’s current action. For example, consider the
action of ‘designing awedding cake’. This action is high (i.e. near
‘Pole 1’ in Table 1) on all six dimensions: designing something is
an abstract activity, and weddings are social; it involves creating
something; it is a highly traditional type of activity, associated
with a long historical tradition; it obviously involves food; it is
an action performed by an animate agent (a baker) rather than
a natural force or machine and it is relevant to people’s spiritual
lives, as weddings are often religious or take on transcendent
meaning.

We propose that this particular organization of action knowl-
edge is attuned, specifically, to action prediction. That is, actions
are located in this space close to other actions that they are
likely to predict or follow; conversely, actions that are far away
from each other are unlikely to precede or follow each other.
Proximity on the ACT-FAST dimensions can thus be used to
guide action prediction. For example, the actions ‘eating’ and
‘cooking’ are both Food-relevant words, and thus located close
to each other on this dimension of ACT-FAST. This proximity
reflects the semantic association between these actions, but it
does so as a byproduct of their transition likelihood: if some-
one is currently cooking, they are likely to soon starting eating.
This principle of proximity predicting transitions already been
demonstrated in the domain of mental states (Tamir et al., 2016;
Thornton et al., 2019), and we suggest that it can help explain
action prediction as well.

This model is useful as a predictive tool only to the extent
that it accurately captures the statistical regularities of action
sequences that occur in the natural world. Such statistical regu-
larities underlie many forms of learning. For example, language
learning depends on the mind’s ability to track the transi-
tional probabilities between units of speech (Saffran et al., 1996).
This allows us to predict the next phoneme in a word or the

Table 1. Dimensions of ACT-FAST

Dimension Pole 1 Pole 2 Examples

Abstraction Abstract/social Concrete/physical Govern, refute vs drip, peel
Creation Creation Crime Film, sing vs prosecute, testify
Tradition Tradition Innovation Cook, decorate vs emit, encrypt
Food Food Non-food Bake, fry vs detain, testify
Animacy Animate Mechanical Meow, floss vs contain, extract
Spiritualism Work Worship Fax, haggle vs foretell, ascend
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next word in a sandwich. However, many statistical regulari-
ties are irrelevant to prediction. All gerunds may end in ‘ing’,
but this does not mean that one gerund predicts the next. In
the domain of actions, a successful model of action represen-
tations should capture specifically those properties that allow
for prediction. Whereas the motor act of putting a dish in the
dishwasher superficially resembles putting food in the oven, our
representation of actions would be better served by represent-
ing baking more similarly to frying than to dishwashing. If we
find that the main dimensions that people use to make sense
of actions do have this predictive property, it would suggest
that action knowledge is indeed organized around the goal of
prediction. Encoding actions in such a way—in a space where
proximity reflects prediction—offers a highly efficient way to
represent these regularities. A brain tuned to prediction should
likewise take advantage of these predictive features when
encoding actions.

In the present investigation, we use neuroimaging to test
whether the brain automatically predicts others’ actions by
encoding them on the ACT-FAST dimensions. Two empirical
planks are necessary to support this hypothesis. First, when
people perceive actions, their brain activity must spontaneously
reflect the ACT-FAST dimensions. If so, we should be able to
decode the location of actions on ACT-FAST dimensions based
on patterns of brain activity. Second, the observed sequence of
actions must move smoothly through ACT-FAST space. If so, we
should be able to predict the likelihood of future actions based
on how close they are to the current actions on the ACT-FAST
dimensions.

To test these hypotheses, we used open functional mag-
netic resonance imaging (fMRI) data to examine participants’
brain activity as they watched a naturalistic video stimulus in
the scanner. In order to know what actions participants were
seeing, we annotated the actions occurring in this video using
a deep learning algorithm. We then constructed a multivoxel
predictive model of neural (i.e. blood-oxygen-level-dependent
[BOLD] response) activity, which could decode participants’ cur-
rent location in the six-dimensional action space. Using the
principle of proximity, we tested whether a participant’s current
location in this multidimensional action space predicted which
actions actually occurred later in the video.

Methods

The data and code from this study are freely available online at
the Open Science Framework (https://osf.io/5xykq/).

fMRI data

To examine the hypothesis that neural representations of cur-
rent actions predict actual future actions, we drew upon open
data from a previous investigation. This study collected func-
tional neuroimaging data from participants’ brains as they
watched a naturalistic video stimulus (Chen et al., 2017). The
data are publicly available on the Princeton DataSpace (http://
arks.princeton.edu/ark:/88435/dsp01nz8062179). In the original
study, a sample of 22 participants (12 male, 10 female, aged 18–
26 years, mean age=20.8 years) who had previously not viewed
the television show Sherlock were recruited to watch half of the
first episode of the series in the fMRI scanner. Five participants
were excluded—two for head motion, two for poor recall of the
movie and one for falling asleep—leaving a final sample of 17.
Participants viewed the video in two segments of 23 and 25min-
utes. Each segment was preceded by a cartoon of 30 s unrelated
to the rest of the video (‘Let’s All Go to the Lobby’). During each

viewing period, participants were asked to attend to the video,
with no behavioral responses required. After the video, partici-
pants engaged in a verbal recall procedure. We did not use the
recall data in the present investigation, so we will not discuss it
further.

Imaging data were acquired using a 3T Siemens Skyra scan-
nerwith 20 channels head coil. Functional imageswere acquired
from the whole brain (repetition time (TR)=1.5 s, echo time
(TE)=28ms, flip angle=64◦, 27 ascending interleaved slices of 4
mm thickness, 3 mm2 in-plane resolution, 192×192 mm field of
view (FOV)). Anatomical images were obtained using a T1 mag-
netization prepared - RApid gradient echo (MPRAGE) protocol
with 0.89 mm3 voxels. In the present investigation, we used pre-
processed data from the original study. This preprocessing was
carried out using FSL (http://fsl.fmrib.ox.ac.uk/fsl) and included
slice-time and motion corrections, linear detrending, high-pass
(140 s cutoff) filtering, linear spatial normalization to a common
template brain (MNI152), spatial resampling to 3 mm isometric
voxels, z-scoring over time per voxel, and 6 mm full width at
half maximum Gaussian smoothing. The fMRI time-course was
also shifted by 3 TRs (4.5 s) to align functional activity with the
movie time stamps, accounting for hemodynamic lag.

Automated action annotation

The first step in the analysis process (Figure 1A) was to deter-
mine which actions participants were observing at each time
point in the video. We identified the actions present in Sherlock
at each moment using an automatic annotation tool. Specif-
ically, we used a temporal relation network—a type of deep
neural network classifier (Zhou et al., 2017)—that was trained to
identify actions in video. It was pre-trained on the Moments in
Time Dataset (Monfort et al., 2018), which consists of 1 million
videos, each 3 s in length, representing a total of 339 differ-
ent classes of actions. We split the video into 3 s segments
to match the length of actions in the training set. We used
non-overlapping segments to ensure that each action classifi-
cation was performed on separate video data. The algorithm
estimated the probability that each of the 339 actions occurred
in each 3 s segment. We subsequently averaged together sev-
eral actions that differed only in the agent performing them
(e.g. male singing and female singing) ultimately producing esti-
mates for the likelihood of 332 distinct actions across the entire
Sherlock video.

Action ratings

We hypothesized that the brain represents actions using a set
of six psychologically relevant dimensions (‘ACT-FAST’, Table 1).
To test whether participants in this study used these dimen-
sions to represent the actions in the Sherlock video, it was
necessary to first locate each of the 332 actions on each ACT-
FAST dimension. To do so, we asked participants to rate each
action on each dimensions. A subset of 46 of these actions
had already been rated in prior work (Thornton and Tamir,
2019b), so we collected new data for the remaining 280 actions.
We recruited participants (N=662) using Amazon Mechanical
Turk and TurkPrime (Litman et al., 2017) to rate the actions. We
excluded 16 participants for indicating non-native and less than
excellent English proficiency, and an additional 46 participants
providing 10 or fewer unique responses, leaving a final sample
of 600 (294 female, 301 male, 2 other, 3 preferred not to indicate
gender; mean age=36.2, range=18–69). All participants pro-
vided informed consent in a manner approved by the Princeton
University Institutional Review Board.

https://osf.io/5xykq/
http://arks.princeton.edu/ark:/88435/dsp01nz8062179
http://arks.princeton.edu/ark:/88435/dsp01nz8062179
http://fsl.fmrib.ox.ac.uk/fsl
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Fig. 1. Analysis schematic. (A) Actions in Sherlock were automatically annotated using a temporal relation network pre-trained on the Moments in Time dataset.

(B) These annotations were combined with ratings of where the actions fell on the ACT-FAST dimensions to produce an ACT-FAST time-series over the course of

the video. These time-series were used to train a model to decode ACT-FAST coordinates from patterns of brain activity. We then created a rank order list of future

actions, from most likely to least likely, ordered based on the proximity between each action in ACT-FAST space and the decoded coordinates. Accuracy was assessed

by examining whether actual future actions appeared among the five ranked most likely.

Each participant was randomly assigned to rate actions on
one of the six ACT-FAST dimensions. They were then ran-
domly assigned to rate 70 actions on that dimension. The six
dimensions and their poles were described to participants using
definitions validated in an earlier study (Thornton and Tamir,
2019b). At the end of the survey, participants provided their
demographic information. Following data collection, we aver-
aged ratings across participants to provide a single set of ratings
for each of the 280 actions on each of the ACT-FAST dimensions.
We then combined these ratings and the previously existing
ratings to locate each of 332 possible actions on each of the ACT-
FAST dimensions. Average ratings were z-scored across actions
on each dimension.

Training a neural model of action representation

With all actions located in action space, we next tested whether
the brain automatically uses this action space to represent and
predict actions. To do so, we developed a statistical model
to decode the coordinates of each action from neural data
(Figure 1B). All steps of the analysis were conducted using bi-
cross-validation scheme. That is, we divided the Sherlock video
into five continuous sections of approximately equal length,
based on DVD scene boundaries. We then used four-fifth of the
movie from 16 of 17 participants as training data. The remain-
ing one-fifth of the movie in the remaining participant was held
out for testing. This procedure ensured that results generalize
to both unseen video and new participants.

Feature selection was used to confine all neural decoding
analyses to a set of voxels selected for action-sensitivity. Aver-
age patterns of brain activity were computed for each of the 332
actions. We then computed the reliability (Cronbach’s α) across
participants of each voxel’s activation to these actions. These
voxel-wise reliabilities were then entered into a Gaussian mix-
ture model to cluster high- and low-reliability voxels. Figure 2
indicates the voxels which were consistently selected by this
procedure across folds of the cross-validation.

We next trained a decoding model to ‘read out’ patterns of
brain activity within the feature-selected regions as coordinates
on the ACT-FAST dimensions. This decoding model consisted of
a set of six independent partial least-squares (PLS) regressions,
one for each action dimension (McIntosh et al., 1996). PLS regres-
sions are an integrated factor analysis and regression technique.
They take high-dimensional data, simplify it to a smaller num-
ber of components, and then use those components to predict
a dependent variable. In this case, the high-dimensional data
consisted of patterns brain activity within the action sensitive
regions identified in the feature selection and the dependent
variable was one of the six ACT-FAST dimensions.

We generated this dependent variable as follows: At each
time point, we knew the likelihood of all 332 actions, based on
the output of the automated annotation process. In addition,
we knew the location of each action on each action dimension
based on human ratings. We could thus determine the loca-
tion of each time point in action space by averaging across the
action dimension ratings, with each action’s ratings weighted by
the likelihood that that action was on screen during that time
point. For example, if several food-related actions were judged
to be very likely at a given time point, and non-food related
actions were unlikely, then the ultimate coordinate of that time
point would be high on the Food dimension. For each of the
six action time series generated in this way, we then trained
a PLS decoding model. The only hyper-parameter that must be
assigned for PLS regression is the number of components. We
used nested split-half cross-validation to learn this parameter
within each fold of the primary cross-validation. We visualize
the PLS regression weights in Supplementary Figure S1.

Computing reference coordinates

The decoding models fit in the previous section allow us to infer
ACT-FAST coordinates from patterns of brain activity. Each of
the 332 possible actions already had coordinates on the ACT-
FAST provided by human rater. However, insofar as the decoding
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Fig. 2. Feature selection results. To train and test the neural action predictionmodel, we selected voxels sensitive to action. We computed the reliability of each voxel’s

action-specific activity across cross-validation folds. We then clustered voxels into action sensitive and non-sensitive classes based on these reliability values. The

displayed results indicate the overlap of the selected voxels across cross-validation folds, with more consistently selected voxels shown in darker orange.

models were not perfectly accurate, the human-rated coor-
dinates might differ from the model-fitted coordinates. Since
subsequent analyses rely on the output of the decoding model,
rather than human judgments, we therefore we extracted the
fitted ACT-FAST values for each of the 332 possible actions
from the neural patterns. To do so, we applied the trained
PLS models to decode each TR of the training data. We then
averaged these coordinates across the training portion of the
video, weighting them by the probability of each action over
time. This procedure yielded a set of neural ACT-FAST coordi-
nates for use as a reference in the testing phase. They reflect
where, in the action space, the brain places each one of the
possible actions. Procrustes rotation was used to align these
reference coordinateswith each participants’ unique neural rep-
resentational space, still using only the training portion of their
data.

Testing a neural model of action prediction

We next turned from our training data to our test data. Within
the test portion of the video, we computed ‘discrete actions’
based on the action annotations. We defined a discrete action
as a continuous run of TRs in which the same action class was
judged to bemost likely by the automated annotation. For exam-
ple, if ‘eating’ had the highest probability for 10 TRs, then that
15 s section of the video would be considered a single discrete
action. Discrete actions ranged in length from 3 to 39 s, with

an average of 4.43 s. Our goal was to test whether the decoding
model we had trained in separate data could successfully pre-
dict which discrete actions were on screen, or would soon be on
screen, in the test data.

We then applied our trained decoding model to the held-
out test data. This produced decoded ACT-FAST values for each
TR in the test set. We averaged the decoded ACT-FAST val-
ues across TRs within each discrete action to produce a single
set of coordinates for each discrete action. Next, we computed
the distance from the decoded coordinates across that discrete
action to the reference coordinates of each of the 332 possible
actions. For example, one discrete action might have decoded
coordinates very close to the reference position of ‘walking’ and
very far from the reference position of another action like ‘eat-
ing’. We used these distances to rank the likelihood of each
possible action, with closer actions (e.g. walking) regarded as
more likely, and more distant actions (e.g. eating) regarded as
less likely. Thus, the result was a rank-ordered list of all the
actions, from most to least likely. We created a rank-ordered list
of actions for the combined ACT-FAST model, using Euclidean
distances between coordinates on all six dimensions at once, as
well as the separately for each ACT-FAST dimension (e.g. just
‘Food’).

To measure the accuracy of the model’s predictions, we
compared the rank-ordered list to the actions which actually
occurred in the video. To do so, we use used a ‘top 5’ accu-
racy metric. If the actual action in the video was among the
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first five in the rank-ordered list, then the model was regarded
as accurate in that particular instance. We assessed top 5 accu-
racy at six time points (Lags 0–5) relative to each discrete action.
Lag 0 represented the current action itself. If the current action
was among the first five in the rank-ordered list, then this
was taken as affirmative evidence that the model accurately
decoded the identity of action at Lag 0. We averaged across
all instances of Lag 0 actions to get a measure of how well
participants’ brains encode perceived actions on the ACT-FAST
dimensions.

We conducted the same analysis to test how well partici-
pants’ brains predict actions using the ACT-FAST dimensions.
Lag 1 represented the next discrete action after the current
action, and Lag 2 represented the discrete action after that and
so forth. If the next action was among the first five in the rank-
ordered list, then this is taken as affirmative evidence that the
model accurately predicted the identity of actions at these sub-
sequent lags. We averaged across all instances of Lag 1 actions
to get a measure of Lag 1 accuracy; we averaged across all
instances of Lag 2 actions to get a measure of Lag 2 accuracy
and so on. Accuracy at each subsequent lag indicate that the
ACT-FAST representation of the current action also automati-
cally encodes which other actions are likely to occur in the near
future.

Importantly, these analyses never compare the neural pat-
terns for one action with the neural patterns of any subsequent
action. Nor do we compare the ACT-FAST coordinates decoded
from the neural patterns for one action with the ACT-FAST coor-
dinates decoded from the neural patterns for any subsequent
actions. Rather, the coordinates of the decoded Lag 0 action
are compared with the reference coordinates for all 332 possible
actions (computed on data from a different portion of Sherlock).
This comparison is used to make predictions for all subse-
quent lags, without ever decoding the ACT-FAST coordinates
of those later actions. These predictions are then compared to
the actual labels for the actions at each time point. As a result,
these analyses cannot capitalize on autocorrelation in the BOLD
signal itself, which might occur for a variety of reasons that
have nothing to do with predictive coding. Thus, the model
will only predict future actions better than chance if actions
that are temporally proximal in Sherlock are also conceptu-
ally proximal in the ACT-FAST space, indicative of predictive
coding.

To create a baseline against which to compare observed
accuracy, we used permutation testing. Specifically, we per-
muted the 332 actions with one another, so that—for instance—
‘running’ might take on the ACT-FAST coordinates of ‘singing’
in one permutation. We used these permuted coordinates to
compute an empirical null distribution of the top 5 accuracy
metric. The observed accuracies could then be compared against
this null distribution to determine the statistical significance
of model performance within individual participants, or the
sample as a whole.

Results

The ACT-FAST decoding model identified the actions that par-
ticipants were currently viewing with above-chance accuracy.
Across participants, the average top 5 accuracy at Lag 0 was
3.43%. This performance more than doubled the chance level
performance (mean permutation accuracy) of 1.51%. More-
over, this performance was statistically significant not just at
the group level (P=0.0003), but also in 94% of the individual

participants (16 of 17), indicating widespread accuracy in the
sample. These results indicate that the brain spontaneously rep-
resents actions on the ACT-FAST dimensions during naturalistic
viewing.

The ACT-FAST decoding model also predicted future actions
in the video, as-yet unseen by the participant with above-chance
accuracy. The decoded ACT-FAST coordinates of each current
discrete action predicted not only the identity of that action,
but also up to three actions into the future (Figure 3). At Lag
1—the discrete action immediately following the one currently
viewed—model accuracy was 3.06% (P=0.0059). At Lag 2, accu-
racy was 2.35% (P=0.022), and at Lag 3, accuracy was 2.22%
(P=0.036). However, by Lag 4, accuracy fell below the threshold
of statistical significance at 1.86% (P=0.13) and remained there
at Lag 5, with 1.64% accuracy (P= 0.30). The average length of
each actionwas 4.43 s, so the ability of themodel to predict accu-
rately up to Lag 3 suggests that the information embodied in the
ACT-FAST representations of perceived actions could allow peo-
ple to predict others actions up to about 13 s into the future, on
average.

Results from the analysis of individual dimensions offer
mixed evidence of predictive coding (Figure 4). Three
dimensions—Abstraction, Animacy, and Spiritualism—were
accurately decoded at Lag 0. Abstraction and Animacy were also
accurate at Lag 1, and Spiritualism remained significantly accu-
rate at the group level out to Lag 4. Tradition was intermittently
accurate at Lags 1 and 4, but not others. Creation and Food
did not achieve statistically significant performance at any time
point. These results suggest that certain dimensions of the ACT-
FAST may contribute more than others to representing likely
future actions. On average, 6.67 neural components were neces-
sary to achieve optimal decoding of the ACT-FAST dimensions in
the PLS regressions. The dimensionality of the neural code var-
ied across dimensions from 7.77 for Animacy to 5.54 for Food.
Consistent spatial patterns encoded each dimension across the
brains of different participants (Supplementary Figure S1).

Discussion

In this study, people watched a naturalistic video rife with rich
action sequences. We tested howpeople represented the current
action they perceived on screen, and whether those represen-
tations could foretell future actions that people had not yet
seen. Our findings suggest that people accomplish both of these
by representing actions using a low-dimensional action taxon-
omy tuned for prediction. That is, the action space described
by ACT-FAST provides a window into both perceived and future
actions. We were able to decode positions in ACT-FAST space
from patterns of brain activity as participants viewed actions in
an episode of Sherlock. Moreover, by decoding ACT-FAST coordi-
nates from current brain activity, we could predict actions as-yet
unseen by participants. The closer a possible future action was
to the present coordinates in ACT-FAST space, the more likely
that action was to occur as one of the next three actions in the
video. Three of the six ACT-FAST dimensions also significantly
predicted future actions on their own. Together, these current
findings provide evidence for the central role of prediction in
action perception.

The ACT-FAST dimensions were developed to provide a
comprehensive description of how people think about actions
(Thornton and Tamir, 2019b). They reflect the conceptual struc-
ture of action knowledge. The present results suggest that peo-
ple’s conceptual knowledge of actionsmay be functionally tuned
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Fig. 3. Combined ACT-FAST action prediction results. Coordinates in ACT-FAST space were decoded from brain activity. These decoded coordinates supported accurate

classification of the actions which participants were currently viewing (Lag 0). Moreover, the decoded coordinates of the present action also predicted as-yet unseen

actions later in the video (Lags 1–3).

for prediction. One can easily imagine dimensions of action rep-
resentation which capture the useful features of action space
but fail to capture the temporal dynamics of action sequences.
For example, knowingwhich letter of the alphabet that an action
word starts with is very useful. However, this information, like
much of what we know about actions may help people to repre-
sent or perceive a current action, cannot predict which action
will come next. Thus, not all relevant dimensions of action
representation yield useful predictions about future actions.
Indeed, herewe do not observe that all six ACT-FAST dimensions
predict future actions. However, this may stem from limita-
tions in the stimulus, in which we examine actions over a short,
fine-grained timescale. In other research, we have observed
that different dimensions predicting action transitions at longer
timescales (Thornton and Tamir, 2019a). However, the ACT-
FAST as a whole appears uniquely suited to the goal of action
prediction, outperforming more than 95% of statistically com-
parable sets of dimensions (see Supplementary data). Indeed,
separate behavioral research suggests that people use ACT-FAST
when making explicit predictions about how one action follows
from another (Thornton and Tamir, 2019a). These findings raise
the question of whether people’s conceptual understanding of
actions may in fact be shaped by the goal of predicting them.

Actions are only one of multiple domains of social knowl-
edge. Our theoretical framework for predictive social cognition
suggests that multiple types of social knowledge—including
mental states and traits—are all organized into low-dimensional

representational spaces (Tamir and Thornton, 2018). Neural
representations of mental states are organized by three dimen-
sions: rationality (vs emotionality), social impact, and valence
(Tamir et al., 2016). Three similar dimensions—power, social-
ity and valence—likewise organize neural representation of
other people’s traits (Thornton and Mitchell, 2018). These rep-
resentational spaces not only help people make sense of these
social domains, they also allow for automatic prediction of the
social future. Both behavioral and neuroimaging research has
demonstrated that the dimensions people use to make sense of
each other’s thoughts and feelings also lend themselves to the
sort of proximity-based prediction we observe here for actions
(Tamir et al., 2016; Thornton et al., 2019). In the future, linking
these different layers of social cognition together may provide
additional insight, such as by shedding light on how knowledge
of people’s mental states may help to refine longer-term action
predictions.

The present results help to bridge the gap between low-
level simulation-based accounts of action understanding rooted
in mirror neurons, and higher-level abstract simulations and
theory-based accounts of social cognition. The model of predic-
tive action coding presented here is predicated on the ability
to perceive and identify others’ current actions (although the
present results do not necessarily imply conscious recognition).
Those current actions serve as the basis for predicting future
actions. Insofar as mirror neurons play a role in the direct per-
ception of actions from visual information, the present findings
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Fig. 4. Action predictions from individual ACT-FAST dimensions. Distinct dimensions of the ACT-FAST support action representation and prediction. Abstraction,

Animacy and Spiritualism all support accurate decoding of both current and future actions.

suggest thatmirror neurons need not bear the full weight of peo-
ple’s action understanding. Instead, that basic understanding
of actions may be combined with conceptual knowledge about
actions to produce deeper foresight into others’ future behavior.

The present data provide generalizable evidence for a pre-
dictive coding account of action representation. First, the
overall decoding model was significantly accurate in 94% of
participants, indicating a high prevalence of the effect. Sec-
ond, the decoding models were trained and tested across
different participants. This not only provides direct evidence
of generalization, but also demonstrates that the neural code
supporting action representations is conserved across brains.
That said, the accuracy of the decoding model was low in an
absolute sense. Moreover, our sample was relatively small and
non-representative. Future work would benefit from expanding
the size and diversity of the participant sample.

Future research should also test the extent to which these
findings generalize beyond a single episode of a particular televi-
sion show. Although videos are a relatively naturalistic stimulus
in the context of current fMRI research, there are important dif-
ferences between watching a carefully curated narrative from
a television show and the experiences people have in their
everyday lives. Narratives likely follow social scripts and event
schemas that might allow people to predict future actions more
successfully than in everyday life (Baldassano et al., 2018). Addi-
tionally, it is unclear how well insights from Sherlock, in par-
ticular, can be generalized to other narratives. For example, not
all possible actions were presented with the video, or were all
possible variations of each action. Examination of other natural-
istic fMRI data sets with the same model tested here may help
to address these generalizability concerns.

The ACT-FAST dimensions are not the only things that peo-
ple know about actions. It goes without saying that people could
describe more than six properties of actions. In the same way,
the ACT-FAST is almost certainly not the whole story when
it comes to action prediction. In recent work we found that
these dimensions partially—but not completely—mediate the
accuracy of people’s explicit action predictions (Thornton and
Tamir, 2019a). However, one of the reasons that ACT-FAST is
a useful representational space is because it oversimplifies the
complexity of actions. With the 332 possible actions we con-
sider here, representing every single transition separately would
entail remembering over 100 000 different values. Represent-
ing the likelihood every three-action sequence would require
12 billion values. This exponential explosion is computationally
intractable. Representing actions in a low-dimensional space
like ACT-FAST provides a more efficient alternative, while still
retaining accuracy. Moreover, representing actions on ACT-FAST
dimensions actually enhanced predictability, relative to consid-
ering each action in isolation (see Supplementary data).

This study joins a growing body of literature to suggest that
brains are organized around the goal of prediction (Hohwy et al.,
2008; Friston and Kiebel, 2009; Vuust et al., 2009; Barrett and
Simmons, 2015). Although our findings cannot examine the
activity of individual neurons, or does it focus on the prediction
errors, it suggests that the very way people encode actions sup-
ports automatic prediction of future actions. This goal may be
particularly impactful for a brain as it engages with the social
world (Kilner et al., 2007; Koster-Hale and Saxe, 2013; Tamir and
Thornton, 2018; Thornton et al., 2019). Here we provide evidence
that the brain automatically predicts others’ actions by encod-
ing them on meaningful psychological dimensions. The way we
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perceive actions in the present allows us to anticipate others’
future actions before they happen.
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