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Since the early 1970s, wearable technology has been used to as-
sess sleep/wake behavior patterns in free-living conditions [1]. 
Over the past several decades, this technology has improved and 
has leveraged advancements, including digital accelerometry, 
microelectromechanical systems, and improved software [2]. 
As such, wearable sleep assessment technology has become 
not just an accepted methodology, but also an invaluable tool 
for characterizing real-world sleep, which has profound impli-
cations for health but is difficult to measure under laboratory 
conditions. Over the past decade, devices designed to objectively 
assess sleep in free-living situations have proliferated, leading 
to an increasing number of devices specifically designed for sci-
entific use and/or commercial use by the general public. Also, 
these next-generation devices increasingly leverage emerging 
technologies, such as optical plethysmography, proximity-based 
detection, and artificial intelligence. Importantly, standards for 
the development of this technology have been codified [3, 4]. 
As the line between scientifically validated and commercially 
available devices has increasingly blurred, with devices origin-
ally developed for commercial use being deployed in research, it 
has become especially important to document the validation of 
these devices under gold-standard, rigorous conditions [5]. This 
would provide a better understanding of their strengths and 
limitations relative to more widely accepted devices.

The study in this issue by Chinoy et  al. [6] included 34 
healthy young adults who underwent three consecutive nights 
in a sleep laboratory to undergo polysomnographic measure-
ment with concurrent use of actigraphy (Phillips Respironics 
Actiwatch 2), and assessment with various wearable (Fatigue 
Science Readiband, Fitbit Alta HR, Garmin Fenix 5S, and 
Garmin Vivosmart 3) and “nearable” (non-wearables, including 
EarlySense Live, ResMed S+, and SleepScore Max) consumer 

sleep-tracking devices. During the three-night study, a sleep dis-
ruption protocol was performed on one of the final two nights 
to assess the effects of fragmented sleep on device perform-
ance. The measures for the study were sleep/wake statistics and 
epoch-by-epoch agreement compared to the gold-standard PSG 
for both sleep versus wake and individual sleep stages.

For sleep/wake measures, the consumer devices generally 
performed as well as the Actiwatch, even on nights of frag-
mented sleep. The Actiwatch performed about as well as it 
had previously [7] (sensitivity = 0.97, specificity = 0.39, and ac-
curacy = 0.89). In comparison, the consumer devices that per-
formed best (Fatigue Science, Fitbit, EarlySense, Resmed, and 
SleepScore) also achieved similar levels of sensitivity (0.93–0.96) 
and nominally better specificity (0.45–0.54), with comparable 
accuracy (0.88–0.90). Sleep staging was compared to PSG. The 
Fitbit device performed nominally best for light sleep (sensi-
tivity  =  0.76, specificity  =  0.67, and accuracy  =  0.72) and rapid 
eye movement sleep (sensitivity  =  0.69, specificity  =  0.94, and 
accuracy = 0.89), and the Garmin devices were nominally best 
for deep sleep (sensitivity  =  0.56, specificity  =  0.92, and ac-
curacy = 0.87), though in general many of the devices performed 
similarly. Taken together, there are a few key issues that are rele-
vant to these findings.

The “commercial-grade” devices performed about as well 
(and sometimes, better) when compared to the commonly 
used, “scientific-grade” actigraphy device. For this reason, the 
delineation between devices approved for research, and the 
devices used by the general public should not be assumed to 
reflect the accuracy and validity of the devices. Rather, any de-
vice that purports to measure sleep should do so in accordance 
with published technical standards [3], should demonstrate 
validity according to published guidelines [4], and should be 
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implemented in the context of published recommendations [8]. 
Any device that meets these criteria, irrespective of how the de-
vice is marketed, should be considered appropriate for scientific 
use. Once a device and protocol have met these minimum stand-
ards, the choice to use that device should be made based on the 
quality of the data, the demonstrated utility in the population 
of interest, and other factors that are adjacent to the device ac-
curacy such as access to raw data, ability to modify assessment 
windows, compatibility with statistical software packages, pres-
ence of other useful sensors, and Bluetooth capabilities.

It should be further noted that validation is not an event, 
it is a process. Devices change, as does their use and both the 
hardware and software that support them. And validation in 
one group does not transitively convey validation in all popula-
tions and contexts. The details regarding the ability of a specific 
device to demonstrate validity in the population of interest, for 
the outcome of interest, should be the most relevant factor in 
choosing a device. Perhaps “performance” in context is a better 
way to refer to this process than validation [9].

This paper also addresses the important issue of sleep sta-
ging using wearables. Automated scoring of even gold-standard 
polysomnography (PSG) is controversial, and even two well-
trained humans frequently disagree when tasked with scoring 
the same record. This is likely because often, PSG epochs can 
contain elements of more than one sleep stage, rendering clas-
sification inherently unreliable (as long as probabilistic staging 
is disallowed). This creates a validation problem—it is difficult 
to validate against an unreliable target. PSG is not the “gold 
standard” for validation because it is gold, it is because it is 
the standard. Furthermore, since the signals obtained using 
wearables only indirectly correlate with brain-derived wave-
forms at the outer cortex, it should be assumed that any sleep 
staging classifications are rough estimates at best. As such, 
any scientific use of these values should be done with appro-
priate qualification, recognizing that the sleep staging by these 
wearables is not a replacement for PSG, but rather a rough esti-
mate. This rough estimate, despite its imprecision, may yet still 
be quite valuable. Obtaining nightly polysomnographic data for 
days, weeks, or months in samples of hundreds, thousands, or 
even millions of people is otherwise impossible under current 
circumstances. Therefore, these rough estimates remain the 
best available data for large-scale, real-world, longitudinal sleep 
stage data at the population level. Additionally, these estimates 
may be the only form of objective sleep assessment available to 
some disenfranchised populations and demographics.

Once a device has shown that it performs well relative to PSG 
at detecting sleep versus wake, other signals may also be useful 
to derive. Perhaps, there are signals in movement patterns (such 
as rest-activity rhythms or elements of the raw movement signal) 
[10] and other peripheral signals [11] (such as heart rate or tem-
perature) assessed by these devices that may deepen our under-
standing of real-world sleep. Future research might be able to 
further develop this line of inquiry, identifying metrics and fac-
tors present in these real-world signals that predict important 
outcomes [12]. The paper by Chinoy et al. [6] shows that the sleep–
wake agreement is quite good, and the sleep staging agreement 
is moderate for a number of these consumer devices. Future re-
search may show additional metrics derived from wearables.

A final issue that is relevant to this discussion is one of meas-
urement versus intervention. The study by Chinoy et al. [6] fo-
cused on the accuracy of the measurement itself. It is important 

to note, though, that measurement is not intervention. Available 
studies show that the feedback provided by sleep trackers may 
itself be enough of an active intervention to improve sleep [13]. 
But in general, these effects may be weak and limited to those 
without much need for intervention. Just as a bathroom scale 
is not a weight loss program, a sleep tracker is not a sleep im-
provement program. As the ability of these devices to measure 
sleep is increasingly recognized, their usefulness will still be 
limited by the lack of insight about what to actually do with 
the data we collect. Simply providing feedback is the first step. 
Recommendations would be a second step, though it is im-
portant to note that current sleep health recommendations [14, 
15] are based on self-report and not objective data. Even with 
recommendations, though, much work in behavioral science 
is needed to develop the educational, motivational, and inter-
ventional programs that will optimally make use of these data 
collected by sleep-tracking devices. Few such studies exist, and 
more are needed as the advantages of these devices to record 
continuously for 24 h a day for days, weeks, and even longer and 
their cost-effectiveness could provide pertinent data at an indi-
vidual and population level that can be used for sleep improve-
ment interventions.

The paper by Chinoy et  al. [6] convincingly demonstrates 
that a number of commercially available sleep-tracking devices 
measure sleep and wake about as well as (and sometimes better 
than) standard actigraphy. Given the lower costs, technological 
improvements, and ease of use of these devices, this demonstra-
tion of relative accuracy should empower researchers to be com-
fortable using these devices in scientific research. Other factors, 
such as access to raw data, ability to modify scoring windows, 
privacy, and Bluetooth capabilities, may serve as important dif-
ferentiators when choosing devices for a study. As the accuracy 
of these devices is further established, future work could move 
beyond just validation against PSG and instead develop novel 
uses for these real-world, longitudinal sleep data with the goal 
of assessing and improving population sleep health.
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